Search results for: adaptive learning rate.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5324

Search results for: adaptive learning rate.

3164 Transcutaneous Inductive Powering Links Based on ASK Modulation Techniques

Authors: S. M. Abbas, M. A. Hannan, S. A. Samad, A. Hussain

Abstract:

This paper presented a modified efficient inductive powering link based on ASK modulator and proposed efficient class- E power amplifier. The design presents the external part which is located outside the body to transfer power and data to the implanted devices such as implanted Microsystems to stimulate and monitoring the nerves and muscles. The system operated with low band frequency 10MHZ according to industrial- scientific – medical (ISM) band to avoid the tissue heating. For external part, the modulation index is 11.1% and the modulation rate 7.2% with data rate 1 Mbit/s assuming Tbit = 1us. The system has been designed using 0.35-μm fabricated CMOS technology. The mathematical model is given and the design is simulated using OrCAD P Spice 16.2 software tool and for real-time simulation, the electronic workbench MULISIM 11 has been used.

Keywords: Implanted devices, ASK techniques, Class-E power amplifier, Inductive powering and low-frequency ISM band.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2382
3163 ANFIS Approach for Locating Faults in Underground Cables

Authors: Magdy B. Eteiba, Wael Ismael Wahba, Shimaa Barakat

Abstract:

This paper presents a fault identification, classification and fault location estimation method based on Discrete Wavelet Transform and Adaptive Network Fuzzy Inference System (ANFIS) for medium voltage cable in the distribution system.

Different faults and locations are simulated by ATP/EMTP, and then certain selected features of the wavelet transformed signals are used as an input for a training process on the ANFIS. Then an accurate fault classifier and locator algorithm was designed, trained and tested using current samples only. The results obtained from ANFIS output were compared with the real output. From the results, it was found that the percentage error between ANFIS output and real output is less than three percent. Hence, it can be concluded that the proposed technique is able to offer high accuracy in both of the fault classification and fault location.

Keywords: ANFIS, Fault location, Underground Cable, Wavelet Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2748
3162 Podcasting as an Instructional Method: Case Study of a School Psychology Class

Authors: Jeff A. Tysinger, Dawn P. Tysinger

Abstract:

There has been considerable growth in online learning. Researchers continue to explore the impact various methods of delivery. Podcasting is a popular method for sharing information. The purpose of this study was to examine the impact of student motivation and the perception of the acquisition of knowledge in an online environment of a skill-based class. 25 students in a school psychology graduate class completed a pretest and posttest examining podcast use and familiarity. In addition, at the completion of the course they were administered a modified version of the Instructional Materials Motivation Survey. The four subscales were examined (attention, relevance, confidence, and satisfaction). Results indicated that students are motivated, they perceive podcasts as positive instructional tools, and students are successful in acquiring the needed information. Additional benefits of using podcasts and recommendations in school psychology training are discussed.

Keywords: Motivation, online learning, pedagogy, podcast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781
3161 Black Box Model and Evolutionary Fuzzy Control Methods of Coupled-Tank System

Authors: S. Yaman, S. Rostami

Abstract:

In this study, a black box modeling of the coupled-tank system is obtained by using fuzzy sets. The derived model is tested via adaptive neuro fuzzy inference system (ANFIS). In order to achieve a better control performance, the parameters of three different controller types, classical proportional integral controller (PID), fuzzy PID and function tuner method, are tuned by one of the evolutionary computation method, genetic algorithm. All tuned controllers are applied to the fuzzy model of the coupled-tank experimental setup and analyzed under the different reference input values. According to the results, it is seen that function tuner method demonstrates better robust control performance and guarantees the closed loop stability.

Keywords: Function tuner method, fuzzy modeling, fuzzy PID controller, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
3160 The Video Database for Teaching and Learning in Football Refereeing

Authors: M. Armenteros, A. Domínguez, M. Fernández, A. J. Benítez

Abstract:

The following paper describes the video database tool used by the Fédération Internationale de Football Association (FIFA) as part of the research project developed in collaboration with the Carlos III University of Madrid. The database project began in 2012, with the aim of creating an educational tool for the training of instructors, referees and assistant referees, and it has been used in all FUTURO III courses since 2013. The platform now contains 3,135 video clips of different match situations from FIFA competitions. It has 1,835 users (FIFA instructors, referees and assistant referees). In this work, the main features of the database are described, such as the use of a search tool and the creation of multimedia presentations and video quizzes. The database has been developed in MySQL, ActionScript, Ruby on Rails and HTML. This tool has been rated by users as "very good" in all courses, which prompt us to introduce it as an ideal tool for any other sport that requires the use of video analysis.

