Search results for: image enhancement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1970

Search results for: image enhancement

1970 Comparative Study of Different Enhancement Techniques for Computed Tomography Images

Authors: C. G. Jinimole, A. Harsha

Abstract:

One of the key problems facing in the analysis of Computed Tomography (CT) images is the poor contrast of the images. Image enhancement can be used to improve the visual clarity and quality of the images or to provide a better transformation representation for further processing. Contrast enhancement of images is one of the acceptable methods used for image enhancement in various applications in the medical field. This will be helpful to visualize and extract details of brain infarctions, tumors, and cancers from the CT image. This paper presents a comparison study of five contrast enhancement techniques suitable for the contrast enhancement of CT images. The types of techniques include Power Law Transformation, Logarithmic Transformation, Histogram Equalization, Contrast Stretching, and Laplacian Transformation. All these techniques are compared with each other to find out which enhancement provides better contrast of CT image. For the comparison of the techniques, the parameters Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE) are used. Logarithmic Transformation provided the clearer and best quality image compared to all other techniques studied and has got the highest value of PSNR. Comparison concludes with better approach for its future research especially for mapping abnormalities from CT images resulting from Brain Injuries.

Keywords: Computed tomography, enhancement techniques, increasing contrast, PSNR and MSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369
1969 Feature Preserving Nonlinear Diffusion for Ultrasonic Image Denoising and Edge Enhancement

Authors: Shujun Fu, Qiuqi Ruan, Wenqia Wang, Yu Li

Abstract:

Utilizing echoic intension and distribution from different organs and local details of human body, ultrasonic image can catch important medical pathological changes, which unfortunately may be affected by ultrasonic speckle noise. A feature preserving ultrasonic image denoising and edge enhancement scheme is put forth, which includes two terms: anisotropic diffusion and edge enhancement, controlled by the optimum smoothing time. In this scheme, the anisotropic diffusion is governed by the local coordinate transformation and the first and the second order normal derivatives of the image, while the edge enhancement is done by the hyperbolic tangent function. Experiments on real ultrasonic images indicate effective preservation of edges, local details and ultrasonic echoic bright strips on denoising by our scheme.

Keywords: anisotropic diffusion, coordinate transformationdirectional derivatives, edge enhancement, hyperbolic tangentfunction, image denoising.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
1968 Adaptive Anisotropic Diffusion for Ultrasonic Image Denoising and Edge Enhancement

Authors: Shujun Fu, Qiuqi Ruan, Wenqia Wang, Yu Li

Abstract:

Utilizing echoic intension and distribution from different organs and local details of human body, ultrasonic image can catch important medical pathological changes, which unfortunately may be affected by ultrasonic speckle noise. A feature preserving ultrasonic image denoising and edge enhancement scheme is put forth, which includes two terms: anisotropic diffusion and edge enhancement, controlled by the optimum smoothing time. In this scheme, the anisotropic diffusion is governed by the local coordinate transformation and the first and the second order normal derivatives of the image, while the edge enhancement is done by the hyperbolic tangent function. Experiments on real ultrasonic images indicate effective preservation of edges, local details and ultrasonic echoic bright strips on denoising by our scheme.

Keywords: anisotropic diffusion, coordinate transformation, directional derivatives, edge enhancement, hyperbolic tangent function, image denoising.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
1967 An Image Enhancement Method Based on Curvelet Transform for CBCT-Images

Authors: Shahriar Farzam, Maryam Rastgarpour

Abstract:

Image denoising plays extremely important role in digital image processing. Enhancement of clinical image research based on Curvelet has been developed rapidly in recent years. In this paper, we present a method for image contrast enhancement for cone beam CT (CBCT) images based on fast discrete curvelet transforms (FDCT) that work through Unequally Spaced Fast Fourier Transform (USFFT). These transforms return a table of Curvelet transform coefficients indexed by a scale parameter, an orientation and a spatial location. Accordingly, the coefficients obtained from FDCT-USFFT can be modified in order to enhance contrast in an image. Our proposed method first uses a two-dimensional mathematical transform, namely the FDCT through unequal-space fast Fourier transform on input image and then applies thresholding on coefficients of Curvelet to enhance the CBCT images. Consequently, applying unequal-space fast Fourier Transform leads to an accurate reconstruction of the image with high resolution. The experimental results indicate the performance of the proposed method is superior to the existing ones in terms of Peak Signal to Noise Ratio (PSNR) and Effective Measure of Enhancement (EME).

