Search results for: stress analysis.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9381

Search results for: stress analysis.

9201 An Experimental Investigation in Effect of Confining Stress and Matric Suction on the Mechanical Behavior of Sand with Different Fine Content

Authors: S. Asreazad

Abstract:

This paper presents the results that the soil volumetric strain and shear strength are closely related to the confining stress and initial matric suction under constant water content testing on the specimens of unsaturated sand with clay and silt fines contents. The silty sand specimens reached their peak strength after a very small axial strain followed by a post-peak softening towards an ultimate value. The post-peak drop in stress increased by an increment of the suction, while there is no peak strength for clayey sand specimens. The clayey sand shows compressibility and possesses ductile stress-strain behaviour. Shear strength increased nonlinearly with respect to matric suction for both soil types. When suction exceeds a certain range, the effect of suction on shear strength increment weakens gradually. Under the same confining stress, the dilatant tendencies in the silty sand increased under lower values of suction and decreased for higher suction values under the same confining stress. However, the amount of contraction increased with increasing initial suction for clayey sand specimens.

Keywords: Unsaturated soils, silty sand, clayey sand, triaxial test, constant water content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 997
9200 Analysis of Explosive Shock Wave and its Application in Snow Avalanche Release

Authors: Mahmoud Zarrini, R. N. Pralhad

Abstract:

Avalanche velocity (from start to track zone) has been estimated in the present model for an avalanche which is triggered artificially by an explosive devise. The initial development of the model has been from the concept of micro-continuum theories [1], underwater explosions [2] and from fracture mechanics [3] with appropriate changes to the present model. The model has been computed for different slab depth R, slope angle θ, snow density ¤ü, viscosity μ, eddy viscosity η*and couple stress parameter η. The applicability of the present model in the avalanche forecasting has been highlighted.

Keywords: Snow avalanche velocity, avalanche zones, shockwave, couple stress fluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687
9199 Simulation on Influence of Environmental Conditions on Part Distortion in Fused Deposition Modelling

Authors: Anto Antony Samy, Atefeh Golbang, Edward Archer, Alistair McIlhagger

Abstract:

Fused Deposition Modelling (FDM) is one of the additive manufacturing techniques that has become highly attractive in the industrial and academic sectors. However, parts fabricated through FDM are highly susceptible to geometrical defects such as warpage, shrinkage, and delamination that can severely affect their function. Among the thermoplastic polymer feedstock for FDM, semi-crystalline polymers are highly prone to part distortion due to polymer crystallization. In this study, the influence of FDM processing conditions such as chamber temperature and print bed temperature on the induced thermal residual stress and resulting warpage are investigated using 3D transient thermal model for a semi-crystalline polymer. The thermo-mechanical properties and the viscoelasticity of the polymer, as well as the crystallization physics which considers the crystallinity of the polymer, are coupled with the evolving temperature gradient of the print model. From the results it was observed that increasing the chamber temperature from 25 °C to 75 °C leads to a decrease of 3.3% residual stress and increase of 0.4% warpage, while decreasing bed temperature from 100 °C to 60 °C resulted in 27% increase in residual stress and a significant rise of 137% in warpage. The simulated warpage data are validated by comparing it with the measured warpage values of the samples using 3D scanning.

Keywords: Finite Element Analysis, FEA, Fused Deposition Modelling, residual stress, warpage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 490
9198 Stress and Strain Analysis of Notched Bodies Subject to Non-Proportional Loadings

Authors: A. Ince

Abstract:

In this paper, an analytical simplified method for calculating elasto-plastic stresses strains of notched bodies subject to non-proportional loading paths is discussed. The method was based on the Neuber notch correction, which relates the incremental elastic and elastic-plastic strain energy densities at the notch root and the material constitutive relationship. The validity of the method was presented by comparing computed results of the proposed model against finite element numerical data of notched shaft. The comparison showed that the model estimated notch-root elasto-plastic stresses strains with good accuracy using linear-elastic stresses. The prosed model provides more efficient and simple analysis method preferable to expensive experimental component tests and more complex and time consuming incremental non-linear FE analysis. The model is particularly suitable to perform fatigue life and fatigue damage estimates of notched components subjected to nonproportional loading paths.