Keywords: Video database, FIFA, refereeing, e-learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1322
3159 Design of FIR Filter for Water Level Detection

Authors: Sakol Udomsiri, Masahiro Iwahashi

Abstract:

This paper proposes a new design of spatial FIR filter to automatically detect water level from a video signal of various river surroundings. A new approach in this report applies "addition" of frames and a "horizontal" edge detector to distinguish water region and land region. Variance of each line of a filtered video frame is used as a feature value. The water level is recognized as a boundary line between the land region and the water region. Edge detection filter essentially demarcates between two distinctly different regions. However, the conventional filters are not automatically adaptive to detect water level in various lighting conditions of river scenery. An optimized filter is purposed so that the system becomes robust to changes of lighting condition. More reliability of the proposed system with the optimized filter is confirmed by accuracy of water level detection.

Keywords: water level, video, filter, detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226
3158 Enriching Egg Yolk with Carotenoids and Phenols

Authors: Amar Benakmoum, Rosa Larid, Sofiane Zidani

Abstract:

Dried tomato peel (DTP) was tested in vivo (n=10) in 42 week-old laying hens at rates of 0, 40, 70, 100 and 130g/kg DM feed. Laying hens were fed in group 120 g DM/day/animal for 26 days. After 21 days, feed intake was not affected after DTP incorporation (97% of the offered feed in the five groups). Laying rate was not significantly different after DTP incorporation at 4 and 10% from the control group. Egg yolk resulting from DTP-enriched diets, contained lower amounts of cholesterol (14 to 17mg/g) and triglyceride (188mg/g) compared to the control group (22 and 241 mg/g, respectively) (P<0.0001). After DTP-enriched diets, content in total phenol was 2.0 to 3.6-fold higher, β-carotene 1.7 to 2.7-fold higher, and lycopene increased between 26.5 and 42.8μg/g compared to the control (P<0.0001). The optimal incorporation rate was 7% DTP.

Keywords: Carotenoid, dried tomato peel, lycopene, laying hens, phenols.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3628
3157 FPGA Implementation of Adaptive Clock Recovery for TDMoIP Systems

Authors: Semih Demir, Anil Celebi

Abstract:

Circuit switched networks widely used until the end of the 20th century have been transformed into packages switched networks. Time Division Multiplexing over Internet Protocol (TDMoIP) is a system that enables Time Division Multiplexing (TDM) traffic to be carried over packet switched networks (PSN). In TDMoIP systems, devices that send TDM data to the PSN and receive it from the network must operate with the same clock frequency. In this study, it was aimed to implement clock synchronization process in Field Programmable Gate Array (FPGA) chips using time information attached to the packages received from PSN. The designed hardware is verified using the datasets obtained for the different carrier types and comparing the results with the software model. Field tests are also performed by using the real time TDMoIP system.

Keywords: Clock recovery on TDMoIP, FPGA, MATLAB reference model, clock synchronization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483
3156 Boosting Method for Automated Feature Space Discovery in Supervised Quantum Machine Learning Models

Authors: Vladimir Rastunkov, Jae-Eun Park, Abhijit Mitra, Brian Quanz, Steve Wood, Christopher Codella, Heather Higgins, Joseph Broz

Abstract:

Quantum Support Vector Machines (QSVM) have become an important tool in research and applications of quantum kernel methods. In this work we propose a boosting approach for building ensembles of QSVM models and assess performance improvement across multiple datasets. This approach is derived from the best ensemble building practices that worked well in traditional machine learning and thus should push the limits of quantum model performance even further. We find that in some cases, a single QSVM model with tuned hyperparameters is sufficient to simulate the data, while in others - an ensemble of QSVMs that are forced to do exploration of the feature space via proposed method is beneficial.