Keywords: Curvelet transform, image enhancement, CBCT, image denoising.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1251
1966 Mammogram Image Size Reduction Using 16-8 bit Conversion Technique

Authors: Ayman A. AbuBaker, Rami S.Qahwaji, Musbah J. Aqel, Mohmmad H. Saleh

Abstract:

Two algorithms are proposed to reduce the storage requirements for mammogram images. The input image goes through a shrinking process that converts the 16-bit images to 8-bits by using pixel-depth conversion algorithm followed by enhancement process. The performance of the algorithms is evaluated objectively and subjectively. A 50% reduction in size is obtained with no loss of significant data at the breast region.

Keywords: Breast cancer, Image processing, Image reduction, Mammograms, Image enhancement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
1965 Enhancement of Low Contrast Satellite Images using Discrete Cosine Transform and Singular Value Decomposition

Authors: A. K. Bhandari, A. Kumar, P. K. Padhy

Abstract:

In this paper, a novel contrast enhancement technique for contrast enhancement of a low-contrast satellite image has been proposed based on the singular value decomposition (SVD) and discrete cosine transform (DCT). The singular value matrix represents the intensity information of the given image and any change on the singular values change the intensity of the input image. The proposed technique converts the image into the SVD-DCT domain and after normalizing the singular value matrix; the enhanced image is reconstructed by using inverse DCT. The visual and quantitative results suggest that the proposed SVD-DCT method clearly shows the increased efficiency and flexibility of the proposed method over the exiting methods such as Linear Contrast Stretching technique, GHE technique, DWT-SVD technique, DWT technique, Decorrelation Stretching technique, Gamma Correction method based techniques.

Keywords: Singular Value Decomposition (SVD), discretecosine transforms (DCT), image equalization and satellite imagecontrast enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3831
1964 Color Image Enhancement Using Multiscale Retinex and Image Fusion Techniques

Authors: Chang-Hsing Lee, Cheng-Chang Lien, Chin-Chuan Han

Abstract:

In this paper, an edge-strength guided multiscale retinex (EGMSR) approach will be proposed for color image contrast enhancement. In EGMSR, the pixel-dependent weight associated with each pixel in the single scale retinex output image is computed according to the edge strength around this pixel in order to prevent from over-enhancing the noises contained in the smooth dark/bright regions. Further, by fusing together the enhanced results of EGMSR and adaptive multiscale retinex (AMSR), we can get a natural fused image having high contrast and proper tonal rendition. Experimental results on several low-contrast images have shown that our proposed approach can produce natural and appealing enhanced images.

Keywords: Image Enhancement, Multiscale Retinex, Image Fusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2731
1963 Hand Vein Image Enhancement With Radon Like Features Descriptor

Authors: Randa Boukhris Trabelsi, Alima Damak Masmoudi, Dorra Sellami Masmoudi

Abstract:

Nowadays, hand vein recognition has attracted more attentions in identification biometrics systems. Generally, hand vein image is acquired with low contrast and irregular illumination. Accordingly, if you have a good preprocessing of hand vein image, we can easy extracted the feature extraction even with simple binarization. In this paper, a proposed approach is processed to improve the quality of hand vein image. First, a brief survey on existing methods of enhancement is investigated. Then a Radon Like features method is applied to preprocessing hand vein image. Finally, experiments results show that the proposed method give the better effective and reliable in improving hand vein images.

Keywords: Hand Vein, Enhancement, Contrast, RLF, SDME

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2231
1962 Image Enhancement using α-Trimmed Mean ε-Filters

Authors: Mahdi Shaneh, Arash Golibagh Mahyari

Abstract:

Image enhancement is the most important challenging preprocessing for almost all applications of Image Processing. By now, various methods such as Median filter, α-trimmed mean filter, etc. have been suggested. It was proved that the α-trimmed mean filter is the modification of median and mean filters. On the other hand, ε-filters have shown excellent performance in suppressing noise. In spite of their simplicity, they achieve good results. However, conventional ε-filter is based on moving average. In this paper, we suggested a new ε-filter which utilizes α-trimmed mean. We argue that this new method gives better outcomes compared to previous ones and the experimental results confirmed this claim.