Keywords: Elasto-plastic, stress-strain, notch analysis, nonprortional loadings, cyclic plasticity, fatigue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2561
9197 Using Stresses Obtained from a Low Detailed FE Model and Located at a Reference Point to Quickly Calculate the Free-edge Stress Intensity Factors of Bonded Joints

Authors: F. Maamar, M. Sartor

Abstract:

The present study focuses on methods allowing a convenient and quick calculation of the SIFs in order to predict the static adhesive strength of bonded joints. A new SIF calculation method is proposed, based on the stresses obtained from a FE model at a reference point located in the adhesive layer at equal distance of the free-edge and of the two interfaces. It is shown that, even limiting ourselves to the two main modes, i.e. the opening and the shearing modes, and using the values of the stresses resulting from a low detailed FE model, an efficient calculation of the peeling stress at adhesive-substrate corners can be obtained by this way. The proposed method is interesting in that it can be the basis of a prediction tool that will allow the designer to quickly evaluate the SIFs characterizing a particular application without developing a detailed analysis.

Keywords: Adhesive layer, bounded joints, free-edge corner, stress intensity factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1149
9196 The Effect of Silicon on Cadmium Stress in Echium amoenum

Authors: Janet Amiri, Shekoofeh Entesari, Kourosh Delavar, Mahshid Saadatmand, Nasrin Aghamohammad Rafie

Abstract:

The beneficial effects of Si are mainly associated with its high deposition in plant tissue and enhancing their strength and rigidity. We investigated the role of Si against cadmium stress in (Echium C) in house green condition. When the seventh leaves was be appeared, plants were pretreated with five levels of Si: 0, 0.2, 0.5, 0.7and 1.5 mM Si (as sodium trisilicate, Na2(SiO2)3) and after that plants were treated with two levels of Cd (30 and 90 mM). The effects of Silicon and Cd were investigated on some physiological and biochemical parameters such as: lipid peroxidation (malondialdehyde (MDA) and other aldehydes, antocyanin and flavonoid content. Our results showed that Cd significantly increased MDA, other aldehydes, antocyanin and flavonoids content in Echium and silicon offset the negative effect and increased tolerance of Echium against Cd stress. From this results we concluded that Si increase membrane integrity and antioxidative ability in this plant against cd stress.

Keywords: Silicon, Cadmium, Echium, MDA, antocyanin, flavonoid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935
9195 Finite Element Analysis of Connecting Rod

Authors: Mohammed Mohsin Ali H., Mohamed Haneef

Abstract:

The connecting rod transmits the piston load to the crank causing the latter to turn, thus converting the reciprocating motion of the piston into a rotary motion of the crankshaft. Connecting rods are subjected to forces generated by mass and fuel combustion. This study investigates and compares the fatigue behavior of forged steel, powder forged and ASTM a 514 steel cold quenched connecting rods. The objective is to suggest for a new material with reduced weight and cost with the increased fatigue life. This has entailed performing a detailed load analysis. Therefore, this study has dealt with two subjects: first, dynamic load and stress analysis of the connecting rod, and second, optimization for material, weight and cost. In the first part of the study, the loads acting on the connecting rod as a function of time were obtained. Based on the observations of the dynamic FEA, static FEA, and the load analysis results, the load for the optimization study was selected. It is the conclusion of this study that the connecting rod can be designed and optimized under a load range comprising tensile load and compressive load. Tensile load corresponds to 360o crank angle at the maximum engine speed. The compressive load is corresponding to the peak gas pressure. Furthermore, the existing connecting rod can be replaced with a new connecting rod made of ASTM a 514 steel cold quenched that is 12% lighter and 28% cheaper.

Keywords: Connecting rod, ASTM a514 cold quenched steel, static analysis, fatigue analysis, stress life approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2739
9194 Contact Stress on the Surface of Gear Teeth with Different Profile

Authors: K. Farhangdoost, H. Heirani

Abstract:

Contact stress is an important problem in industry. This is a problem that in the first attention may be don-t appears, but disregard of these stresses cause a lot of damages in machines. These stresses occur at locations such as gear teeth, bearings, cams and between a locomotive wheel and the railroad rail. These stresses cause failure by excessive elastic deformation, yielding and fracture. In this paper we intend show the effective parameters in contact stress and ponder effect of curvature. In this paper we study contact stresses on the surface of gear teeth and compare these stresses for four popular profiles of gear teeth (involute, cycloid, epicycloids, and hypocycloid). We study this problem with mathematical and finite element methods and compare these two methods on different profile surfaces.

