Search results for: thermo-elastic properties
2701 Experimental Analysis of Mechanical Behavior under the Effect of Temperature Frequency
Authors: A. Nedjar, S. Aguib, M. Meloussi, T. Djedid, A. Khebli, R. Harhout, L. Kobzili, N. Chikh, M. Tourab
Abstract:
Finding the mechanical properties of magnetorheological elastomers (MREs) is fundamental to create smart materials and devices with desired properties and functionalities. The MREs properties, in shear mode, have been extensively investigated, but these have been less exploited with frequency-temperature dependence. In this article, we studied the performance of MREs with frequency-temperature dependence. The elastic modulus, loss modulus and loss factor of MREs were studied under different temperature values; different values of the magnetic field and different values of the frequency. The results found showed the interest of these active materials in different industrial sectors.
Keywords: Magnetorheological elastomer, mechanical behavior, frequency, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592700 Changes in the Properties of Composites Caused by Chemical Treatment of Hemp Hurds
Authors: N. Stevulova, I. Schwarzova
Abstract:
The possibility of using industrial hemp as a source of natural fibers for purpose of construction, mainly for the preparation of lightweight composites based on hemp hurds is described. In this article, an overview of measurement results of important technical parameters (compressive strength, density, thermal conductivity) of composites based on organic filler - chemically modified hemp hurds in three solutions (EDTA, NaOH and Ca(OH)2) and inorganic binder MgO-cement after 7, 28, 60, 90 and 180 days of hardening is given. The results of long-term water storage of 28 days hardened composites at room temperature were investigated. Changes in the properties of composites caused by chemical treatment of hemp material are discussed.
Keywords: Hemp hurds, chemical modification, lightweight composites, testing material properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22672699 Effect of Zr Addition on Mechanical Properties of Cr-Mo Plastic Mold Steels
Authors: Hyun-Ho Kim, Seok-Jae Lee, Oh-Yeon Lee
Abstract:
We investigated the effects of the additions of Zr and other alloying elements on the mechanical properties and microstructure in Cr-Mo plastic mold steels. The addition of alloying elements changed the microstructure of the normalized samples from the upper bainite to lower bainite due to the increased hardenability. The tempering temperature influenced the strength and hardness values, especially the phenomenon of 350oC embrittlement was observed. The alloy additions of Cr, Mo, and V improved the resistance to the temper embrittlement. The addition of Zr improved the tensile strength and yield strength, but the impact energy was sharply decreased. It may be caused by the formation of Zr-MnS inclusion and rectangular-shaped Zr inclusion due to the Zr addition.
Keywords: Inclusions, mechanical properties, plastic mold steel, Zr addition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23302698 Microstructure, Mechanical, Electrical and Thermal Properties of the Al-Si-Ni Ternary Alloy
Authors: Aynur Aker, Hasan Kaya
Abstract:
In recent years, the use of the aluminum based alloys in the industry and technology are increasing. Alloying elements in aluminum have further been improving the strength and stiffness properties that provide superior compared to other metals. In this study, investigation of physical properties (microstructure, microhardness, tensile strength, electrical conductivity and thermal properties) in the Al-12.6wt.%Si-%2wt.Ni ternary alloy were investigated. Al-Si-Ni alloy was prepared in vacuum atmosphere. The samples were directionally solidified upwards with different growth rate V (8.3−165.45 μm/s) at constant temperature gradient G (7.73 K/mm). The flake spacings (λ), microhardness (HV), ultimate tensile strength (σ), electrical resistivity (ρ) and thermal properties (H, Cp, Tm) of the samples were measured. Influence of the growth rate and spacings on microhardness, ultimate tensile strength and electrical resistivity were investigated and relationships between them were obtained. According to results, λ values decrease with increasing V, but HV, σ and ρ values increase with increasing V. Variations of electrical resistivity (ρ) of solidified samples were also measured. The enthalpy of fusion (H) and specific heat (Cp) for the alloy was also determined by differential scanning calorimeter (DSC) from heating trace during the transformation from liquid to solid. The results in this work were compared with the previous similar experimental results.Keywords: Electrical resistivity, enthalpy, microhardness, solidification, tensile stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20252697 Chain Extender on Property Relationships of Polyurethane Derived from Soybean Oil
Authors: Flora Elvistia Firdaus
Abstract:
Polyurethane foams (PUF) has been prepared from vegetable; soybean based polyols. They were characterized into flexible and semi rigid polyurethane foam. This work is directed to production of flexible polyurethane foams by a process involving the reaction of mixture of 2,4- and 2,6-Toluene di Isocyanate isomers, with portion of to blends of soy polyols with petroleum polyol in the presence of other ingredients such as blowing agents, silicone surfactants and accelerating agents. Additon of chain extender improves the property then further decreases the properties on further addition of the same. The objective of this work was to study the effect of chain extender and role of phosphoric acid catalyst to the final properties and correlate the morphology image with mechanical properties of these foams.Keywords: polyurethane, soy polyol, chain extender
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40402696 Friction Stir Welding of Aluminum Alloys: A Review
Authors: S. K. Tiwari, Dinesh Kumar Shukla, R. Chandra
Abstract:
Friction stir welding is a solid state joining process. High strength aluminum alloys are widely used in aircraft and marine industries. Generally, the mechanical properties of fusion welded aluminum joints are poor. As friction stir welding occurs in solid state, no solidification structures are created thereby eliminating the brittle and eutectic phases common in fusion welding of high strength aluminum alloys. In this review the process parameters, microstructural evolution, and effect of friction stir welding on the properties of weld specific to aluminum alloys have been discussed.
Keywords: Aluminum alloys, Friction stir welding (FSW), Microstructure, Properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 53692695 Generalized Measures of Fuzzy Entropy and their Properties
Authors: K.C. Deshmukh, P.G. Khot, Nikhil
Abstract:
In the present communication, we have proposed some new generalized measure of fuzzy entropy based upon real parameters, discussed their and desirable properties, and presented these measures graphically. An important property, that is, monotonicity of the proposed measures has also been studied.Keywords: Fuzzy numbers, Fuzzy entropy, Characteristicfunction, Crisp set, Monotonicity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14722694 Effect of Manganese Doping on Ferrroelectric Properties of (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 Lead-Free Piezoceramic
Authors: Chongtham Jiten, Radhapiyari Laishram, K. Chandramani Singh
Abstract:
Alkaline niobate (Na0.5K0.5)NbO3 ceramic system has attracted major attention in view of its potential for replacing the highly toxic but superior lead zirconate titanate (PZT) system for piezoelectric applications. Recently, a more detailed study of this system reveals that the ferroelectric and piezoelectric properties are optimized in the Li- and V-modified system having the composition (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3. In the present work, we further study the pyroelectric behaviour of this composition along with another doped with Mn4+. So, (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 + x MnO2 (x = 0, and 0.01 wt. %) ceramic compositions were synthesized by conventional ceramic processing route. X-ray diffraction study reveals that both the undoped and Mn4+-doped ceramic samples prepared crystallize into a perovskite structure having orthorhombic symmetry. Dielectric study indicates that Mn4+ doping has little effect on both the Curie temperature (Tc) and tetragonal-orthorhombic phase transition temperature (Tot). The bulk density, room-temperature dielectric constant (εRT), and room-c The room-temperature coercive field (Ec) is observed to be lower in Mn4+ doped sample. The detailed analysis of the P-E hysteresis loops over the range of temperature from about room temperature to Tot points out that enhanced ferroelectric properties exist in this temperature range with better thermal stability for the Mn4+ doped ceramic. The study reveals that small traces of Mn4+ can modify (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 system so as to improve its ferroelectric properties with good thermal stability over a wide range of temperature.
Keywords: Ceramics, dielectric properties, ferroelectric properties, lead-free, sintering, thermal stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10182693 On Some Properties of Interval Matrices
Authors: K. Ganesan
Abstract:
By using a new set of arithmetic operations on interval numbers, we discuss some arithmetic properties of interval matrices which intern helps us to compute the powers of interval matrices and to solve the system of interval linear equations.Keywords: Interval arithmetic, Interval matrix, linear equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20552692 Properties of MWCNTs/PAN Nanofiber Sheet Prepared from Chemically Modified MWCNTs
Authors: M. Seneewong-Na-Ayuttaya, T. Pongprayoon
Abstract:
The nanofiber sheet of Multiwall Cabon Nanotube (MWCNTs)/Polyacylonitile (PAN) composites was fabricated from electrospun nanofiber. Firstly the surface of MWCNTs was chemically modified, comparing two different techniques consisting of admicellar polymerization and functionalization to improve the dispersion and prevent the aggregation in the PAN matrix. The modified MWCNTs were characterized by the dispersion in dimethylformamide (DMF) solvent, Laser particle size, and FTRaman. Lastly, DSC, SEM and mechanical properties of the nanofiber sheet were examined. The results show that the mechanical properties of the nanofiber sheet prepared from admicellar polymerization-modified MWCNTs were higher than those of the others.
