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Abstract—Quantum Support Vector Machines (QSVM) have
become an important tool in research and applications of quantum
kernel methods. In this work we propose a boosting approach
for building ensembles of QSVM models and assess performance
improvement across multiple datasets. This approach is derived from
the best ensemble building practices that worked well in traditional
machine learning and thus should push the limits of quantum model
performance even further. We find that in some cases, a single QSVM
model with tuned hyperparameters is sufficient to simulate the data,
while in others - an ensemble of QSVMs that are forced to do
exploration of the feature space via proposed method is beneficial.
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I. INTRODUCTION

DECISION support systems across multiple industries

rely on heuristic approaches using models trained on

historical data. For example, credit risk, propensity, attrition,

fraud, and hospital readmission risk models classify data

into two classes given a set of input features. The goal

is to train analytical models that give the most accurate

predictions, retain stable performance over time and utilize

fewer features possible by efficiently extracting information

from available data. Generally, the better the model can

describe complex non-linear interactions between features, the

higher its performance and ability to generalize the data will

be. Conventional, non-quantum, machine learning models with

higher performance are often achieved through ensembles of

simpler learners; see for example [1], [2], [3].

Havlicek et al. [4] implemented a quantum support vector

machine classifier (QSVM) on a superconducting processor.

Originally proposed in [5], QSVM exploits a high-dimensional

quantum Hilbert space to obtain an enhanced solution. This

enhancement can be achieved through controlled entanglement

and interference, which is inaccessible for classical support

vector machines. However, superior performance of QSVM

or other quantum approaches compared to traditional machine

learning models is yet to be demonstrated on a practical

dataset. Park et al. [6] demonstrated improvements to QSVM

compared to classical SVM by using parameterized shallow

unitary transformations for feature maps with rotation and
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regularization. Wu et al. [7] provided benchmarks comparing

performance of QSVM built using a simulator and physical

hardware with classical SVM and xgboost. Those benchmarks

built using three different platforms, IBM Quantum, Google

Tensorflow Quantum and Amazon Bracket, indicated similar

performance of QSVM compared to its classical counterparts

on a practical dataset. Another recent paper by Glick et al. [8]

discusses a class of covariant kernels and quantum advantage

for problems where the data satisfies a group structure.

The idea of boosting quantum machine learning models

was previously discussed by Neven et al. [9] in the context

of adiabatic quantum computing implemented on D-Wave

annealers, where authors used one level decision trees as weak

classifiers. Papers by Schuld et al. and Abbas et al. [10], [11]

discussed quantum ensembles of quantum classifiers primarily

from a perspective of speedup due to parallel calculation.

In general, quantum machine learning (QML) models

consist of data encoding into qubits, a variational quantum

circuit with trainable parameters, a classical cost function

and an optimization algorithm. Most of the QML models

constructed this way are mathematically related to quantum

kernel methods [12]. Notably, initial state preparation and

subsequent unitary transformation with input features is

carried out through a circuit called feature map. Unlike other

types of machine learning algorithms, the choice of initial

feature map in QSVM could yield unique decision boundaries,

making QSVMs with different feature maps independent from

each other. This characteristic of QSVM is well suited for

implementing boosting algorithms, however, given a large

number of choices of feature maps the automation of feature

map/model selection and training process is quite desirable.

In addition to achieving better performance with quantum

models, there is a need to make them more user-friendly

by automating the model selection and training process.

Currently, model architectures are often derived from

well-known physical models, e.g. an Ising model and

respective Hamiltonian were used for feature mapping. Thus,

an automated procedure can augment some of the unnecessary

complexity of the existing models for users without a physics

background as well as assist in discovering new model

architectures.