Keywords: Contact stress, Cycloid, Epicycloids, Finite element, Gear, Hypocycloid, Involute, Radius of curvature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
9193 Relationship between Behavioral Inhibition/Approach System and Perceived Stress: With White Blood Cell in Multiple Sclerosis Patients

Authors: Amin Alvani

Abstract:

Multiple sclerosis (MS) is a chronic, often disabling disease in which the immune system attacks the myelin sheath of neurons in the central nervous system. The purpose of this study was to explore the correlation between the Behavioral Inhibition/Approach System (BIS-BAS) and Perceived Stress (PS), while controlling for White Blood Cell (WBC) count. 60 MS patients (36.7% male, 63.3% female; aged 15-65 years) participated in this study. They completed a demographic questionnaire, underwent a complete blood cell (CBC) test, filled out the Behavioral Activation and Behavioral Inhibition Scale (BIS-BAS), and responded to the Perceived Stress Questionnaire (PSS-14). The results indicated a significant relationship between the BAS-Reward Responsiveness (BAS-RR) subscale and PS, particularly in a subset of MS patients with increased WBC counts.

Keywords: Behavioral inhibition/approach system, multiple sclerosis, perceived stress, white blood cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 71
9192 Heat and Mass Transfer of Triple Diffusive Convection in a Rotating Couple Stress Liquid Using Ginzburg-Landau Model

Authors: Sameena Tarannum, S. Pranesh

Abstract:

A nonlinear study of triple diffusive convection in a rotating couple stress liquid has been analysed. It is performed to study the effect of heat and mass transfer by deriving Ginzburg-Landau equation. Heat and mass transfer are quantified in terms of Nusselt number and Sherwood numbers, which are obtained as a function of thermal and solute Rayleigh numbers. The obtained Ginzburg-Landau equation is Bernoulli equation, and it has been elucidated numerically by using Mathematica. The effects of couple stress parameter, solute Rayleigh numbers, and Taylor number on the onset of convection and heat and mass transfer have been examined. It is found that the effects of couple stress parameter and Taylor number are to stabilize the system and to increase the heat and mass transfer.

Keywords: Couple stress liquid, Ginzburg-Landau model, rotation, triple diffusive convection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1276
9191 Stress Relaxation of Date at Different Temperature and Moisture Content of Product: A New Approach

Authors: D. Zare, M. Alirezaei, S.M. Nassiri

Abstract:

Iran is one of the greatest producers of date in the world. However due to lack of information about its viscoelastic properties, much of the production downgraded during harvesting and postharvesting processes. In this study the effect of temperature and moisture content of product were investigated on stress relaxation characteristics. Therefore, the freshly harvested date (kabkab) at tamar stage were put in controlled environment chamber to obtain different temperature levels (25, 35, 45, and 55 0C) and moisture contents (8.5, 8.7, 9.2, 15.3, 20, 32.2 %d.b.). A texture analyzer TAXT2 (Stable Microsystems, UK) was used to apply uniaxial compression tests. A chamber capable to control temperature was designed and fabricated around the plunger of texture analyzer to control the temperature during the experiment. As a new approach a CCD camera (A4tech, 30 fps) was mounted on a cylindrical glass probe to scan and record contact area between date and disk. Afterwards, pictures were analyzed using image processing toolbox of Matlab software. Individual date fruit was uniaxially compressed at speed of 1 mm/s. The constant strain of 30% of thickness of date was applied to the horizontally oriented fruit. To select a suitable model for describing stress relaxation of date, experimental data were fitted with three famous stress relaxation models including the generalized Maxwell, Nussinovitch, and Pelege. The constant in mentioned model were determined and correlated with temperature and moisture content of product using non-linear regression analysis. It was found that Generalized Maxwell and Nussinovitch models appropriately describe viscoelastic characteristics of date fruits as compared to Peleg mode.

Keywords: Stress relaxation, Viscoelastic properties, Date, Texture analyzer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
9190 A Lagrangian Hamiltonian Computational Method for Hyper-Elastic Structural Dynamics

Authors: Hosein Falahaty, Hitoshi Gotoh, Abbas Khayyer

Abstract:

Performance of a Hamiltonian based particle method in simulation of nonlinear structural dynamics is subjected to investigation in terms of stability and accuracy. The governing equation of motion is derived based on Hamilton's principle of least action, while the deformation gradient is obtained according to Weighted Least Square method. The hyper-elasticity models of Saint Venant-Kirchhoff and a compressible version similar to Mooney- Rivlin are engaged for the calculation of second Piola-Kirchhoff stress tensor, respectively. Stability along with accuracy of numerical model is verified by reproducing critical stress fields in static and dynamic responses. As the results, although performance of Hamiltonian based model is evaluated as being acceptable in dealing with intense extensional stress fields, however kinds of instabilities reveal in the case of violent collision which can be most likely attributed to zero energy singular modes.

