Search results for: stochastic resonance.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 457

Search results for: stochastic resonance.

277 On the Hierarchical Ergodicity Coefficient

Authors: Yilun Shang

Abstract:

In this paper, we deal with the fundamental concepts and properties of ergodicity coefficients in a hierarchical sense by making use of partition. Moreover, we establish a hierarchial Hajnal’s inequality improving some previous results.

Keywords: Stochastic matrix, ergodicity coefficient, partition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1347
276 Efficient Numerical Model for Studying Bridge Pier Collapse in Floods

Authors: Thanut Kallaka, Ching-Jong Wang

Abstract:

High level and high velocity flood flows are potentially harmful to bridge piers as evidenced in many toppled piers, and among them the single-column piers were considered as the most vulnerable. The flood flow characteristic parameters including drag coefficient, scouring and vortex shedding are built into a pier-flood interaction model to investigate structural safety against flood hazards considering the effects of local scouring, hydrodynamic forces, and vortex induced resonance vibrations. By extracting the pier-flood simulation results embedded in a neural networks code, two cases of pier toppling occurred in typhoon days were reexamined: (1) a bridge overcome by flash flood near a mountain side; (2) a bridge washed off in flood across a wide channel near the estuary. The modeling procedures and simulations are capable of identifying the probable causes for the tumbled bridge piers during heavy floods, which include the excessive pier bending moments and resonance in structural vibrations.

Keywords: Bridge piers, Neural networks, Scour depth, Structural safety, Vortex shedding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2264
275 Optimum Tuning Capacitors for Wireless Charging of Electric Vehicles Considering Variation in Coil Distances

Authors: Muhammad Abdullah Arafat, Nahrin Nowrose

Abstract:

Wireless charging of electric vehicles is becoming more and more attractive as large amount of power can now be transferred to a reasonable distance using magnetic resonance coupling method. However, proper tuning of the compensation network is required to achieve maximum power transmission. Due to the variation of coil distance from the nominal value as a result of change in tire condition, change in weight or uneven road condition, the tuning of the compensation network has become challenging. In this paper, a tuning method has been described to determine the optimum values of the compensation network in order to maximize the average output power. The simulation results show that 5.2% increase in average output power is obtained for 10% variation in coupling coefficient using the optimum values without the need of additional space and electro-mechanical components. The proposed method is applicable to both static and dynamic charging of electric vehicles.

Keywords: Coupling coefficient, electric vehicles, magnetic resonance coupling, tuning capacitor, wireless power transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 249
274 An Optimal Algorithm for Finding (r, Q) Policy in a Price-Dependent Order Quantity Inventory System with Soft Budget Constraint

Authors: S. Hamid Mirmohammadi, Shahrazad Tamjidzad

Abstract:

This paper is concerned with the single-item continuous review inventory system in which demand is stochastic and discrete. The budget consumed for purchasing the ordered items is not restricted but it incurs extra cost when exceeding specific value. The unit purchasing price depends on the quantity ordered under the all-units discounts cost structure. In many actual systems, the budget as a resource which is occupied by the purchased items is limited and the system is able to confront the resource shortage by charging more costs. Thus, considering the resource shortage costs as a part of system costs, especially when the amount of resource occupied by the purchased item is influenced by quantity discounts, is well motivated by practical concerns. In this paper, an optimization problem is formulated for finding the optimal (r, Q) policy, when the system is influenced by the budget limitation and a discount pricing simultaneously. Properties of the cost function are investigated and then an algorithm based on a one-dimensional search procedure is proposed for finding an optimal (r, Q) policy which minimizes the expected system costs.