Keywords: Multiwall carbon nanotube, admicellar polymerization, functionalization, nanofiber sheet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18712691 Correlation between Heat Treatment, Microstructure and Properties of Trip-Assisted Steels
Authors: A. Talapatra, N. R. Bandhyopadhyay, J. Datta
Abstract:
In the present study, two TRIP-assisted steels were designated as A (having no Cr and Cu content) and B (having higher Ni, Cr and Cu content) heat treated under different conditions, and the correlation between its heat treatment, microstructure and properties were investigated. Micro structural examination was carried out by optical microscope and scanning electron microscope after electrolytic etching. Non-destructive electrochemical and ultrasonic testing on two TRIP-assisted steels was used to find out corrosion and mechanical properties of different alter microstructure phase’s steels. Furthermore, micro structural studies accompanied by the evaluation of mechanical properties revealed that steels having martensite phases with higher corrosive and hardness value were less sound velocity and also steel’s microstructure having finer grains that was more grain boundary was less corrosion resistance. Steel containing more Cu, Ni and Cr was less corrosive compared to other steels having same processing or microstructure.
Keywords: TRIP-assisted steels, heat treatment, corrosion, electrochemical techniques, micro-structural characterization, non-destructive (ultrasonic) technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30162690 Study of Ether Species Effects on Physicochemical Properties of Palm Oil Ether Monoesters as Novel Biodiesels
Authors: Hejun Guo, Shenghua Liu
Abstract:
Five palm oil ether monoesters utilized as novel biodiesels were synthesized and structurally identified in the paper. The investigation was made on the effect of ether species on physicochemical properties of the palm oil ether monoesters. The results showed that density, kinematic viscosity, smoke point, and solidifying point increase linearly with their –CH2 group number in certain relationships. Cetane number is enhanced whereas heat value decreases linearly with –CH2 group number. In addition, the influencing regularities of the volumetric content of the palm oil ether monoesters on the fuel properties were also studied when the ether monoesters are used as diesel fuel additives.
Keywords: Biodiesel, palm oil ether monoester, ether species, physicochemical property.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15402689 Heat Treatment of Aluminum Alloy 7449
Authors: Suleiman E. Al-lubani, Mohammad E. Matarneh, Hussien M. Al-Wedyan, Ala M. Rayes
Abstract:
Aluminum alloy has an extensive range of industrial application due to its consistent mechanical properties and structural integrity. The heat treatment by precipitation technique affected the Magnesium, Silicon Manganese and copper crystals dissolved in the Aluminum alloy. The crystals dislocated to precipitate on the crystal’s boundaries of the Aluminum alloy when given a thermal energy increased its hardness. In this project various times and temperature were varied to find out the best combination of these variables to increase the precipitation of the metals on the Aluminum crystal’s boundaries which will lead to get the highest hardness. These specimens are then tested for their hardness and tensile strength. It is noticed that when the temperature increases, the precipitation increases and consequently the hardness increases. A threshold temperature value (264C0) of Aluminum alloy should not be reached due to the occurrence of recrystalization which causes the crystal to grow. This recrystalization process affected the ductility of the alloy and decrease hardness. In addition, and while increasing the temperature the alloy’s mechanical properties will decrease. The mechanical properties, namely tensile and hardness properties are investigated according to standard procedures. In this research, different temperature and time have been applied to increase hardening.The highest hardness at 100°c in 6 hours equals to 207.31 HBR, while at the same temperature and time the lowest elongation equals to 146.5.Keywords: Aluminum alloy, recrystalization process, heat treatment, hardness properties, precipitation, intergranular breakage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40762688 MMU Simulation in Hardware Simulator Based-on State Transition Models
Authors: Zhang Xiuping, Yang Guowu, Zheng Desheng
Abstract:
Embedded hardware simulator is a valuable computeraided tool for embedded application development. This paper focuses on the ARM926EJ-S MMU, builds state transition models and formally verifies critical properties for the models. The state transition models include loading instruction model, reading data model, and writing data model. The properties of the models are described by CTL specification language, and they are verified in VIS. The results obtained in VIS demonstrate that the critical properties of MMU are satisfied in the state transition models. The correct models can be used to implement the MMU component in our simulator. In the end of this paper, the experimental results show that the MMU can successfully accomplish memory access requests from CPU.Keywords: MMU, State transition, Model, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16172687 Preliminary Geotechnical Properties of Uncemented Sandstone Kati Formation
Authors: Nursyafiqah Abdul Kahar, Niraku Rosmawati Ahmad, Hisham Mohamad, Siti Nuruljannah Mohd Marzuki
Abstract:
Assessment of geotechnical properties of the subsoil is necessary for generating relevant input for the design and construction of a foundation. It is significant for the future development in the area. The focus of this research is to investigate the preliminary geotechnical properties of the uncemented sandstone from Kati formation at Puncak Iskandar, Seri Iskandar. A series of basic soil tests, oedometer and direct shear box tests were carried out to obtain the soil parameters. The uncemented sandstone of Kati Formation was found to have well-graded and poorly graded sand distribution, depending on the location where the samples were obtained. The sand grains distribution was in a range of 82%-100% while, the specific gravity of the uncemented sandstone is in the range 2.65-2.86. The preconsolidation pressure for USB3 was 990 kPa indicating that the sandstone at USB3 sample had undergone 990 kPa of overburden pressure. The angle of friction for uncemented sandstone was ranging between 23.34°-32.92°.Keywords: Geotechnical properties, Kati formation, uncemented sandstone, oedometer test, shear box test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5972686 The Influence of Reaction Parameters on Magnetic Properties of Synthesized Strontium Ferrite
Authors: M. Bahgat, F. M. Awan, H. A. Hanafy
Abstract:
The conventional ceramic route was utilized to prepare a hard magnetic powder (M-type strontium ferrite, SrFe12O19). The stoichiometric mixture of iron oxide and strontium carbonate were calcined at 1000oC and then fired at various temperatures. The influence of various reaction parameters such as mixing ratio, calcination temperature, firing temperature and firing time on the magnetic behaviors of the synthesized magnetic powder were investigated. The magnetic properties including Coercivity (Hc), Magnetic saturation (Ms), and Magnetic remnance (Mr) were measured by vibrating sample magnetometer. Morphologically the produced magnetic powder has a dense hexagonal grain shape structure.Keywords: Hard magnetic materials, ceramic route, strontium ferrite, magnetic properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21812685 Time Independent Behavior of Tomato Paste
Authors: A. Heidarinasab, V. Moghaddam Nansa
Abstract:
This paper deals with rheological behavior of tomato paste from the view point of time independent properties inclusive of processing variables such as sample temperature which influence on rheological properties as well as breaking temperature and concentration which beside the rheological properties, influence on the quality of final product. With this aim 10 tomato paste samples at various concentrations (17-25%) and breaking temperatures (65- 85 C o ) have been produced. The experimental results showed tomato paste behaves as a non-Newtonian semi-fluid which follows power law model that consistency coefficient (K) is supposed function of breaking temperature, concentration and sample temperature with consideration to superimpose function.Keywords: Breaking temperature, Concentration, Power law, Rheology, Time independent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33922684 Synthesis, Characterization and Physico–Chemical Properties of Nano Zinc Oxide and PVA Composites
Authors: Rashmi S. H., G. M. Madhu, A. A. Kittur, R. Suresh
Abstract:
Polymer nanocomposites represent a new class of materials in which nanomaterials act as the reinforcing material in composites, wherein small additions of nanomaterials lead to large enhancements in thermal, optical and mechanical properties. A boost in these properties is due to the large interfacial area per unit volume or weight of the nanoparticles and the interactions between the particle and the polymer. Micro sized particles used as reinforcing agents scatter light, thus reducing light transmittance and optical clarity. Efficient nanoparticle dispersion combined with good polymer–particle interfacial adhesion eliminates scattering and allows the exciting possibility of developing strong yet transparent films, coatings and membranes. This paper aims at synthesising zinc oxide nanoparticles which are reinforced in poly vinyl alcohol (PVA) polymer. The mechanical properties showed that the tensile strength of the PVA nanocomposites increases with the increase in the amount of nanoparticles.
