Effect of Manganese Doping on Ferrroelectric Properties of (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 Lead-Free Piezoceramic
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Effect of Manganese Doping on Ferrroelectric Properties of (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 Lead-Free Piezoceramic

Authors: Chongtham Jiten, Radhapiyari Laishram, K. Chandramani Singh

Abstract:

Alkaline niobate (Na0.5K0.5)NbO3 ceramic system has attracted major attention in view of its potential for replacing the highly toxic but superior lead zirconate titanate (PZT) system for piezoelectric applications. Recently, a more detailed study of this system reveals that the ferroelectric and piezoelectric properties are optimized in the Li- and V-modified system having the composition (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3. In the present work, we further study the pyroelectric behaviour of this composition along with another doped with Mn4+. So, (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 + x MnO2 (x = 0, and 0.01 wt. %) ceramic compositions were synthesized by conventional ceramic processing route. X-ray diffraction study reveals that both the undoped and Mn4+-doped ceramic samples prepared crystallize into a perovskite structure having orthorhombic symmetry. Dielectric study indicates that Mn4+ doping has little effect on both the Curie temperature (Tc) and tetragonal-orthorhombic phase transition temperature (Tot). The bulk density, room-temperature dielectric constant (εRT), and room-c The room-temperature coercive field (Ec) is observed to be lower in Mn4+ doped sample. The detailed analysis of the P-E hysteresis loops over the range of temperature from about room temperature to Tot points out that enhanced ferroelectric properties exist in this temperature range with better thermal stability for the Mn4+ doped ceramic. The study reveals that small traces of Mn4+ can modify (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 system so as to improve its ferroelectric properties with good thermal stability over a wide range of temperature.

Keywords: Ceramics, dielectric properties, ferroelectric properties, lead-free, sintering, thermal stability.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1130693

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1033

References:


[1] B. Jaffe, “Piezoelectric Ceramics,” New York: Academic Press, pp. 214-217, 1971.
[2] Y. Guo, K. Kakimoto, H. Ohsato, “Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics,” Appl. Phys. Lett., 85, pp. 4121–4123, 2004.
[3] B. Malic, J. Bernard, J. Hole, D. Jenko, M. Kosec, “Alkaline-earth doping in (K,Na)NbO3 based piezoceramics,” J. Eur. Ceram. Soc., 25, pp.2707–2711, 2005.
[4] J.F. Li,; K. Wang, B.P. Zhang, L.M. Zhang, “Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering,” J. Am. Ceram. Soc., 89, pp.706–709, 2006.
[5] G.A. Smolensky, V.A. Isupov, A.I. Agranovskaya, N.N. Krainik, “New ferroelectrics of complex composition,” Sov. Phys. Solid State, 2, pp. 2651–2654, 1961.
[6] T. Takenaka, K. Sakata, “New piezo- and pyroelectric sensor materials of (BiNa)1/2TiO3-based ceramics,” Sens. Mater., 1, pp. 123–131., 1988.
[7] H. Nagata, M. Yoshida, Y. Makiuchi, T. Takenaka, “Large piezoelectric Constant and High Curie Temperature of Lead-Free Piezoelectric Ceramic Ternary System Based on bismuth Sodium Titanate-Bismuth Potassium Titanate-Barium Titanate near the Morphotropic Phase Boundary,” Jpn. J. Appl. Phys., 42, pp. 7401–7403, 2003.
[8] C.F. Buhrer, “Some properties of bismuth perovskites,” J. Chem. Phys., 36, pp. 798–803, 1962.
[9] Y. Hiruma, H. Nagata, T. Takenaka, “Dielectric and Piezoelectric Properties of Barium Titanate and Bismuth Potassium Titanate Solid-Solution Ceramics,” J. Ceram. Soc. Jpn., 112, pp. S1125–S1128., 2004.
[10] R.R. Neurgaonkar, W.F. Hall, J.R. Oliver, W.W. Ho, W.K. Copy, “Tungsten bronze Sr1-xBaxNb2O6: A case history of versatility,” Ferroelectrics, 87, pp. 167–179., 1988.
[11] M.J. Forbess, S. Seraji, Y. Wu, C.P. Nguyen, G.Z. Cao, “Dielectric properties of layered perovskite Sr1-xAxBi2Nb2O9 ferroelectrics (A = La, Ca and x = 0, 0.1),” Appl. Phys. Lett., 76, pp. 2934–2936, 2000.
[12] A. Ando, M. Kimura, T. Sawada, K. Hayashi, Y. Sakabe, “Piezoelectric and ferroelectric properties of the modified SrBi2Nb2O9 ceramics,” Ferroelectrics, 268, pp. 65–70, 2002.
[13] T. Sawada, A. Ando, Y. Sakabe, D. Damjanovic, N. Setter, “Properties of the Elastic Anomaly in SrBi2Nb2O9-based Ceramics,” Jpn. J. Appl. Phys., 42, pp. 6094–6098, 2003.
[14] M. D. Maeder, D. Damjanovic, N. Setter, “Lead free piezoelectric materials,” J. Electroceram. 13 pp. 385-392, 2004.
[15] Y. Saito, H. Takao, T. Tani, T. Nonoyaima, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, “Lead-free piezoceramics,” Nature 432 pp. 84-87, 2004.
[16] M. Kosec, D. Kolar, “On activated sintering and electrical properties of NaKNbO3,” Mater. Res. Bull. 10 pp. 335-340, 1975.
[17] R. Wang, R.J. Xie, K. Hanada, K. Matsusaki, H. Bando, M. Itoh, “Phase diagram and enhanced piezoelectricity in the strontium titanate doped potassium–sodium niobate solid solution,” Phys. Stat. Sol. A 202 pp. R57-R59., 2005.
[18] R.E. Jaeger, L. Egerton, “Hot pressing of potassium-sodium niobates,” J. Am. Ceram. Soc. 45, pp.209-213, 1962.
[19] G.H. Haertling, “Properties of hot-pressed ferroelectric alkali niobate ceramics,” J. Am. Ceram. Soc. 50, pp. 329-330, 1967..
[20] L. Egerton, C.A. Bieling, “Isostatically hot-pressed sodium potassium niobate transducer material for ultrasonic devices,” Ceramic. Bull. 47, pp. 1151-1156, 1968.
[21] E. Hollenstein, M. Davis, D. Damjanovic, N. Setter, “Piezoelectric properties of Li and Ta modified (Na0.5K0.5)NbO3 ceramics,” Appl. Phys. Lett. 87, pp. 182905/1-182905/3, 2005.
[22] S. Zhang, J.B. Lim, T.R. Shrout, “Characterization of hard piezoelectric lead-free ceramics,” IEEE Trans Ultrason. Ferroelectr. Freq. Control. 58, pp.1523-1527, 2009.
[23] K. Chandramani Singh, C. Jiten, R. Laishram, O.P. Thakur, D.K. Bhattacharya, “Structure and electrical properties of Li- and Ta-substituted K0.5Na0.5NbO3 lead-free piezoelectric ceramics prepared from nanopowders,” J. Alloys. Compd. 496, pp.717–722, 2010.
[24] D. Lin, K.W. Kwok, K.H. Lam, H.L.W. Chan, “Structure and electrical properties of K0.5Na0.5NbO3-LiSbO3 lead-free piezoelectric ceramics,” J. Appl. Phys. 101, pp. 074111-074116, 2007.
[25] M. Matsubara, K. Kikuta, S. Hirano, “Piezoelectric properties of (K0.5Na0.5)(Nb1−xTax)O3−K5.4CuTa10O29 ceramics,” J. Appl. Phys. 97, pp. 114105 1-5, 2005.
[26] P. Guo, K. Kakimoto, H. Ohsato, “Na0.5K0.5NbO3-LiTaO3lead-free piezoelectric ceramics,” Mater. Lett. 59, pp. 241-244, 2005.
[27] R. Gaur, A. Dhingra, S. Pal and K. Chandramani Singh, “Enhanced piezoelectric properties in vanadium-modified lead-free (K0.485Na0.5Li0.015)(Nb0.88Ta0.1V0.02)O3 ceramics prepared from nanopowders,” Journal of Alloys and Compounds, 625, pp. 284-290, 2015.
[28] H. Kishi, N. I. Kohzu, Y. Iguchi, J. Sugino, M. Kato, H. Ohsato, and T. Okuda, ‘‘Occupational Sites and Dielectric Properties of Rare-Earth and Mn Substituted BaTiO3,’’ J. Eur. Ceram. Soc., 21, pp. 1643–7, 2001.
[29] Y. Hou, M. Zhu, F. Gao, H.Wang, B. Wang, H. Yan, and C. Tain, ‘‘Effect of MnO2 Addition on the Structure and Electrical Properties of Pb(Zn1/3Nb2/3)0.20 (Zr0.50Ti0.50)0.80O3 Ceramics,’’ J. Am. Ceram. Soc., 87 (1), pp.847–50,2004.
[30] R. Rani, S. Sharma, R. Rai, and A.L. Kholkin, “Investigation of dielectric and electrical properties of Mn doped sodium potassium niobate ceramic system using impedance spectroscopy,” J. Appl. Phys., 110, No. 10, pp. 104102, 2011.
[31] L.G. Gusakova, V.M. Ishchuk, N.G. Kisel, D.V. Kuzenko, and N.A. Spiridonov, “Modified potassium–sodium niobate based lead-free piezoceramics,” Funct. Mater., 17, No. 4, pp. 528, 2010.
[32] M. Matsubara, T. Yamaguchi, W. Sakamoto, K. Kikuta, T. Yogo, S. Hirano, “Processing and piezoelectric properties of lead free (KNa)(NbTa)O3,” J. Am. Ceram. Soc. 88, pp.1190-1196, 2005.
[33] M. Matsubara, T. Yamaguchi, K. Kikuta, S. Hirano, “Effect of Li substitution of piezoelectric properties of potassium sodium niobate ceramics,” Jpn. J. Appl. Phys. 44, pp. 6136-6142, 2005.
[34] N.M. Hagh, B. Jadidian, A. Safari, “Property-processing relationship in lead-free (K,Na,Li)NbO3 solid solution systems,” J. Electroceram. 18, pp. 339-346, 2007.
[35] G.C. Jiao, H.Q. Fan, L.J. Liu, W. Wang, “Structure and piezoelectric properties of Cu-doped potassium sodium tantalate niobate ceramics,” Mater. Lett. 61, pp. 4185-4187, 2007.
[36] R. Gaur. K. Chandramani Singh, R. Laishram, “Structural and piezoelectric properties of barium modified lead-free (K0.455Li0.045Na0.5)(Nb0.9Ta0.1)O3 ceramics,” J. Mater. Sci. 48, pp. 5607–5613, 2013.