Keywords: (r, Q) policy, Stochastic demand, backorders, limited resource, quantity discounts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864
273 Liquid Temperature Effect on Sound Propagation in Polymeric Solution with Gas Bubbles

Authors: S. Levitsky

Abstract:

Acoustic properties of polymeric liquids are high sensitive to free gas traces in the form of fine bubbles. Their presence is typical for such liquids because of chemical reactions, small wettability of solid boundaries, trapping of air in technological operations, etc. Liquid temperature influences essentially its rheological properties, which may have an impact on the bubble pulsations and sound propagation in the system. The target of the paper is modeling of the liquid temperature effect on single bubble dynamics and sound dispersion and attenuation in polymeric solution with spherical gas bubbles. The basic sources of attenuation (heat exchange between gas in microbubbles and surrounding liquid, rheological and acoustic losses) are taken into account. It is supposed that in the studied temperature range the interface mass transfer has a minor effect on bubble dynamics. The results of the study indicate that temperature raise yields enhancement of bubble pulsations and increase in sound attenuation in the near-resonance range and may have a strong impact on sound dispersion in the liquid-bubble mixture at frequencies close to the resonance frequency of bubbles.

Keywords: Sound propagation, gas bubbles, temperature effect, polymeric liquid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2275
272 Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization

Authors: Tomoaki Hashimoto

Abstract:

Recently, feedback control systems using random dither quantizers have been proposed for linear discrete-time systems. However, the constraints imposed on state and control variables have not yet been taken into account for the design of feedback control systems with random dither quantization. Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. An important advantage of model predictive control is its ability to handle constraints imposed on state and control variables. Based on the model predictive control approach, the objective of this paper is to present a control method that satisfies probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization. In other words, this paper provides a method for solving the optimal control problems subject to probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization.

Keywords: Optimal control, stochastic systems, discrete-time systems, probabilistic constraints, random dither quantization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1157
271 Investigation of SSR Characteristics of SSSC With GA Based Voltage Controller

Authors: R. Thirumalaivasan, M.Janaki, Nagesh Prabhu

Abstract:

In this paper, investigation of subsynchronous resonance (SSR) characteristics of a hybrid series compensated system and the design of voltage controller for three level 24-pulse Voltage Source Converter based Static Synchronous Series Compensator (SSSC) is presented. Hybrid compensation consists of series fixed capacitor and SSSC which is a active series FACTS controller. The design of voltage controller for SSSC is based on damping torque analysis, and Genetic Algorithm (GA) is adopted for tuning the controller parameters. The SSR Characteristics of SSSC with constant reactive voltage control modes has been investigated. The results show that the constant reactive voltage control of SSSC has the effect of reducing the electrical resonance frequency, which detunes the SSR.The analysis of SSR with SSSC is carried out based on frequency domain method, eigenvalue analysis and transient simulation. While the eigenvalue and damping torque analysis are based on D-Q model of SSSC, the transient simulation considers both D-Q and detailed three phase nonlinear system model using switching functions.

Keywords: FACTS, SSR, SSSC, damping torque, GA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
270 Flood Predicting in Karkheh River Basin Using Stochastic ARIMA Model

Authors: Karim Hamidi Machekposhti, Hossein Sedghi, Abdolrasoul Telvari, Hossein Babazadeh

Abstract:

Floods have huge environmental and economic impact. Therefore, flood prediction is given a lot of attention due to its importance. This study analysed the annual maximum streamflow (discharge) (AMS or AMD) of Karkheh River in Karkheh River Basin for flood predicting using ARIMA model. For this purpose, we use the Box-Jenkins approach, which contains four-stage method model identification, parameter estimation, diagnostic checking and forecasting (predicting). The main tool used in ARIMA modelling was the SAS and SPSS software. Model identification was done by visual inspection on the ACF and PACF. SAS software computed the model parameters using the ML, CLS and ULS methods. The diagnostic checking tests, AIC criterion, RACF graph and RPACF graphs, were used for selected model verification. In this study, the best ARIMA models for Annual Maximum Discharge (AMD) time series was (4,1,1) with their AIC value of 88.87. The RACF and RPACF showed residuals’ independence. To forecast AMD for 10 future years, this model showed the ability of the model to predict floods of the river under study in the Karkheh River Basin. Model accuracy was checked by comparing the predicted and observation series by using coefficient of determination (R2).