Keywords: QSVM, Quantum Support Vector Machines, quantum kernel, boosting, ensemble.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 454
3155 In vitro Studies of Mucoadhesiveness and Release of Nicotinamide Oral Gels Prepared from Bioadhesive Polymers

Authors: Sarunyoo Songkro, Naranut Rajatasereekul, Nipapat Cheewasrirungrueng

Abstract:

The aim of the present study was to evaluate the mucoadhesion and the release of nicotinamide gel formulations using in vitro methods. An agar plate technique was used to investigate the adhesiveness of the gels whereas a diffusion apparatus was employed to determine the release of nicotinamide from the gels. In this respect, 10% w/w nicotinamide gels containing bioadhesive polymers: Carbopol 934P (0.5-2% w/w), hydroxypropylmethyl cellulose (HPMC) (4-10% w/w), sodium carboxymethyl cellulose (SCMC) (4-6% w/w) and methylcellulose 4000 (MC) (3-5% w/w) were prepared. The gel formulations had pH values in the range of 7.14 - 8.17, which were considered appropriate to oral mucosa application. In general, the rank order of pH values appeared to be SCMC > MC4000 > HPMC > Carbopol 934P. Types and concentrations of polymers used somewhat affected the adhesiveness. It was found that anionic polymers (Carbopol 934 and SCMC) adhered more firmly to the agar plate than the neutral polymers (HPMC and MC 4000). The formulation containing 0.5% Carbopol 934P (F1) showed the highest release rate. With the exception of the formulation F1, the neutral polymers tended to give higher relate rates than the anionic polymers. For oral tissue treatment, the optimum has to be balanced between the residence time (adhesiveness) of the formulations and the release rate of the drug. The formulations containing the anionic polymers: Carbopol 934P or SCMC possessed suitable physical properties (appearance, pH and viscosity). In addition, for anionic polymer formulations, justifiable mucoadhesive properties and reasonable release rates of nicotinamide were achieved. Accordingly, these gel formulations may be applied for the treatment of oral mucosal lesions.

Keywords: Nicotinamide, bioadhesive polymer, mucoadhesiveness, release rate, gel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2698
3154 Improvement in Performance and Emission Characteristics of a Single Cylinder S.I. Engine Operated on Blends of CNG and Hydrogen

Authors: Sarbjot Singh Sandhu

Abstract:

This paper presents the experimental results of a single cylinder Enfield engine using an electronically controlled fuel injection system which was developed to carry out exhaustive tests using neat CNG, and mixtures of hydrogen in compressed natural gas (HCNG) as 0, 5, 10, 15 and 20% by energy. Experiments were performed at 2000 and 2400 rpm with wide open throttle and varying the equivalence ratio. Hydrogen which has fast burning rate, when added to compressed natural gas, enhances its flame propagation rate. The emissions of HC, CO, decreased with increasing percentage of hydrogen but NOx was found to increase. The results indicated a marked improvement in the brake thermal efficiency with the increase in percentage of hydrogen added. The improved thermal efficiency was clearly observed to be more in lean region as compared to rich region. This study is expected to reduce vehicular emissions along with increase in thermal efficiency and thus help in reduction of further environmental degradation.

Keywords: Hydrogen, CNG, HCNG, Emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2722
3153 Color Image Enhancement Using Multiscale Retinex and Image Fusion Techniques

Authors: Chang-Hsing Lee, Cheng-Chang Lien, Chin-Chuan Han

Abstract:

In this paper, an edge-strength guided multiscale retinex (EGMSR) approach will be proposed for color image contrast enhancement. In EGMSR, the pixel-dependent weight associated with each pixel in the single scale retinex output image is computed according to the edge strength around this pixel in order to prevent from over-enhancing the noises contained in the smooth dark/bright regions. Further, by fusing together the enhanced results of EGMSR and adaptive multiscale retinex (AMSR), we can get a natural fused image having high contrast and proper tonal rendition. Experimental results on several low-contrast images have shown that our proposed approach can produce natural and appealing enhanced images.

Keywords: Image Enhancement, Multiscale Retinex, Image Fusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2743
3152 Determination of the Gain in Learning the Free-Fall Motion of Bodies by Applying the Resource of Previous Concepts

Authors: Ricardo Merlo

Abstract:

In this paper, we analyzed the different didactic proposals for teaching about the free fall motion of bodies available online. An important aspect was the interpretation of the direction and sense of the acceleration of gravity and of the falling velocity of a body, which is why we found different applications of the Cartesian reference system used and also different graphical presentations of the velocity as a function of time and of the distance traveled vertically by the body in the period of time that it was dropped from a height h0. In this framework, a survey of previous concepts was applied to a voluntary group of first-year university students of an Engineering degree before and after the development of the class of the subject in question. Then, Hake's index (0.52) was determined, which resulted in an average learning gain from the meaningful use of the reference system and the respective graphs of velocity versus time and height versus time.