Keywords: Hamilton's principle of least action, particle based method, hyper-elasticity, analysis of stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
9189 Bridging Stress Modeling of Composite Materials Reinforced by Fibers Using Discrete Element Method

Authors: Chong Wang, Kellem M. Soares, Luis E. Kosteski

Abstract:

The problem of toughening in brittle materials reinforced by fibers is complex, involving all of the mechanical properties of fibers, matrix and the fiber/matrix interface, as well as the geometry of the fiber. Development of new numerical methods appropriate to toughening simulation and analysis is necessary. In this work, we have performed simulations and analysis of toughening in brittle matrix reinforced by randomly distributed fibers by means of the discrete elements method. At first, we put forward a mechanical model of toughening contributed by random fibers. Then with a numerical program, we investigated the stress, damage and bridging force in the composite material when a crack appeared in the brittle matrix. From the results obtained, we conclude that: (i) fibers of high strength and low elasticity modulus are beneficial to toughening; (ii) fibers of relatively high elastic modulus compared to the matrix may result in substantial matrix damage due to spalling effect; (iii) employment of high-strength synthetic fibers is a good option for toughening. We expect that the combination of the discrete element method (DEM) with the finite element method (FEM) can increase the versatility and efficiency of the software developed. The present work can guide the design of ceramic composites of high performance through the optimization of the parameters.

Keywords: Bridging stress, discrete element method, fiber reinforced composites, toughening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
9188 Finite Element Analysis of Full Ceramic Crowns with and without Zirconia Framework

Authors: Porojan S., Sandu L., Topală F.

Abstract:

Simulation of occlusal function during laboratory material-s testing becomes essential in predicting long-term performance before clinical usage. The aim of the study was to assess the influence of chamfer preparation depth on failure risk of heat pressed ceramic crowns with and without zirconia framework by means of finite element analysis. 3D models of maxillary central incisor, prepared for full ceramic crowns with different depths of the chamfer margin (between 0.8 and 1.2 mm) and 6-degree tapered walls together with the overlying crowns were generated using literature data (Fig. 1, 2). The crowns were designed with and without a zirconia framework with a thickness of 0.4 mm. For all preparations and crowns, stresses in the pressed ceramic crown, zirconia framework, pressed ceramic veneer, and dentin were evaluated separately. The highest stresses were registered in the dentin. The depth of the preparations had no significant influence on the stress values of the teeth and pressed ceramics for the studied cases, only for the zirconia framework. The zirconia framework decreases the stress values in the veneer.

Keywords: Finite element analysis, full ceramic crown, zirconia framework, stresses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
9187 Flow Properties of Wood Pulp Suspensions in Pipes

Authors: M. Sumida

Abstract:

The flow of suspensions of wood pulp fibers in circular pipes has been investigated experimentally. The flow characteristics of pulp suspensions are discussed with regard to five flow regimes designated by the author. In particular, the effects of the shear stress at the pipe wall on the disruption and dispersion of networks of pulp fibers are examined. The values of the disruptive and dispersive shear stresses are formulated as simple expressions depending on only the fiber concentration. Furthermore, the flow properties of the suspensions are described using the yield shear stress.

Keywords: Fiber Concentration, Flow Properties, Pulp Suspension, Yield Shear Stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3292
9186 Antioxidant Capacity of Maize Corn under Drought Stress from the Different Zones of Growing

Authors: Astghik R. Sukiasyan

Abstract:

The semidental sweet maize of Armenian population under drought stress and pollution by some heavy metals (HMs) in sites along the river Debet was studied. Accordingly, the objective of this work was to investigate the antioxidant status of maize plant in order to identify simple and reliable criteria for assessing the degree of adaptation of plants to abiotic stress of drought and HMs. It was found that in the case of removal from the mainstream of the river, the antioxidant status of the plant varies. As parameters, the antioxidant status of the plant has been determined by the activity of malondialdehyde (MDA) and Ferric Reducing Ability of Plasma (FRAP), taking into account the characteristics of natural drought of this region. The possibility of using some indicators which characterized the antioxidant status of the plant was concluded. The criteria for assessing the extent of environmental pollution could be HMs. This fact can be used for the early diagnosis of diseases in the population who lives in these areas and uses corn as the main food.