The approach presented in the current work is different

from results discussed in the referenced sources in the

following respects. First, we are focused on universal quantum

computing with gates that can run on superconducting qubits
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as implemented, e.g. in IBM Quantum System One. Secondly,

even though we consider shallow circuits for kernel functions,

those tend to be stronger than typical weak classifiers

discussed in the literature, which is mostly based on decision

trees. Thirdly, we implement an automated model selection on

every boosting step to choose from different topologies and

thus explore wider feature and model spaces. This process

can be used to search for alternatives for broadly used

Ising-type models. Fourthly, our approach is not constrained

to classification tasks, it can be equally applied to regression

tasks. Lastly, the focus of many prior results was on the

possibility of quantum speedup for classical procedures,

whereas our focus is primarily on the development of models

with higher performance. In this work we are applying our

approach to the problem of binary classification and use

classification accuracy on the test sample as a measure of

performance.

Our main contributions are:

• An ensemble method for QSVM that enhances model

performance, when the data are difficult to model for a

single learner.

• Hyperparameter optimization for QSVM.

• Simulation on multiple datasets to ensure stability of

results.

II. BOOSTING METHOD FOR QSVMS

A. Data and Data Encoding

In this work we consider classical examples of generated

data, such as moons, circles and XOR. This allows creation

of many different datasets to accumulate statistics of model

performance.

Following the best practice, the data are split into training,

validation and testing datasets. A validation dataset is used

for hyperparameter tuning in the process of grid search for

the best model on every step of the boosting procedure. A

testing dataset is completely hidden from the training and is

used to compare different models.

Following [4] we define a feature map on n-qubits as

UΦ(�x) = UΦ(�x)H
⊗n (1)

where

UΦ(�x) = exp

⎛
⎝i

∑
S⊆[n]

φS(�x)
∏
i∈S

Pi

⎞
⎠ (2)

Here H is the Hadamard gate and Pi ∈ {I,X, Y, Z}. A set of

feature maps that we can utilize for a grid search, when the

data have two features is shown in Fig. 1.

B. Ensemble Structure

The traditional AdaBoost variant of boosting relies on weak

learners, such as decision stumps, that are trained on every

iteration [3]. For each subsequent iteration it emphasizes

examples that were previously misclassified by calculating

and assigning or updating their weights. The final prediction

is calculated by weighted majority vote of classifiers. In this

work we consider support vector machines on quantum kernels

k(�xi, �xj) = |〈UΦ(�xi)|UΦ(�xj)|2 that we call Quantum Support

Vector Machines (QSVM). QSVM is not a weak learner, so

we modify the boosting method as shown in Algorithm 1.

In the beginning the algorithm receives training and

validation datasets as well as grid search parameters. In this

work we consider the following parameters: Pauli feature map

set as shown in Fig. 1, the Pauli rotation factor, which is a

multiplier to the Pauli rotations (alpha) and a regularization

parameter (C) for sklearn’s support vector classifier (SVC). We

vary alpha in the interval (0; 2], C in [1; 100]. All examples are

initially assigned a weight of 1. Grid search uses a validation

dataset to select the best model. After the best model is

selected we check early stopping conditions:

1) Estimator is perfect, i.e. estimator error on the training

dataset is ≤ 0.

2) Estimator is as bad as random guessing or worse, i.e.

estimator error is ≥ 0.5 for binary classification or ≥
1− 1

Nclasses
for multiclass.

3) The maximum number of classifiers is reached.

The feature map selected on the current iteration is excluded

from the grid search for next iterations. This is important

to force the model to explore a broader Hilbert space and,

consequently, different decision boundaries by choosing other

feature maps for the quantum kernel. Finally, the weights are

updated as shown in Algorithm 1. Once any stopping condition

is satisfied then the final model object is returned. This object

can be used to build predictions for new samples as a weighted

majority vote of classifiers included in the model.

It is worthwhile to highlight differences of the approach

presented here from more traditional boosting: 1) we perform

a grid search for the best model on each iteration of the

algorithm, 2) we enforce exploration of different model

architectures through parameter grid constrains.

Identifying the optimal number of estimators and ensemble

pruning is generally outside of the boosting method description

and is up to the user. In this work we will choose the optimal

number of estimators based on the minimum error on the

validation sample.