Keywords: Didactic gain, free–fall, physics teaching, previous knowledge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 246
3151 Catalytical Effect of Fluka 05120 on Methane Decomposition

Authors: Vidyasagar Shilapuram, Nesrin Ozalp, Anam Waheed

Abstract:

Carboneous catalytical methane decomposition is an attractive process because it produces two valuable products: hydrogen and carbon. Furthermore, this reaction does not emit any green house or hazardous gases. In the present study, experiments were conducted in a thermo gravimetric analyzer using Fluka 05120 as carboneous catalyst to analyze its effectiveness in methane decomposition. Various temperatures and methane partial pressures were chosen and carbon mass gain was observed as a function of time. Results are presented in terms of carbon formation rate, hydrogen production and catalytical activity. It is observed that there is linearity in carbon deposition amount by time at lower reaction temperature (780 °C). On the other hand, it is observed that carbon and hydrogen formation rates are increased with increasing temperature. Finally, we observed that the carbon formation rate is highest at 950 °C within the range of temperatures studied.

Keywords: Catalysis, Fluka 05120, Hydrogen production, Methane decomposition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
3150 Dispersion of a Solute in Peristaltic Motion of a Couple Stress Fluid through a Porous Medium with Slip Condition

Authors: Habtu Alemayehu, G. Radhakrishnamacharya

Abstract:

The paper presents an analytical solution for dispersion of a solute in the peristaltic motion of a couple stress fluid through a porous medium with slip condition in the presence of both homogeneous and heterogeneous chemical reactions. The average effective dispersion coefficient has been found using Taylor-s limiting condition and long wavelength approximation. The effects of various relevant parameters on the average coefficient of dispersion have been studied. The average effective dispersion coefficient tends to increase with permeability parameter but tends to decrease with homogeneous chemical reaction rate parameter, couple stress parameter, slip parameter and heterogeneous reaction rate parameter.

Keywords: Dispersion, Peristalsis, Couple stress fluid, Porousmedium, Chemical reaction, Slip condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
3149 Reliable One-Dimensional Model of Two-Dimensional Insulated Oval Duct Considering Heat Radiation

Authors: King-Leung Wong, Wen-Lih Chen, Yu-feng Chang

Abstract:

The reliable results of an insulated oval duct considering heat radiation are obtained basing on accurate oval perimeter obtained by integral method as well as one-dimensional Plane Wedge Thermal Resistance (PWTR) model. This is an extension study of former paper of insulated oval duct neglecting heat radiation. It is found that in the practical situations with long-short-axes ratio a/b <= 5/1, heat transfer rate errors are within 1.2 % by comparing with accurate two-dimensional numerical solutions for most practical dimensionless insulated thickness (t/R2 <= 0.5). On the contrary, neglecting the heat radiation effect is likely to produce very big heat transfer rate errors of non-insulated (E>43% at t/R2=0) and thin-insulated (E>4.5% while t/R2<= 0.1) oval ducts in situations of ambient air with lower external convection heat coefficients and larger surface emissivity.

Keywords: Heat convection, heat radiation, oval duct, PWTR model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
3148 Planar Tracking Control of an Underactuated Autonomous Underwater Vehicle

Authors: Santhakumar M., Asokan T.

Abstract:

This paper addresses the problem of trajectory tracking control of an underactuated autonomous underwater vehicle (AUV) in the horizontal plane. The underwater vehicle under consideration is not actuated in the sway direction, and the system matrices are not assumed to be diagonal and linear, as often found in the literature. In addition, the effect of constant bias of environmental disturbances is considered. Using backstepping techniques and the tracking error dynamics, the system states are stabilized by forcing the tracking errors to an arbitrarily small neighborhood of zero. The effectiveness of the proposed control method is demonstrated through numerical simulations. Simulations are carried out for an experimental vehicle for smooth, inertial, two dimensional (2D) reference trajectories such as constant velocity trajectory (a circle maneuver – constant yaw rate), and time varying velocity trajectory (a sinusoidal path – sinusoidal yaw rate).