Keywords: Antioxidant status, maize corn, drought stress, heavy metal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320
9185 Fatigue Crack Initiation of Al-Alloys “Effect of Heat Treatment Condition”

Authors: M. Benachour, N. Benachour, M. Benguediab

Abstract:

In this investigation an empirical study was made on fatigue crack initiation on 7075 T6 and 7075 T71 Al-alloys under constant amplitude loading. In initiation stage, local strain approach at the notch was applied. Single Edge Notch Tensile specimen with semi circular notch is used. Based on experimental results, effect of mean stress, is highlights on fatigue initiation life. Results show that fatigue life initiation is affected by notch geometry and mean stress. 

Keywords: Fatigue crack initiation, Al-Alloy, mean stress, heat treatment state.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2976
9184 Effects of Turbulence Penetration on Valve Leakage in Nuclear Reactor Coolant System

Authors: Gupta Rajesh, Paudel Sagar, Sharma Utkarsh, Singh Amit Kumar

Abstract:

Thermal stratification has drawn much attention because of the malfunctions at various nuclear plants in U.S.A that raised significant safety concerns. The concerns due to this phenomenon relate to thermal stresses in branch pipes connected to the reactor coolant system piping. This stress limits the lifetime of the piping system, and even leading to penetrating cracks. To assess origin of valve damage in the pipeline, it is essential to determine the effect of turbulence penetration on valve leakage; since stratified flow is generally generated by turbulent penetration or valve leakage. As a result, we concluded with the help of coupled fluent-structural analysis that the pipe with less turbulence has less chance of failure there by requiring less maintenance.

Keywords: Reactor coolant system, thermal stratification, turbulent penetration, coupled fluent-structural analysis, Von Mises stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483
9183 Development and Validation of an Instrument Measuring the Coping Strategies in Situations of Stress

Authors: Lucie Côté, Martin Lauzier, Guy Beauchamp, France Guertin

Abstract:

Stress causes deleterious effects to the physical, psychological and organizational levels, which highlight the need to use effective coping strategies to deal with it. Several coping models exist, but they don’t integrate the different strategies in a coherent way nor do they take into account the new research on the emotional coping and acceptance of the stressful situation. To fill these gaps, an integrative model incorporating the main coping strategies was developed. This model arises from the review of the scientific literature on coping and from a qualitative study carried out among workers with low or high levels of stress, as well as from an analysis of clinical cases. The model allows one to understand under what circumstances the strategies are effective or ineffective and to learn how one might use them more wisely. It includes Specific Strategies in controllable situations (the Modification of the Situation and the Resignation-Disempowerment), Specific Strategies in non-controllable situations (Acceptance and Stubborn Relentlessness) as well as so-called General Strategies (Wellbeing and Avoidance). This study is intended to undertake and present the process of development and validation of an instrument to measure coping strategies based on this model. An initial pool of items has been generated from the conceptual definitions and three expert judges have validated the content. Of these, 18 items have been selected for a short form questionnaire. A sample of 300 students and employees from a Quebec university was used for the validation of the questionnaire. Concerning the reliability of the instrument, the indices observed following the inter-rater agreement (Krippendorff’s alpha) and the calculation of the coefficients for internal consistency (Cronbach's alpha) are satisfactory. To evaluate the construct validity, a confirmatory factor analysis using MPlus supports the existence of a model with six factors. The results of this analysis suggest also that this configuration is superior to other alternative models. The correlations show that the factors are only loosely related to each other. Overall, the analyses carried out suggest that the instrument has good psychometric qualities and demonstrates the relevance of further work to establish predictive validity and reconfirm its structure. This instrument will help researchers and clinicians better understand and assess coping strategies to cope with stress and thus prevent mental health issues.

Keywords: Acceptance, coping strategies, measurement instrument, questionnaire, stress, validation process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 927
9182 Effect of Applied Voltage Frequency on Electrical Treeing in 22 kV Cross-linked Polyethylene Insulated Cable

Authors: R. Thiamsri, N. Ruangkajonmathee, A. Oonsivilaiand B. Marungsri

Abstract:

This paper presents the experimental results on effect of applied voltage stress frequency to the occurrence of electrical treeing in 22 kV cross linked polyethylene (XLPE) insulated cable.Hallow disk of XLPE insulating material with thickness 5 mm taken from unused high voltage cable was used as the specimen in this study. Stainless steel needle was inserted gradually into the specimen to give a tip to earth plane electrode separation of 2.50.2 mm at elevated temperature 105-110°C. The specimen was then annealed for 5 minute to minimize any mechanical stress build up around the needle-plane region before it was cooled down to room temperature. Each specimen were subjected to the same applied voltage stress level at 8 kV AC rms, with various frequency, 50, 100, 500, 1000 and 2000 Hz. Initiation time, propagation speed and pattern of electrical treeing were examined in order to study the effect of applied voltage stress frequency. By the experimental results, initial time of visible treeing decreases with increasing in applied voltage frequency. Also, obviously, propagation speed of electrical treeing increases with increasing in applied voltage frequency.Furthermore, two types of electrical treeing, bush-like and branch-like treeing were observed.The experimental results confirmed the effect of voltage stress frequency as well.