Keywords: Glutaraldehyde, polymer nanocomposites, poly vinyl alcohol, zinc oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30352683 Non Destructive Characterisation of Cement Mortar during Carbonation
Authors: Son Tung Pham, William Prince
Abstract:
The objective of this work was to examine the changes in non destructive properties caused by carbonation of CEM II mortar. Samples of CEM II mortar were prepared and subjected to accelerated carbonation at 20°C, 65% relative humidity and 20% CO2 concentration. We examined the evolutions of the gas permeability, the thermal conductivity, the thermal diffusivity, the volume of the solid phase by helium pycnometry, the longitudinal and transverse ultrasonic velocities. The principal contribution of this work is that, apart of the gas permeability, changes in other non destructive properties have never been studied during the carbonation of cement materials. These properties are important in predicting/measuring the durability of reinforced concrete in CO2 environment. The carbonation depth and the porosity accessible to water were also reported in order to explain comprehensively the changes in non destructive parameters.Keywords: Carbonation, cement mortar, longitudinal and transverse ultrasonic velocities, non destructive tests.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17502682 Properties of Cement Pastes with Different Particle Size Fractions of Metakaolin
Authors: M. Boháč, R. Novotný, F. Frajkorová, R. S. Yadav, T. Opravil, M. Palou
Abstract:
Properties of Portland cement mixtures with various fractions of metakaolin were studied. 10% of Portland cement CEM I 42.5 R was replaced by different fractions of high reactivity metakaolin with defined chemical and mineralogical properties. Various fractions of metakaolin were prepared by jet mill classifying system. There is a clear trend between fineness of metakaolin and hydration heat development. Due to metakaolin presence in mixtures the compressive strength development of mortars is rather slower for coarser fractions but 28-day flexural strengths are improved for all fractions of metakaoline used in mixtures compared to reference sample of pure Portland cement. Yield point, plastic viscosity and adhesion of fresh pastes are considerably influenced by fineness of metakaolin used in cement pastes.
Keywords: Calorimetry, cement, metakaolin fineness, rheology, strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26982681 Estimation of Subgrade Resilient Modulus from Soil Index Properties
Authors: Magdi M. E. Zumrawi, Mohamed Awad
Abstract:
Determination of Resilient Modulus (MR) is quite important for characterizing materials in pavement design and evaluation. The main focus of this study is to develop a correlation that predict the resilient modulus of subgrade soils from simple and easy measured soil index properties. To achieve this objective, three subgrade soils representing typical Khartoum soils were selected and tested in the laboratory for measuring resilient modulus. Other basic laboratory tests were conducted on the soils to determine their physical properties. Several soil samples were prepared and compacted at different moisture contents and dry densities and then tested using resilient modulus testing machine. Based on experimental results, linear relationship of MR with the consistency factor ‘Fc’ which is a combination of dry density, void ratio and consistency index had been developed. The results revealed that very good linear relationship found between the MR and the consistency factor with a coefficient of linearity (R2) more than 0.9. The consistency factor could be used for the prediction of the MR of compacted subgrade soils with precise and reliable results.