Keywords: autonomous underwater vehicle, system matrices, tracking control, time – varying feed back, underactuated control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2150
3147 Mycorrhizal Fungi Influence on Physiological Growth Indices in Basil Induced by Phosphorus Fertilizer under Irrigation Deficit Conditions

Authors: Seyed Alireza Valadabadi, Hossein Aliabadi Farahani

Abstract:

This experiment was carried out to study the effect of AMF, drought stress and phosphorus on physiological growth indices of basil at Iran using by a split-plot design with three replications. The main-plot factor included: two levels of irrigation regimes (control=no drought stress and irrigation after 80 evaporation= drought stress condition) while the sub-plot factors included phosphorus (0, 35 and 70 kg/ha) and application and non-application of Glomus fasciculatum. The results showed that total dry matter (TDM), life area index (LAI), relative growth rate (RGR) and crop growth rate (CGR) were all highly significantly different among the phosphorus, whereas drought stress had effect of practical significance on TDM, LAI, RGR and CGR. The results also showed that the highest TDM, LAI, RGR and CGR were obtained from application of Glomus fasciculatum under no-drought condition.

Keywords: Drought stress, Glomus fasciculatum, physiological growth indices

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
3146 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach

Authors: Rajvir Kaur, Jeewani Anupama Ginige

Abstract:

With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.

Keywords: Artificial neural networks, breast cancer, cancer dataset, classifiers, cervical cancer, F-score, logistic regression, machine learning, precision, recall, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563
3145 Preliminary Survey on MATLAB Learning among Power Electronics Students in Technical Education: A Case Study

Authors: Muhammad Mujtaba Asad, Razali Bin Hassan, Fahad Sherwani, Insaf Ali Siming

Abstract:

This paper discusses about the findings of preliminary survey on MATLAB software learning among power electronics students. One of the main focuses of power electronics course is on DC to DC boost convertors, because boost convertors are generally used in different industrial and non industrial applications. Population samples of this study were randomly selected final year bachelor of electronics and electrical engineering students from University Tun Hussein Onn Malaysia (UTHM).As per the results from the survey questioner analysis, almost eighty percent students are facing problem and difficulties in Dc to Dc boost convertors experimental understanding without using MATLAB simulink package. As per finding of this study it is clear that MATLAB play an effective and efficient function for better understanding of boost convertors experimental work among power electronics learners.

Keywords: MATLAB, Simulation, Power Electronics, Experimental Work.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2220
3144 Neuro-fuzzy Model and Regression Model a Comparison Study of MRR in Electrical Discharge Machining of D2 Tool Steel

Authors: M. K. Pradhan, C. K. Biswas,

Abstract:

In the current research, neuro-fuzzy model and regression model was developed to predict Material Removal Rate in Electrical Discharge Machining process for AISI D2 tool steel with copper electrode. Extensive experiments were conducted with various levels of discharge current, pulse duration and duty cycle. The experimental data are split into two sets, one for training and the other for validation of the model. The training data were used to develop the above models and the test data, which was not used earlier to develop these models were used for validation the models. Subsequently, the models are compared. It was found that the predicted and experimental results were in good agreement and the coefficients of correlation were found to be 0.999 and 0.974 for neuro fuzzy and regression model respectively

Keywords: Electrical discharge machining, material removal rate, neuro-fuzzy model, regression model, mountain clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1393
3143 Experimental Study of CO2 Absorption in Different Blend Solutions as Solvent for CO2 Capture

Authors: Rouzbeh Ramezani, Renzo Di Felice

Abstract:

Nowadays, removal of CO2 as one of the major contributors to global warming using alternative solvents with high CO2 absorption efficiency, is an important industrial operation. In this study, three amines, including 2-methylpiperazine, potassium sarcosinate and potassium lysinate as potential additives, were added to the potassium carbonate solution as a base solvent for CO2 capture. In order to study the absorption performance of CO2 in terms of loading capacity of CO2 and absorption rate, the absorption experiments in a blend of additives with potassium carbonate were carried out using the vapor-liquid equilibrium apparatus at a temperature of 313.15 K, CO2 partial pressures ranging from 0 to 50 kPa and at mole fractions 0.2, 0.3, and 0.4. Furthermore, the performance of CO2 absorption in these blend solutions was compared with pure monoethanolamine and with pure potassium carbonate. Finally, a correlation with good accuracy was developed using the nonlinear regression analysis in order to predict CO2 loading capacity.