Keywords: Voltage stress frequency, cross-linked polyethylene, electrical treeing, treeing propagation, treeing pattern

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2623
9181 Predicting the Effect of Vibro Stone Column Installation on Performance of Reinforced Foundations

Authors: K. Al Ammari, B. G. Clarke

Abstract:

Soil improvement using vibro stone column techniques consists of two main parts: (1) the installed load bearing columns of well-compacted, coarse-grained material and (2) the improvements to the surrounding soil due to vibro compaction. Extensive research work has been carried out over the last 20 years to understand the improvement in the composite foundation performance due to the second part mentioned above. Nevertheless, few of these studies have tried to quantify some of the key design parameters, namely the changes in the stiffness and stress state of the treated soil, or have consider these parameters in the design and calculation process. Consequently, empirical and conservative design methods are still being used by ground improvement companies with a significant variety of results in engineering practice. Two-dimensional finite element study to develop an axisymmetric model of a single stone column reinforced foundation was performed using PLAXIS 2D AE to quantify the effect of the vibro installation of this column in soft saturated clay. Settlement and bearing performance were studied as an essential part of the design and calculation of the stone column foundation. Particular attention was paid to the large deformation in the soft clay around the installed column caused by the lateral expansion. So updated mesh advanced option was taken in the analysis. In this analysis, different degrees of stone column lateral expansions were simulated and numerically analyzed, and then the changes in the stress state, stiffness, settlement performance and bearing capacity were quantified. It was found that application of radial expansion will produce a horizontal stress in the soft clay mass that gradually decrease as the distance from the stone column axis increases. The excess pore pressure due to the undrained conditions starts to dissipate immediately after finishing the column installation, allowing the horizontal stress to relax. Changes in the coefficient of the lateral earth pressure K ٭, which is very important in representing the stress state, and the new stiffness distribution in the reinforced clay mass, were estimated. More encouraging results showed that increasing the expansion during column installation has a noticeable effect on improving the bearing capacity and reducing the settlement of reinforced ground, So, a design method should include this significant effect of the applied lateral displacement during the stone column instillation in simulation and numerical analysis design.

Keywords: Bearing capacity, design, Installation, numerical analysis, settlement, stone column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
9180 Buckling Analysis of Rectangular Plates under the Combined Action of Shear and Uniaxial Stresses

Authors: V. Piscopo

Abstract:

In the classical buckling analysis of rectangular plates subjected to the concurrent action of shear and uniaxial forces, the Euler shear buckling stress is generally evaluated separately, so that no influence on the shear buckling coefficient, due to the in-plane tensile or compressive forces, is taken into account. In this paper the buckling problem of simply supported rectangular plates, under the combined action of shear and uniaxial forces, is discussed from the beginning, in order to obtain new project formulas for the shear buckling coefficient that take into account the presence of uniaxial forces. Furthermore, as the classical expression of the shear buckling coefficient for simply supported rectangular plates is considered only a “rough" approximation, as the exact one is defined by a system of intersecting curves, the convergence and the goodness of the classical solution are analyzed, too. Finally, as the problem of the Euler shear buckling stress evaluation is a very important topic for a variety of structures, (e.g. ship ones), two numerical applications are carried out, in order to highlight the role of the uniaxial stresses on the plating scantling procedures and the goodness of the proposed formulas.

Keywords: Buckling analysis, Shear, Uniaxial Stresses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2942
9179 Numerical Modeling of Direct Shear Tests on Sandy Clay

Authors: R. Ziaie Moayed , S. Tamassoki , E. Izadi

Abstract:

Investigation of sandy clay behavior is important since urban development demands mean that sandy clay areas are increasingly encountered, especially for transportation infrastructures. This paper presents the results of the finite element analysis of the direct shear test (under three vertical loading 44, 96 and 192 kPa) and discusses the effects of different parameters such as cohesion, friction angle and Young's modulus on the shear strength of sandy clay. The numerical model was calibrated against the experimental results of large-scale direct shear tests. The results have shown that the shear strength was increased with increase in friction angle and cohesion. However, the shear strength was not influenced by raising the friction angle at normal stress of 44 kPa. Also, the effect of different young's modulus factors on stress-strain curve was investigated.