Keywords: Time series modelling, stochastic processes, ARIMA model, Karkheh River.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1044
269 Design of Coherent Thermal Emission Source by Excitation of Magnetic Polaritons between Metallic Gratings and an Opaque Metallic Film

Authors: Samah G. Babiker, Yong Shuai, Mohamed Osman Sid-Ahmed, Ming Xie, Mu Lei

Abstract:

The present paper studies a structure consisting of a periodic metallic grating, coated on a dielectric spacer atop an opaque metal substrate, using coherent thermal emission source in the infrared region. It has been theoretically demonstrated that by exciting surface magnetic polaritons between metallic gratings and an opaque metallic film, separated by a dielectric spacer, large emissivity peaks are almost independent of the emission angle and they can be achieved at the resonance frequencies. The reflectance spectrum of the proposed structure shows two resonances dip, which leads to a sharp emissivity peak. The relations of the reflection and absorption properties and the influence of geometric parameters on the radiative properties are investigated by rigorous coupled-wave analysis (RCWA). The proposed structure can be easily constructed, using micro/nanofabrication and can be used as the coherent thermal emission source.

Keywords: Coherent thermal emission, Polartons, Reflectance, Resonance frequency, Rigorous coupled wave analysis (RCWA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2168
268 Gaits Stability Analysis for a Pneumatic Quadruped Robot Using Reinforcement Learning

Authors: Soofiyan Atar, Adil Shaikh, Sahil Rajpurkar, Pragnesh Bhalala, Aniket Desai, Irfan Siddavatam

Abstract:

Deep reinforcement learning (deep RL) algorithms leverage the symbolic power of complex controllers by automating it by mapping sensory inputs to low-level actions. Deep RL eliminates the complex robot dynamics with minimal engineering. Deep RL provides high-risk involvement by directly implementing it in real-world scenarios and also high sensitivity towards hyperparameters. Tuning of hyperparameters on a pneumatic quadruped robot becomes very expensive through trial-and-error learning. This paper presents an automated learning control for a pneumatic quadruped robot using sample efficient deep Q learning, enabling minimal tuning and very few trials to learn the neural network. Long training hours may degrade the pneumatic cylinder due to jerk actions originated through stochastic weights. We applied this method to the pneumatic quadruped robot, which resulted in a hopping gait. In our process, we eliminated the use of a simulator and acquired a stable gait. This approach evolves so that the resultant gait matures more sturdy towards any stochastic changes in the environment. We further show that our algorithm performed very well as compared to programmed gait using robot dynamics.

Keywords: model-based reinforcement learning, gait stability, supervised learning, pneumatic quadruped

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 591
267 Thermo-Mechanical Characterization of Skin Laser Soldering using Au Coated SiO2 Nanoshells

Authors: M.S.Nourbakhsh, M.E.khosroshahi

Abstract:

Gold coated silica core nanoparticles have an optical response dictated by the plasmon resonance. The wavelength at which the resonance occurs depends on the core and shell sizes, allowing nanoshells to be tailored for particular applications. The purposes of this study was to synthesize and use different concentration of gold nanoshells as exogenous material for skin tissue soldering and also to examine the effect of laser soldering parameters on the properties of repaired skin. Two mixtures of albumin solder and different concentration of gold nanoshells were prepared. A full thickness incision of 2×20 mm2 was made on the surface and after addition of mixtures it was irradiated by an 810nm diode laser at different power densities. The changes of tensile strength σt due to temperature rise, number of scan (Ns), and scan velocity (Vs) were investigated. The results showed at constant laser power density (I), σt of repaired incisions increases by increasing the concentration of gold nanoshells, Ns and decreasing Vs. It is therefore important to consider the trade off between the scan velocity and the surface temperature for achieving an optimum operating condition. In our case this corresponds to σt =1610 gr/cm2 at I~ 60 Wcm-2, T ~ 65ºC, Ns =10 and Vs=0.2mms-1.