Keywords: Absorption rate, carbon dioxide, CO2 capture, global warming, loading capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1304
3142 An Adaptive Mammographic Image Enhancement in Orthogonal Polynomials Domain

Authors: R. Krishnamoorthy, N. Amudhavalli, M.K. Sivakkolunthu

Abstract:

X-ray mammography is the most effective method for the early detection of breast diseases. However, the typical diagnostic signs such as microcalcifications and masses are difficult to detect because mammograms are of low-contrast and noisy. In this paper, a new algorithm for image denoising and enhancement in Orthogonal Polynomials Transformation (OPT) is proposed for radiologists to screen mammograms. In this method, a set of OPT edge coefficients are scaled to a new set by a scale factor called OPT scale factor. The new set of coefficients is then inverse transformed resulting in contrast improved image. Applications of the proposed method to mammograms with subtle lesions are shown. To validate the effectiveness of the proposed method, we compare the results to those obtained by the Histogram Equalization (HE) and the Unsharp Masking (UM) methods. Our preliminary results strongly suggest that the proposed method offers considerably improved enhancement capability over the HE and UM methods.

Keywords: mammograms, image enhancement, orthogonalpolynomials, contrast improvement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015
3141 Analysis of the EEG Signal for a Practical Biometric System

Authors: Muhammad Kamil Abdullah, Khazaimatol S Subari, Justin Leo Cheang Loong, Nurul Nadia Ahmad

Abstract:

This paper discusses the effectiveness of the EEG signal for human identification using four or less of channels of two different types of EEG recordings. Studies have shown that the EEG signal has biometric potential because signal varies from person to person and impossible to replicate and steal. Data were collected from 10 male subjects while resting with eyes open and eyes closed in 5 separate sessions conducted over a course of two weeks. Features were extracted using the wavelet packet decomposition and analyzed to obtain the feature vectors. Subsequently, the neural networks algorithm was used to classify the feature vectors. Results show that, whether or not the subjects- eyes were open are insignificant for a 4– channel biometrics system with a classification rate of 81%. However, for a 2–channel system, the P4 channel should not be included if data is acquired with the subjects- eyes open. It was observed that for 2– channel system using only the C3 and C4 channels, a classification rate of 71% was achieved.

Keywords: Biometric, EEG, Wavelet Packet Decomposition, NeuralNetworks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3041
3140 Cumulative Learning based on Dynamic Clustering of Hierarchical Production Rules(HPRs)

Authors: Kamal K.Bharadwaj, Rekha Kandwal

Abstract:

An important structuring mechanism for knowledge bases is building clusters based on the content of their knowledge objects. The objects are clustered based on the principle of maximizing the intraclass similarity and minimizing the interclass similarity. Clustering can also facilitate taxonomy formation, that is, the organization of observations into a hierarchy of classes that group similar events together. Hierarchical representation allows us to easily manage the complexity of knowledge, to view the knowledge at different levels of details, and to focus our attention on the interesting aspects only. One of such efficient and easy to understand systems is Hierarchical Production rule (HPRs) system. A HPR, a standard production rule augmented with generality and specificity information, is of the following form Decision If < condition> Generality Specificity . HPRs systems are capable of handling taxonomical structures inherent in the knowledge about the real world. In this paper, a set of related HPRs is called a cluster and is represented by a HPR-tree. This paper discusses an algorithm based on cumulative learning scenario for dynamic structuring of clusters. The proposed scheme incrementally incorporates new knowledge into the set of clusters from the previous episodes and also maintains summary of clusters as Synopsis to be used in the future episodes. Examples are given to demonstrate the behaviour of the proposed scheme. The suggested incremental structuring of clusters would be useful in mining data streams.

Keywords: Cumulative learning, clustering, data mining, hierarchical production rules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443
3139 A Survey of Response Generation of Dialogue Systems

Authors: Yifan Fan, Xudong Luo, Pingping Lin

Abstract:

An essential task in the field of artificial intelligence is to allow computers to interact with people through natural language. Therefore, researches such as virtual assistants and dialogue systems have received widespread attention from industry and academia. The response generation plays a crucial role in dialogue systems, so to push forward the research on this topic, this paper surveys various methods for response generation. We sort out these methods into three categories. First one includes finite state machine methods, framework methods, and instance methods. The second contains full-text indexing methods, ontology methods, vast knowledge base method, and some other methods. The third covers retrieval methods and generative methods. We also discuss some hybrid methods based knowledge and deep learning. We compare their disadvantages and advantages and point out in which ways these studies can be improved further. Our discussion covers some studies published in leading conferences such as IJCAI and AAAI in recent years.