Keywords: Image enhancement, median filter, ε-filter – α-trimmed mean filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5491
1961 Efficient CT Image Volume Rendering for Diagnosis

Authors: HaeNa Lee, Sun K. Yoo

Abstract:

Volume rendering is widely used in medical CT image visualization. Applying 3D image visualization to diagnosis application can require accurate volume rendering with high resolution. Interpolation is important in medical image processing applications such as image compression or volume resampling. However, it can distort the original image data because of edge blurring or blocking effects when image enhancement procedures were applied. In this paper, we proposed adaptive tension control method exploiting gradient information to achieve high resolution medical image enhancement in volume visualization, where restored images are similar to original images as much as possible. The experimental results show that the proposed method can improve image quality associated with the adaptive tension control efficacy.

Keywords: Tension control, Interpolation, Ray-casting, Medical imaging analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2362
1960 An Adaptive Mammographic Image Enhancement in Orthogonal Polynomials Domain

Authors: R. Krishnamoorthy, N. Amudhavalli, M.K. Sivakkolunthu

Abstract:

X-ray mammography is the most effective method for the early detection of breast diseases. However, the typical diagnostic signs such as microcalcifications and masses are difficult to detect because mammograms are of low-contrast and noisy. In this paper, a new algorithm for image denoising and enhancement in Orthogonal Polynomials Transformation (OPT) is proposed for radiologists to screen mammograms. In this method, a set of OPT edge coefficients are scaled to a new set by a scale factor called OPT scale factor. The new set of coefficients is then inverse transformed resulting in contrast improved image. Applications of the proposed method to mammograms with subtle lesions are shown. To validate the effectiveness of the proposed method, we compare the results to those obtained by the Histogram Equalization (HE) and the Unsharp Masking (UM) methods. Our preliminary results strongly suggest that the proposed method offers considerably improved enhancement capability over the HE and UM methods.

Keywords: mammograms, image enhancement, orthogonalpolynomials, contrast improvement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004
1959 Discrete and Stationary Adaptive Sub-Band Threshold Method for Improving Image Resolution

Authors: P. Joyce Beryl Princess, Y. Harold Robinson

Abstract:

Image Processing is a structure of Signal Processing for which the input is the image and the output is also an image or parameter of the image. Image Resolution has been frequently referred as an important aspect of an image. In Image Resolution Enhancement, images are being processed in order to obtain more enhanced resolution. To generate highly resoluted image for a low resoluted input image with high PSNR value. Stationary Wavelet Transform is used for Edge Detection and minimize the loss occurs during Downsampling. Inverse Discrete Wavelet Transform is to get highly resoluted image. Highly resoluted output is generated from the Low resolution input with high quality. Noisy input will generate output with low PSNR value. So Noisy resolution enhancement technique has been used for adaptive sub-band thresholding is used. Downsampling in each of the DWT subbands causes information loss in the respective subbands. SWT is employed to minimize this loss. Inverse Discrete wavelet transform (IDWT) is to convert the object which is downsampled using DWT into a highly resoluted object. Used Image denoising and resolution enhancement techniques will generate image with high PSNR value. Our Proposed method will improve Image Resolution and reached the optimized threshold.

Keywords: Image Processing, Inverse Discrete wavelet transform, PSNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
1958 Improved Posterized Color Images based on Color Quantization and Contrast Enhancement

Authors: Oh-Yeol Kwon, Sung-Il Chien

Abstract:

A conventional image posterization method occasionally fails to preserve the shape and color of objects due to the uneffective color reduction. This paper proposes a new image posterizartion method by using modified color quantization for preserving the shape and color of objects and color contrast enhancement for improving lightness contrast and saturation. Experiment results show that our proposed method can provide visually more satisfactory posterization result than that of the conventional method.

Keywords: Color contrast enhancement, color quantization, color segmentation, image posterization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2672
1957 Fuzzy Hyperbolization Image Enhancement and Artificial Neural Network for Anomaly Detection

Authors: Sri Hartati, 1Agus Harjoko, Brad G. Nickerson

Abstract:

A prototype of an anomaly detection system was developed to automate process of recognizing an anomaly of roentgen image by utilizing fuzzy histogram hyperbolization image enhancement and back propagation artificial neural network. The system consists of image acquisition, pre-processor, feature extractor, response selector and output. Fuzzy Histogram Hyperbolization is chosen to improve the quality of the roentgen image. The fuzzy histogram hyperbolization steps consist of fuzzyfication, modification of values of membership functions and defuzzyfication. Image features are extracted after the the quality of the image is improved. The extracted image features are input to the artificial neural network for detecting anomaly. The number of nodes in the proposed ANN layers was made small. Experimental results indicate that the fuzzy histogram hyperbolization method can be used to improve the quality of the image. The system is capable to detect the anomaly in the roentgen image.