Keywords: Shear strength, Finite element analysis, Large direct shear test, Sandy clay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5486
9178 Dispersion of a Solute in Peristaltic Motion of a Couple Stress Fluid through a Porous Medium with Slip Condition

Authors: Habtu Alemayehu, G. Radhakrishnamacharya

Abstract:

The paper presents an analytical solution for dispersion of a solute in the peristaltic motion of a couple stress fluid through a porous medium with slip condition in the presence of both homogeneous and heterogeneous chemical reactions. The average effective dispersion coefficient has been found using Taylor-s limiting condition and long wavelength approximation. The effects of various relevant parameters on the average coefficient of dispersion have been studied. The average effective dispersion coefficient tends to increase with permeability parameter but tends to decrease with homogeneous chemical reaction rate parameter, couple stress parameter, slip parameter and heterogeneous reaction rate parameter.

Keywords: Dispersion, Peristalsis, Couple stress fluid, Porousmedium, Chemical reaction, Slip condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566
9177 Modeling Parametric Vibration of Multistage Gear Systems as a Tool for Design Optimization

Authors: James Kuria, John Kihiu

Abstract:

This work presents a numerical model developed to simulate the dynamics and vibrations of a multistage tractor gearbox. The effect of time varying mesh stiffness, time varying frictional torque on the gear teeth, lateral and torsional flexibility of the shafts and flexibility of the bearings were included in the model. The model was developed by using the Lagrangian method, and it was applied to study the effect of three design variables on the vibration and stress levels on the gears. The first design variable, module, had little effect on the vibration levels but a higher module resulted to higher bending stress levels. The second design variable, pressure angle, had little effect on the vibration levels, but had a strong effect on the stress levels on the pinion of a high reduction ratio gear pair. A pressure angle of 25o resulted to lower stress levels for a pinion with 14 teeth than a pressure angle of 20o. The third design variable, contact ratio, had a very strong effect on both the vibration levels and bending stress levels. Increasing the contact ratio to 2.0 reduced both the vibration levels and bending stress levels significantly. For the gear train design used in this study, a module of 2.5 and contact ratio of 2.0 for the various meshes was found to yield the best combination of low vibration levels and low bending stresses. The model can therefore be used as a tool for obtaining the optimum gear design parameters for a given multistage spur gear train.

Keywords: bending stress levels, frictional torque, gear designparameters, mesh stiffness, multistage gear train, vibration levels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2572
9176 Steady State Creep Behavior of Functionally Graded Thick Cylinder

Authors: Tejeet Singh, Harmanjit Singh

Abstract:

Creep behavior of thick-walled functionally graded cylinder consisting of AlSiC and subjected to internal pressure and high temperature has been analyzed. The functional relationship between strain rate with stress can be described by the well known threshold stress based creep law with a stress exponent of five. The effect of imposing non-linear particle gradient on the distribution of creep stresses in the thick-walled functionally graded composite cylinder has been investigated. The study revealed that for the assumed non-linear particle distribution, the radial stress decreases throughout the cylinder, whereas the tangential, axial and effective stresses have averaging effect. The strain rates in the functionally graded composite cylinder could be reduced to significant extent by employing non-linear gradient in the distribution of reinforcement.

Keywords: Functionally Graded Material, Pressure, Steady State Creep, Thick-Cylinder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977
9175 A Study of Shear Stress Intensity Factor of PP and HDPE by a Modified Experimental Method together with FEM

Authors: Md. Shafiqul Islam, Abdullah Khan, Sharon Kao-Walter, Li Jian

Abstract:

Shear testing is one of the most complex testing areas where available methods and specimen geometries are different from each other. Therefore, a modified shear test specimen (MSTS) combining the simple uniaxial test with a zone of interest (ZOI) is tested which gives almost the pure shear. In this study, material parameters of polypropylene (PP) and high density polyethylene (HDPE) are first measured by tensile tests with a dogbone shaped specimen. These parameters are then used as an input for the finite element analysis. Secondly, a specially designed specimen (MSTS) is used to perform the shear stress tests in a tensile testing machine to get the results in terms of forces and extension, crack initiation etc. Scanning Electron Microscopy (SEM) is also performed on the shear fracture surface to find material behavior. These experiments are then simulated by finite element method and compared with the experimental results in order to confirm the simulation model. Shear stress state is inspected to find the usability of the proposed shear specimen. Finally, a geometry correction factor can be established for these two materials in this specific loading and geometry with notch using Linear Elastic Fracture Mechanics (LEFM). By these results, strain energy of shear failure and stress intensity factor (SIF) of shear of these two polymers are discussed in the special application of the screw cap opening of the medical or food packages with a temper evidence safety solution.