Keywords: Retrieval, generative, deep learning, response generation, knowledge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1216
3138 Bit Error Rate Monitoring for Automatic Bias Control of Quadrature Amplitude Modulators

Authors: Naji Ali Albakay, Abdulrahman Alothaim, Isa Barshushi

Abstract:

The most common quadrature amplitude modulator (QAM) applies two Mach-Zehnder Modulators (MZM) and one phase shifter to generate high order modulation format. The bias of MZM changes over time due to temperature, vibration, and aging factors. The change in the biasing causes distortion to the generated QAM signal which leads to deterioration of bit error rate (BER) performance. Therefore, it is critical to be able to lock MZM’s Q point to the required operating point for good performance. We propose a technique for automatic bias control (ABC) of QAM transmitter using BER measurements and gradient descent optimization algorithm. The proposed technique is attractive because it uses the pertinent metric, BER, which compensates for bias drifting independently from other system variations such as laser source output power. The proposed scheme performance and its operating principles are simulated using OptiSystem simulation software for 4-QAM and 16-QAM transmitters.

Keywords: Automatic bias control, optical fiber communication, optical modulation, optical devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 578
3137 Methods of Forming Informational Culture Students

Authors: Altynbek Moshkalov

Abstract:

Along with the basic features of students\' culture information, with its widely usage oriented on implementation of the new information technologies in educational process that determines the search for ways of pointing to the similarity of interdisciplinary connections content, aims and objectives of the study. In this regard, the article questions about students\' information culture, and also presented information about the aims and objectives of the information culture process among students. In the formation of a professional interest in relevant information, which is an opportunity to assist in informing the professional activities of the essence of effective use of interactive methods and innovative technologies in the learning process. The result of the experiment proves the effectiveness of the information culture process of students in training the system of higher education based on the credit technology. The main purpose of this paper is a comprehensive review of students\' information culture.

Keywords: Information culture, methods of information culture of students, educational system of the credit technology, distance learning, information of interest, information and communication technologies and tools.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667
3136 Prediction-Based Midterm Operation Planning for Energy Management of Exhibition Hall

Authors: Doseong Eom, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

Large exhibition halls require a lot of energy to maintain comfortable atmosphere for the visitors viewing inside. One way of reducing the energy cost is to have thermal energy storage systems installed so that the thermal energy can be stored in the middle of night when the energy price is low and then used later when the price is high. To minimize the overall energy cost, however, we should be able to decide how much energy to save during which time period exactly. If we can foresee future energy load and the corresponding cost, we will be able to make such decisions reasonably. In this paper, we use machine learning technique to obtain models for predicting weather conditions and the number of visitors on hourly basis for the next day. Based on the energy load thus predicted, we build a cost-optimal daily operation plan for the thermal energy storage systems and cooling and heating facilities through simulation-based optimization.

Keywords: Building energy management, machine learning, simulation-based optimization, operation planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 997
3135 Least Square-SVM Detector for Wireless BPSK in Multi-Environmental Noise

Authors: J. P. Dubois, Omar M. Abdul-Latif

Abstract:

Support Vector Machine (SVM) is a statistical learning tool developed to a more complex concept of structural risk minimization (SRM). In this paper, SVM is applied to signal detection in communication systems in the presence of channel noise in various environments in the form of Rayleigh fading, additive white Gaussian background noise (AWGN), and interference noise generalized as additive color Gaussian noise (ACGN). The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these advanced stochastic noise models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to conventional binary signaling optimal model-based detector driven by binary phase shift keying (BPSK) modulation. We show that the SVM performance is superior to that of conventional matched filter-, innovation filter-, and Wiener filter-driven detectors, even in the presence of random Doppler carrier deviation, especially for low SNR (signal-to-noise ratio) ranges. For large SNR, the performance of the SVM was similar to that of the classical detectors. However, the convergence between SVM and maximum likelihood detection occurred at a higher SNR as the noise environment became more hostile.

Keywords: Colour noise, Doppler shift, innovation filter, least square-support vector machine, matched filter, Rayleigh fading, Wiener filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821