Keywords: Image processing, artificial neural network, anomaly detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104
1956 Design of a DCT-based Image Compression with Efficient Enhancement Filter

Authors: Yen-Yu Chen, Pao-Ching Chu, Ya-Ling Tsai

Abstract:

The algorithm represents the DCT coefficients to concentrate signal energy and proposes combination and dictator to eliminate the correlation in the same level subband for encoding the DCT-based images. This work adopts DCT and modifies the SPIHT algorithm to encode DCT coefficients. The proposed algorithm also provides the enhancement function in low bit rate in order to improve the perceptual quality. Experimental results indicate that the proposed technique improves the quality of the reconstructed image in terms of both PSNR and the perceptual results close to JPEG2000 at the same bit rate.

Keywords: JPEG 2000, enhancement filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
1955 Undecimated Wavelet Transform Based Contrast Enhancement

Authors: Numan Unaldi, Samil Temel, Süleyman Demirci

Abstract:

A novel undecimated wavelet transform based contrast enhancement algorithmis proposed to for both gray scale andcolor images. Contrast enhancement is realized by tuning the magnitude of approximation coefficients at each level with respect to the approximation coefficients of one higher level during the inverse transform phase in a center/surround  enhancement sense.The performance of the proposed algorithm is evaluated using a statistical visual contrast measure (VCM). Experimental results on the proposed algorithm show improvement in terms of the VCM.

Keywords: Image enhancement, local contrast enhancement, visual contrast measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2741
1954 Contrast Enhancement of Masses in Mammograms Using Multiscale Morphology

Authors: Amit Kamra, V. K. Jain, Pragya

Abstract:

Mammography is widely used technique for breast cancer screening. There are various other techniques for breast cancer screening but mammography is the most reliable and effective technique. The images obtained through mammography are of low contrast which causes problem for the radiologists to interpret. Hence, a high quality image is mandatory for the processing of the image for extracting any kind of information from it. Many contrast enhancement algorithms have been developed over the years. In the present work, an efficient morphology based technique is proposed for contrast enhancement of masses in mammographic images. The proposed method is based on Multiscale Morphology and it takes into consideration the scale of the structuring element. The proposed method is compared with other stateof- the-art techniques. The experimental results show that the proposed method is better both qualitatively and quantitatively than the other standard contrast enhancement techniques.

Keywords: Enhancement, mammography, multi-scale, mathematical morphology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2251
1953 Contrast Enhancement in Digital Images Using an Adaptive Unsharp Masking Method

Authors: Z. Mortezaie, H. Hassanpour, S. Asadi Amiri

Abstract:

Captured images may suffer from Gaussian blur due to poor lens focus or camera motion. Unsharp masking is a simple and effective technique to boost the image contrast and to improve digital images suffering from Gaussian blur. The technique is based on sharpening object edges by appending the scaled high-frequency components of the image to the original. The quality of the enhanced image is highly dependent on the characteristics of both the high-frequency components and the scaling/gain factor. Since the quality of an image may not be the same throughout, we propose an adaptive unsharp masking method in this paper. In this method, the gain factor is computed, considering the gradient variations, for individual pixels of the image. Subjective and objective image quality assessments are used to compare the performance of the proposed method both with the classic and the recently developed unsharp masking methods. The experimental results show that the proposed method has a better performance in comparison to the other existing methods.

Keywords: Unsharp masking, blur image, sub-region gradient, image enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401
1952 Adaptive Bidirectional Flow for Image Interpolation and Enhancement

Authors: Shujun Fu, Qiuqi Ruan, Wenqia Wang

Abstract:

Image interpolation is a common problem in imaging applications. However, most interpolation algorithms in existence suffer visually the effects of blurred edges and jagged artifacts in the image to some extent. This paper presents an adaptive feature preserving bidirectional flow process, where an inverse diffusion is performed to sharpen edges along the normal directions to the isophote lines (edges), while a normal diffusion is done to remove artifacts (“jaggies") along the tangent directions. In order to preserve image features such as edges, corners and textures, the nonlinear diffusion coefficients are locally adjusted according to the directional derivatives of the image. Experimental results on synthetic images and nature images demonstrate that our interpolation algorithm substantially improves the subjective quality of the interpolated images over conventional interpolations.