Keywords: Tissue soldering, Diode laser, Gold Nanoshells, Tensile strength

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
266 Application of Generalized Stochastic Petri Nets(GSPN) in Modeling and Evaluating a Resource Sharing Flexible Manufacturing System

Authors: Aryanejad Mir Bahador Goli, Zahra Honarmand Shah Zileh

Abstract:

In most study fields, a phenomenon may not be studied directly but it will be examined indirectly by phenomenon model. Making an accurate model of system, there is attained new information from modeled phenomenon without any charge, danger, etc... there have been developed more solutions for describing and analyzing the recent complicated systems but few of them have analyzed the performance in the range of system description. Petri nets are of limited solutions which may make such union. Petri nets are being applied in problems related to modeling and designing the systems. Theory of Petri nets allow a system to model mathematically by a Petri net and analyzing the Petri net can then determine main information of modeled system-s structure and dynamic. This information can be used for assessing the performance of systems and suggesting corrections in the system. In this paper, beside the introduction of Petri nets, a real case study will be studied in order to show the application of generalized stochastic Petri nets in modeling a resource sharing production system and evaluating the efficiency of its machines and robots. The modeling tool used here is SHARP software which calculates specific indicators helping to make decision.

Keywords: Flexible manufacturing system, generalizedstochastic Petri nets, Markov chain, performance evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
265 Shape Restoration of the Left Ventricle

Authors: May-Ling Tan, Yi Su, Chi-Wan Lim, Liang Zhong, Ru-San Tan

Abstract:

This paper describes an automatic algorithm to restore the shape of three-dimensional (3D) left ventricle (LV) models created from magnetic resonance imaging (MRI) data using a geometry-driven optimization approach. Our basic premise is to restore the LV shape such that the LV epicardial surface is smooth after the restoration. A geometrical measure known as the Minimum Principle Curvature (κ2) is used to assess the smoothness of the LV. This measure is used to construct the objective function of a two-step optimization process. The objective of the optimization is to achieve a smooth epicardial shape by iterative in-plane translation of the MRI slices. Quantitatively, this yields a minimum sum in terms of the magnitude of κ 2, when κ2 is negative. A limited memory quasi-Newton algorithm, L-BFGS-B, is used to solve the optimization problem. We tested our algorithm on an in vitro theoretical LV model and 10 in vivo patient-specific models which contain significant motion artifacts. The results show that our method is able to automatically restore the shape of LV models back to smoothness without altering the general shape of the model. The magnitudes of in-plane translations are also consistent with existing registration techniques and experimental findings.

Keywords: Magnetic Resonance Imaging, Left Ventricle, ShapeRestoration, Principle Curvature, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
264 Towards an Enhanced Stochastic Simulation Model for Risk Analysis in Highway Construction

Authors: Anshu Manik, William G. Buttlar, Kasthurirangan Gopalakrishnan

Abstract:

Over the years, there is a growing trend towards quality-based specifications in highway construction. In many Quality Control/Quality Assurance (QC/QA) specifications, the contractor is primarily responsible for quality control of the process, whereas the highway agency is responsible for testing the acceptance of the product. A cooperative investigation was conducted in Illinois over several years to develop a prototype End-Result Specification (ERS) for asphalt pavement construction. The final characteristics of the product are stipulated in the ERS and the contractor is given considerable freedom in achieving those characteristics. The risk for the contractor or agency depends on how the acceptance limits and processes are specified. Stochastic simulation models are very useful in estimating and analyzing payment risk in ERS systems and these form an integral part of the Illinois-s prototype ERS system. This paper describes the development of an innovative methodology to estimate the variability components in in-situ density, air voids and asphalt content data from ERS projects. The information gained from this would be crucial in simulating these ERS projects for estimation and analysis of payment risks associated with asphalt pavement construction. However, these methods require at least two parties to conduct tests on all the split samples obtained according to the sampling scheme prescribed in present ERS implemented in Illinois.