Keywords: Consistency factor, resilient modulus, subgrade soil, properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18972680 Changes in Selected Fuel Properties of Sewage Sludge as a Result of its Storage
Authors: Michal M. Koziol
Abstract:
The article presents test results on the changes occurring in sewage sludge during the process of its storage. Tests were conducted on mechanically dehydrated sewage sludge derived from large municipal sewage treatment plants equipped with biological sewage treatment systems. In testing presented in the paper the focus was on the basic fuel properties of sewage sludge: moisture content, heat of combustion, carbon share. In the first part of the article the overview of the issues concerning the sewage sludge management is presented and the genesis of tests is explained. Further in the paper, selected results of conducted tests are discussed. Changes in tested parameters were determined in the period of a 10- month sewage storage.Keywords: fuel properties, laboratory tests, sewage sludge, storage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12792679 Structure and Properties of Meltblown Polyetherimide as High Temperature Filter Media
Authors: Gajanan Bhat, Vincent Kandagor, Daniel Prather, Ramesh Bhave
Abstract:
Polyetherimide (PEI), an engineering plastic with very high glass transition temperature and excellent chemical and thermal stability, has been processed into a controlled porosity filter media of varying pore size, performance, and surface characteristics. A special grade of the PEI was processed by melt blowing to produce microfiber nonwovens suitable as filter media. The resulting microfiber webs were characterized to evaluate their structure and properties. The fiber webs were further modified by hot pressing, a post processing technique, which reduces the pore size in order to improve the barrier properties of the resulting membranes. This ongoing research has shown that PEI can be a good candidate for filter media requiring high temperature and chemical resistance with good mechanical properties. Also, by selecting the appropriate processing conditions, it is possible to achieve desired filtration performance from this engineering plastic.
Keywords: Nonwovens, melt blowing, polyehterimide, filter media, microfibers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13672678 Effect of UV-Treatment on Properties of Biodegradable Film From Rice Starch
Authors: Nawapat Detduangchan, Thawien Wittaya
Abstract:
Photo-crosslinked rice starch-based biodegradable films were prepared by casting film-solution on leveled trays and ultra violet (UV) irradiation was applied for 10 minute. The effect of the content (3%, 6% and 9 wt. %)of photosensitiser (sodium benzoate) on mechanical properties, water vapor permeability (WVP) and structural properties of rice starch films were investigated. The tensile strength increased while elongation at break and water resistance properties of rice starch films decreased with addition and increasing content of photosensitiser. The % crystallinity of rice starch films were decreased when the content of photosensitiser increased and UV were applied. The results showed that the carboxylate group band of sodium benzoate was found in the FTIR spectrum of rice starch films and found that incorporation of 6% of photosensitiser into the films showed a higher absorption band of resulted films. This result pointed out the highest interaction between starch molecules was occurred.Keywords: Biodegradable film, Rice starch, UV treatment, Photosensitiser, Photo-crosslink
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25072677 Properties of Bricks Produced With Recycled Fine Aggregate
Abstract:
The main aim of this research is to study the possible use of recycled fine aggregate made from waste rubble wall to substitute partially for the natural sand used in the production of cement and sand bricks. The bricks specimens were prepared by using 100% natural sand; they were then replaced by recycled fine aggregate at 25, 50, 75, and 100% by weight of natural sand. A series of tests was carried out to study the effect of using recycled aggregate on the physical and mechanical properties of bricks, such as density, drying shrinkage, water absorption characteristic, compressive and flexural strength. Test results indicate that it is possible to manufacture bricks containing recycled fine aggregate with good characteristics that are similar in physical and mechanical properties to those of bricks with natural aggregate, provided that the percentage of recycled fine aggregates is limited up to 50-75%.Keywords: Bricks, cement, recycled aggregate, sand
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36082676 The Effect of Surface Modifiers on the Mechanical and Morphological Properties of Waste Silicon Carbide Filled High-Density Polyethylene
Authors: R. Dangtungee, A. Rattanapan, S. Siengchin
Abstract:
Waste silicon carbide (waste SiC) filled high-density polyethylene (HDPE) with and without surface modifiers were studied. Two types of surface modifiers namely; high-density polyethylene-grafted-maleic anhydride (HDPE-g-MA) and 3-aminopropyltriethoxysilane have been used in this study. The composites were produced using a two roll mill, extruder and shaped in a hydraulic compression molding machine. The mechanical properties of polymer composites such as flexural strength and modulus, impact strength, tensile strength, stiffness and hardness were investigated over a range of compositions. It was found that, flexural strength and modulus, tensile modulus and hardness increased, whereas impact strength and tensile strength decreased with the increasing in filler contents, compared to the neat HDPE. At similar filler content, the effect of both surface modifiers increased flexural modulus, impact strength, tensile strength and stiffness but reduced the flexural strength. Morphological investigation using SEM revealed that the improvement in mechanical properties was due to enhancement of the interfacial adhesion between waste SiC and HDPE.