Keywords: anisotropic diffusion, bidirectional flow, directional derivatives, edge enhancement, image interpolation, inverse flow, shock filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
1951 Feature Preserving Image Interpolation and Enhancement Using Adaptive Bidirectional Flow

Authors: Shujun Fu, Qiuqi Ruan, Wenqia Wang

Abstract:

Image interpolation is a common problem in imaging applications. However, most interpolation algorithms in existence suffer visually to some extent the effects of blurred edges and jagged artifacts in the image. This paper presents an adaptive feature preserving bidirectional flow process, where an inverse diffusion is performed to enhance edges along the normal directions to the isophote lines (edges), while a normal diffusion is done to remove artifacts (''jaggies'') along the tangent directions. In order to preserve image features such as edges, angles and textures, the nonlinear diffusion coefficients are locally adjusted according to the first and second order directional derivatives of the image. Experimental results on synthetic images and nature images demonstrate that our interpolation algorithm substantially improves the subjective quality of the interpolated images over conventional interpolations.

Keywords: anisotropic diffusion, bidirectional flow, directionalderivatives, edge enhancement, image interpolation, inverse flow, shock filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
1950 Dispersed Error Control based on Error Filter Design for Improving Halftone Image Quality

Authors: Sang-Chul Kim, Sung-Il Chien

Abstract:

The error diffusion method generates worm artifacts, and weakens the edge of the halftone image when the continuous gray scale image is reproduced by a binary image. First, to enhance the edges, we propose the edge-enhancing filter by considering the quantization error information and gradient of the neighboring pixels. Furthermore, to remove worm artifacts often appearing in a halftone image, we add adaptively random noise into the weights of an error filter.

Keywords: Artifact suppression, Edge enhancement, Error diffusion method, Halftone image

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417
1949 Volterra Filtering Techniques for Removal of Gaussian and Mixed Gaussian-Impulse Noise

Authors: M. B. Meenavathi, K. Rajesh

Abstract:

In this paper, we propose a new class of Volterra series based filters for image enhancement and restoration. Generally the linear filters reduce the noise and cause blurring at the edges. Some nonlinear filters based on median operator or rank operator deal with only impulse noise and fail to cancel the most common Gaussian distributed noise. A class of second order Volterra filters is proposed to optimize the trade-off between noise removal and edge preservation. In this paper, we consider both the Gaussian and mixed Gaussian-impulse noise to test the robustness of the filter. Image enhancement and restoration results using the proposed Volterra filter are found to be superior to those obtained with standard linear and nonlinear filters.

Keywords: Gaussian noise, Image enhancement, Imagerestoration, Linear filters, Nonlinear filters, Volterra series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2723
1948 Contrast Enhancement of Color Images with Color Morphing Approach

Authors: Javed Khan, Aamir Saeed Malik, Nidal Kamel, Sarat Chandra Dass, Azura Mohd Affandi

Abstract:

Low contrast images can result from the wrong setting of image acquisition or poor illumination conditions. Such images may not be visually appealing and can be difficult for feature extraction. Contrast enhancement of color images can be useful in medical area for visual inspection. In this paper, a new technique is proposed to improve the contrast of color images. The RGB (red, green, blue) color image is transformed into normalized RGB color space. Adaptive histogram equalization technique is applied to each of the three channels of normalized RGB color space. The corresponding channels in the original image (low contrast) and that of contrast enhanced image with adaptive histogram equalization (AHE) are morphed together in proper proportions. The proposed technique is tested on seventy color images of acne patients. The results of the proposed technique are analyzed using cumulative variance and contrast improvement factor measures. The results are also compared with decorrelation stretch. Both subjective and quantitative analysis demonstrates that the proposed techniques outperform the other techniques.