C. Numerical Simulation Results

First, we run experiments on simulated data created with

functions available in scikit-learn (see Fig. 2). This allows us

to create a number of statistically independent datasets and

obtain averaged performance metrics. In this study we chose

to generate 50 datasets of each kind: XOR, moons and circles.

Each dataset has 150 observations for training, validation

and testing split equally between those subsets. We train

a boosted QSVM as described above for each dataset.

For comparison, we also train an SVM and xgboost. The

parameter grid for the SVM includes RBF and linear kernels,

regularization C ranging from 0.1 to 100, gamma parameter

for RBF kernel ranging from 0.0001 to 10. The parameter grid

for xgboost was constructed following [13].

The results are shown in Fig. 3. The performance on

the XOR dataset seems comparable across the three models.

Boosted QSVM struggles to achieve comparable performance
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Fig. 1 Set of feature maps for grid search

Algorithm 1 Boosted QSVM classifier.

Input Xtrain, ytrain, Xval, yval, ytrain,i ∈ {0, 1}, yval,i ∈ {0, 1}, grid parameters for QSVM

Output G(x)

1: Initialize wi = 1, ∀i.
2: for m = 1 to M do
3: Perform grid search and select the best classifier Gm(x) on (Xtrain, ytrain, Xval, yval) taking into account exclusions

from the grid and training weights wi

4: Check early stopping conditions for perfect and worse than random guessing classification.

5: Exclude selected feature map from grid parameters for next iterations.

6: Compute errm =

∑N

i=1
wi·I(ytrain,i �=Gm(Xtrain,i))∑N

i=1
wi

(estimator error)

7: Compute αm = log((1− errm)/errm) (estimator weight)
8: Set wi ← wi · exp[αm · I(ytrain,i �= Gm(Xtrain,i))]

9: Output G(x) =
∑M

m=1(αmGm(x))/
∑M

m=1(αm)

on the moons dataset, but works best on the circles dataset

with median at 100% accuracy.

An interesting question is whether a Boosted QSVM

actually benefited from the ensemble and if so then how much

improvement did it provide. It turns out that only about 31%
of Boosted QSVM models contain more than 1 estimator in

the ensemble. Table I shows mean and maximum ensemble

size by dataset. The more difficult the dataset for QSVM is,

the larger the ensemble seems to be: more than 1 estimator is

barely used for circles data, while 3.8 estimators on average

are used for moons data.

We have also investigated whether there is a performance

gain from having multiple classifiers. Table II shows

classification accuracy improvement from an ensemble of

TABLE I
AVERAGE AND MAXIMUM MODEL ENSEMBLE SIZE PER DATASET

Dataset Mean Max
XOR 2.02 10
circles 1.06 3
moons 3.84 10

QSVM classifiers compared to a single QSVM. There is

a small sample size for circles data, where even a single

QSVM is doing well. There is an average of 4.2% and 7.5%
classification accuracy improvement for XOR and moons.
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Fig. 2 Different datasets used in experiments

Fig. 3 Model accuracy comparison box-plots. Lines show median accuracy on the test sample, boxes show the range between the lower and upper quartiles,
and whiskers indicate ”the range of the data” following Tukey’s definition with Q1− 1.5 · (Q3−Q1) and Q3 + 1.5 · (Q3−Q1) for lower and upper

whiskers, respectively

TABLE II
QSVM ACCURACY INCREASE WITH BOOSTING

Dataset Mean Max Number of ensembles with
> 2 learners (out of 50)

XOR 4.2% 16.0% 36
circles 2.0% 2.0% 2
moons 7.5% 14.0% 24

III. CONCLUSIONS

Data scientists across multiple industries continue to push

limits in their search for the best-in-class machine learning

model that would provide a competitive edge. Quantum

machine learning holds a promise of even higher performance

than classical due to enhanced feature spaces. The approach

discussed here is derived and adapted from the best ensemble

building practices that worked well in traditional machine

learning and thus should push the limits of model performance

even further. Examples discussed in this work show that

boosted QSVM ensembles outperform single QSVMs that in

some cases allows them to match accuracy of non-quantum

models, and in other cases - even exceed it.
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