Keywords: High-density polyethylene, HDPE-g-MA, mechanical properties, morphological properties, silicon carbide, waste silicon carbide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23972675 Characterization of a Pure Diamond-Like Carbon Film Deposited by Nanosecond Pulsed Laser Deposition
Authors: Camilla G. Goncalves, Benedito Christ, Walter Miyakawa, Antonio J. Abdalla
Abstract:
This work aims to investigate the properties and microstructure of diamond-like carbon film deposited by pulsed laser deposition by ablation of a graphite target in a vacuum chamber on a steel substrate. The equipment was mounted to provide one laser beam. The target of high purity graphite and the steel substrate were polished. The mechanical and tribological properties of the film were characterized using Raman spectroscopy, nanoindentation test, scratch test, roughness profile, tribometer, optical microscopy and SEM images. It was concluded that the pulsed laser deposition (PLD) technique associated with the low-pressure chamber and a graphite target provides a good fraction of sp3 bonding, that the process variable as surface polishing and laser parameter have great influence in tribological properties and in adherence tests performance. The optical microscopy images are efficient to identify the metallurgical bond.
Keywords: Characterization, diamond-like carbon, DLC, mechanical properties, pulsed laser deposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7032674 Characterization of Two Hybrid Welding Techniques on SA 516 Grade 70 Weldments
Authors: M. T. Z. Butt, T. Ahmad, N. A. Siddiqui
Abstract:
Commercially SA 516 Grade 70 is frequently used for the manufacturing of pressure vessels, boilers and storage tanks etc. in fabrication industry. Heat input is the major parameter during welding that may bring significant changes in the microstructure as well as the mechanical properties. Different welding technique has different heat input rate per unit surface area. Materials with large thickness are dealt with different combination of welding techniques to achieve required mechanical properties. In the present research two schemes: Scheme 1: SMAW (Shielded Metal Arc Welding) & GTAW (Gas Tungsten Arc Welding) and Scheme 2: SMAW & SAW (Submerged Arc Welding) of hybrid welding techniques have been studied. The purpose of these schemes was to study hybrid welding effect on the microstructure and mechanical properties of the weldment, heat affected zone and base metal area. It is significant to note that the thickness of base plate was 12 mm, also welding conditions and parameters were set according to ASME Section IX. It was observed that two different hybrid welding techniques performed on two different plates demonstrated that the mechanical properties of both schemes are more or less similar. It means that the heat input, welding techniques and varying welding operating conditions & temperatures did not make any detrimental effect on the mechanical properties. Hence, the hybrid welding techniques mentioned in the present study are favorable to implicate for the industry using the plate thickness around 12 mm thick.
Keywords: Grade 70, GTAW, hybrid welding, SAW, SMAW.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13162673 Properties of Al2O3 – hBN Composites
Authors: K. Broniszewski, J. Woźniak, K. Czechowski, P. Orłowski, A. Olszyna
Abstract:
Alumina matrix composites with addition of hexagonal boron nitride (hBN), acting as solid lubricant, were produced. Main purpose of solid lubricants is to dispose the necessity of using cooling lubricants in machining process. Hot pressing was used as a consolidating process for Al2O3-x%wt.hBN (x=1/ 2,5/ 5 /7,5 /10) composites. Properties of sinters such as relative density, hardness, Young-s modulus and fracture toughness were examined. Obtained samples characterize by high relative density. Hardness and fracture toughness values allow the use of alumina – hBN composites for machining steels even in hardened condition. However it was observed that high weight content of hBN can negatively influence the mechanical properties of composites.
Keywords: Alumina. Composites, Hexagonal boron nitride, Machining
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26702672 Study of Hydrothermal Behavior of Thermal Insulating Materials Based On Natural Fibers
Authors: J. Zach, J. Hroudova, J. Brozovsky
Abstract:
Thermal insulation materials based on natural fibers represent a very promising area of materials based on natural easy renewable row sources. These materials may be in terms of the properties of most competing synthetic insulations, but show somewhat higher moisture sensitivity and thermal insulation properties are strongly influenced by the density and orientation of fibers. The paper described the problem of hygrothermal behavior of thermal insulation materials based on natural plant and animal fibers. This is especially the dependence of the thermal properties of these materials on the type of fiber, bulk density, temperature, moisture and the fiber orientation.
Keywords: Thermal insulating materials, hemp fibers, sheep wool fibers, thermal conductivity, moisture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2555