Keywords: Contrast enhancement, normalized RGB, adaptive histogram equalization, cumulative variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1099
1947 Improved Lung Nodule Visualization on Chest Radiographs using Digital Filtering and Contrast Enhancement

Authors: Benjamin Y. M. Kwan, Hon Keung Kwan

Abstract:

Early detection of lung cancer through chest radiography is a widely used method due to its relatively affordable cost. In this paper, an approach to improve lung nodule visualization on chest radiographs is presented. The approach makes use of linear phase high-frequency emphasis filter for digital filtering and histogram equalization for contrast enhancement to achieve improvements. Results obtained indicate that a filtered image can reveal sharper edges and provide more details. Also, contrast enhancement offers a way to further enhance the global (or local) visualization by equalizing the histogram of the pixel values within the whole image (or a region of interest). The work aims to improve lung nodule visualization of chest radiographs to aid detection of lung cancer which is currently the leading cause of cancer deaths worldwide.

Keywords: Chest radiographs, Contrast enhancement, Digital filtering, Lung nodule detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
1946 Scatterer Density in Edge and Coherence Enhancing Nonlinear Anisotropic Diffusion for Medical Ultrasound Speckle Reduction

Authors: Ahmed Badawi, J. Michael Johnson, Mohamed Mahfouz

Abstract:

This paper proposes new enhancement models to the methods of nonlinear anisotropic diffusion to greatly reduce speckle and preserve image features in medical ultrasound images. By incorporating local physical characteristics of the image, in this case scatterer density, in addition to the gradient, into existing tensorbased image diffusion methods, we were able to greatly improve the performance of the existing filtering methods, namely edge enhancing (EE) and coherence enhancing (CE) diffusion. The new enhancement methods were tested using various ultrasound images, including phantom and some clinical images, to determine the amount of speckle reduction, edge, and coherence enhancements. Scatterer density weighted nonlinear anisotropic diffusion (SDWNAD) for ultrasound images consistently outperformed its traditional tensor-based counterparts that use gradient only to weight the diffusivity function. SDWNAD is shown to greatly reduce speckle noise while preserving image features as edges, orientation coherence, and scatterer density. SDWNAD superior performances over nonlinear coherent diffusion (NCD), speckle reducing anisotropic diffusion (SRAD), adaptive weighted median filter (AWMF), wavelet shrinkage (WS), and wavelet shrinkage with contrast enhancement (WSCE), make these methods ideal preprocessing steps for automatic segmentation in ultrasound imaging.

Keywords: Nonlinear anisotropic diffusion, ultrasound imaging, speckle reduction, scatterer density estimation, edge based enhancement, coherence enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
1945 An Edge Detection and Filtering Mechanism of Two Dimensional Digital Objects Based on Fuzzy Inference

Authors: Ayman A. Aly, Abdallah A. Alshnnaway

Abstract:

The general idea behind the filter is to average a pixel using other pixel values from its neighborhood, but simultaneously to take care of important image structures such as edges. The main concern of the proposed filter is to distinguish between any variations of the captured digital image due to noise and due to image structure. The edges give the image the appearance depth and sharpness. A loss of edges makes the image appear blurred or unfocused. However, noise smoothing and edge enhancement are traditionally conflicting tasks. Since most noise filtering behaves like a low pass filter, the blurring of edges and loss of detail seems a natural consequence. Techniques to remedy this inherent conflict often encompass generation of new noise due to enhancement. In this work a new fuzzy filter is presented for the noise reduction of images corrupted with additive noise. The filter consists of three stages. (1) Define fuzzy sets in the input space to computes a fuzzy derivative for eight different directions (2) construct a set of IFTHEN rules by to perform fuzzy smoothing according to contributions of neighboring pixel values and (3) define fuzzy sets in the output space to get the filtered and edged image. Experimental results are obtained to show the feasibility of the proposed approach with two dimensional objects.

Keywords: Additive noise, edge preserving filtering, fuzzy image filtering, noise reduction, two dimensional mechanical images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
1944 Image Restoration in Non-Linear Filtering Domain using MDB approach

Authors: S. K. Satpathy, S. Panda, K. K. Nagwanshi, C. Ardil

Abstract:

This paper proposes a new technique based on nonlinear Minmax Detector Based (MDB) filter for image restoration. The aim of image enhancement is to reconstruct the true image from the corrupted image. The process of image acquisition frequently leads to degradation and the quality of the digitized image becomes inferior to the original image. Image degradation can be due to the addition of different types of noise in the original image. Image noise can be modeled of many types and impulse noise is one of them. Impulse noise generates pixels with gray value not consistent with their local neighborhood. It appears as a sprinkle of both light and dark or only light spots in the image. Filtering is a technique for enhancing the image. Linear filter is the filtering in which the value of an output pixel is a linear combination of neighborhood values, which can produce blur in the image. Thus a variety of smoothing techniques have been developed that are non linear. Median filter is the one of the most popular non-linear filter. When considering a small neighborhood it is highly efficient but for large window and in case of high noise it gives rise to more blurring to image. The Centre Weighted Mean (CWM) filter has got a better average performance over the median filter. However the original pixel corrupted and noise reduction is substantial under high noise condition. Hence this technique has also blurring affect on the image. To illustrate the superiority of the proposed approach, the proposed new scheme has been simulated along with the standard ones and various restored performance measures have been compared.

Keywords: Filtering, Minmax Detector Based (MDB), noise, centre weighted mean filter, PSNR, restoration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2735
1943 NDENet: End-to-End Nighttime Dehazing and Enhancement

Authors: H. Baskar, A. S. Chakravarthy, P. Garg, D. Goel, A. S. Raj, K. Kumar, Lakshya, R. Parvatham, V. Sushant, B. Kumar Rout

Abstract:

In this paper, we present a computer vision task called nighttime dehaze-enhancement. This task aims to jointly perform dehazing and lightness enhancement. Our task fundamentally differs from nighttime dehazing – our goal is to jointly dehaze and enhance scenes, while nighttime dehazing aims to dehaze scenes under a nighttime setting. In order to facilitate further research on this task, we release a benchmark dataset called Reside-β Night dataset, consisting of 4122 nighttime hazed images from 2061 scenes and 2061 ground truth images. Moreover, we also propose a network called NDENet (Nighttime Dehaze-Enhancement Network), which jointly performs dehazing and low-light enhancement in an end-to-end manner. We evaluate our method on the proposed benchmark and achieve Structural Index Similarity (SSIM) of 0.8962 and Peak Signal to Noise Ratio (PSNR) of 26.25. We also compare our network with other baseline networks on our benchmark to demonstrate the effectiveness of our approach. We believe that nighttime dehaze-enhancement is an essential task particularly for autonomous navigation applications, and hope that our work will open up new frontiers in research. The code for our network is made publicly available.

Keywords: Dehazing, image enhancement, nighttime, computer vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 643
1942 Influence of Ambiguity Cluster on Quality Improvement in Image Compression

Authors: Safaa Al-Ali, Ahmad Shahin, Fadi Chakik

Abstract:

Image coding based on clustering provides immediate access to targeted features of interest in a high quality decoded image. This approach is useful for intelligent devices, as well as for multimedia content-based description standards. The result of image clustering cannot be precise in some positions especially on pixels with edge information which produce ambiguity among the clusters. Even with a good enhancement operator based on PDE, the quality of the decoded image will highly depend on the clustering process. In this paper, we introduce an ambiguity cluster in image coding to represent pixels with vagueness properties. The presence of such cluster allows preserving some details inherent to edges as well for uncertain pixels. It will also be very useful during the decoding phase in which an anisotropic diffusion operator, such as Perona-Malik, enhances the quality of the restored image. This work also offers a comparative study to demonstrate the effectiveness of a fuzzy clustering technique in detecting the ambiguity cluster without losing lot of the essential image information. Several experiments have been carried out to demonstrate the usefulness of ambiguity concept in image compression. The coding results and the performance of the proposed algorithms are discussed in terms of the peak signal-tonoise ratio and the quantity of ambiguous pixels.

Keywords: Ambiguity Cluster, Anisotropic Diffusion, Fuzzy Clustering, Image Compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
1941 An Efficient Gaussian Noise Removal Image Enhancement Technique for Gray Scale Images

Authors: V. Murugan, R. Balasubramanian

Abstract:

Image enhancement is a challenging issue in many applications. In the last two decades, there are various filters developed. This paper proposes a novel method which removes Gaussian noise from the gray scale images. The proposed technique is compared with Enhanced Fuzzy Peer Group Filter (EFPGF) for various noise levels. Experimental results proved that the proposed filter achieves better Peak-Signal-to-Noise-Ratio PSNR than the existing techniques. The proposed technique achieves 1.736dB gain in PSNR than the EFPGF technique.

Keywords: Gaussian noise, adaptive bilateral filter, fuzzy peer group filter, switching bilateral filter, PSNR

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2476