Keywords: Shear test specimen, Stress intensity factor, Finite Element simulation, Scanning electron microscopy, Screw cap opening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2926
9174 Effect of Drought Stress and Selenium Spraying on Superoxide Dismotase Activity of Winter Rapeseed (Brassica napus L.) Cultivars

Authors: A.R. Pazoki, A. H. Shirani Rad, D. Habibi, F. Paknejad, S. Kobraee, N. Hadayat

Abstract:

In the other to Study of drought stress and Selenium spraying effect on superoxide dismotase (SOD) activity of rapeseed (Brassica napus L.) cultivars in Shahr-e-Rey region, an experiment carried out in Split factorial design in the basis of randomized complete blocks with 4 replications in 2006. Irrigation in two levels: Normal irrigation and irrigation with drought stress when the soil electrical conductivity reached to 60 as main factor and rapeseed cultivars in 3 levels Zarfam, Okapi, Opera and selenium spraying at the beginning of flowering stage in 3 levels: 0, 16 and 21 g/ha as sub factor. The results showed that the simple and interaction effect of irrigation, selenium and cultivars on SOD activity had significant difference. In this case Zarfam cultivar with 2010 u.mg-1 protein and Opera with 1454 u.mg-1 protein produced maximum and minimum amounts of SOD activitiy. Interaction effect of irrigation and variety showed that, normal irrigation in Opera with 1115 u.mg-1 protein and drought stress in Zarfam with 2784 u.mg-1 protein conducted to and minimum and maximum amounts of SOD activity. Interaction effect of irrigation, cultivar and selenium on SOD indicated that drought stress condition and 21 gr/ha selenium spraying in Zarfam variety with 3146 u.mg-1 protein gained to highest activities of SOD.

Keywords: Drought stress, Rapeseed, Selenium, Superoxide dismutase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
9173 Relationship between Functional Gastrointestinal Disorders and Risk Factors: A Biomechanical Analysis

Authors: Dae Gon Woo, Han Sung Kim, Dohyung Lim, Dong Jin Seo, In Deok Kong, Chang Yong Ko

Abstract:

Functional gastrointestinal disorders (FGID) affect millions of people spread all age regardless of race and sex. Emotional stress and obesity have been associated with increased reporting of gastrointestinal (GI) symptoms, but the relationship between FGID and risk factors (emotional stress or obesity) is unclear. Our aim was to assess the changes of the mechanical characteristics on the gastrointestinal tracts of the mentally fatigued obese and normal rat models. Finally, using the physical characteristics with micro-indentation test, we made a close investigation into the relation between FGID and risk factors quantitatively.

Keywords: Functional gastrointestinal disorders, Risk Factors, Mechanical Characteristics, Gastrointestinal Tract.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
9172 Finite Element Analysis of Different Architectures for Bone Scaffold

Authors: Nimisha R. Shirbhate, Sanjay Bokade

Abstract:

Bone Scaffolds are fundamental architecture or a support structure that allows the regeneration of lost or damaged tissues and they are developed as a crucial tool in biomedical engineering. The structure of bone scaffolds plays an important role in treating bone defects. The shape of the bone scaffold performs a vital role, specifically pore size and shape, which help understand the behavior and strength of the scaffold. In this article, first, fundamental aspects of bone scaffold design are established. Second, the behavior of each architecture of the bone scaffold with biomaterials is discussed. Finally, for each structure, the stress analysis was carried out. This study aimed to design a porous and mechanically strong bone regeneration scaffold that can be successfully manufactured. Four porous architectures of the bone scaffold were designed using Rhinoceros solid modelling software. The structure model consisted of repeatable unit cells arranged in layers to fill the chosen scaffold volume. The mechanical behavior of used biocompatible material is studied with the help of ANSYS 19.2 software. It is also playing significant role to predict the strength of defined structures or 3 dimensional models.

Keywords: Bone scaffold, stress analysis, porous structure, static loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544