Keywords: Asphalt Pavement, Risk Analysis, StochasticSimulation, QC/QA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
263 SNC Based Network Layer Design for Underwater Wireless Communication Used in Coral Farms

Authors: T. T. Manikandan, Rajeev Sukumaran

Abstract:

For maintaining the biodiversity of many ecosystems the existence of coral reefs play a vital role. But due to many factors such as pollution and coral mining, coral reefs are dying day by day. One way to protect the coral reefs is to farm them in a carefully monitored underwater environment and restore it in place of dead corals. For successful farming of corals in coral farms, different parameters of the water in the farming area need to be monitored and maintained at optimal level. Sensing underwater parameters using wireless sensor nodes is an effective way for precise and continuous monitoring in a highly dynamic environment like oceans. Here the sensed information is of varying importance and it needs to be provided with desired Quality of Service(QoS) guarantees in delivering the information to offshore monitoring centers. The main interest of this research is Stochastic Network Calculus (SNC) based modeling of network layer design for underwater wireless sensor communication. The model proposed in this research enforces differentiation of service in underwater wireless sensor communication with the help of buffer sizing and link scheduling. The delay and backlog bounds for such differentiated services are analytically derived using stochastic network calculus.

Keywords: Underwater Coral Farms, SNC, differentiated service, delay bound, backlog bound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 369
262 Stochastic Subspace Modelling of Turbulence

Authors: M. T. Sichani, B. J. Pedersen, S. R. K. Nielsen

Abstract:

Turbulence of the incoming wind field is of paramount importance to the dynamic response of civil engineering structures. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper an empirical cross spectral density function for the along-wind turbulence component over the wind field area is taken as the starting point. The spectrum is spatially discretized in terms of a Hermitian cross-spectral density matrix for the turbulence state vector which turns out not to be positive definite. Since the succeeding state space and ARMA modelling of the turbulence rely on the positive definiteness of the cross-spectral density matrix, the problem with the non-positive definiteness of such matrices is at first addressed and suitable treatments regarding it are proposed. From the adjusted positive definite cross-spectral density matrix a frequency response matrix is constructed which determines the turbulence vector as a linear filtration of Gaussian white noise. Finally, an accurate state space modelling method is proposed which allows selection of an appropriate model order, and estimation of a state space model for the vector turbulence process incorporating its phase spectrum in one stage, and its results are compared with a conventional ARMA modelling method.

Keywords: Turbulence, wind turbine, complex coherence, state space modelling, ARMA modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
261 Estimation of Thermal Conductivity of Nanofluids Using MD-Stochastic Simulation Based Approach

Authors: Sujoy Das, M. M. Ghosh

Abstract:

The thermal conductivity of a fluid can be significantly enhanced by dispersing nano-sized particles in it, and the resultant fluid is termed as "nanofluid". A theoretical model for estimating the thermal conductivity of a nanofluid has been proposed here. It is based on the mechanism that evenly dispersed nanoparticles within a nanofluid undergo Brownian motion in course of which the nanoparticles repeatedly collide with the heat source. During each collision a rapid heat transfer occurs owing to the solidsolid contact. Molecular dynamics (MD) simulation of the collision of nanoparticles with the heat source has shown that there is a pulselike pick up of heat by the nanoparticles within 20-100 ps, the extent of which depends not only on thermal conductivity of the nanoparticles, but also on the elastic and other physical properties of the nanoparticle. After the collision the nanoparticles undergo Brownian motion in the base fluid and release the excess heat to the surrounding base fluid within 2-10 ms. The Brownian motion and associated temperature variation of the nanoparticles have been modeled by stochastic analysis. Repeated occurrence of these events by the suspended nanoparticles significantly contributes to the characteristic thermal conductivity of the nanofluids, which has been estimated by the present model for a ethylene glycol based nanofluid containing Cu-nanoparticles of size ranging from 8 to 20 nm, with Gaussian size distribution. The prediction of the present model has shown a reasonable agreement with the experimental data available in literature.

Keywords: Brownian dynamics, Molecular dynamics, Nanofluid, Thermal conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2265
260 Surrogate based Evolutionary Algorithm for Design Optimization

Authors: Maumita Bhattacharya

Abstract:

Optimization is often a critical issue for most system design problems. Evolutionary Algorithms are population-based, stochastic search techniques, widely used as efficient global optimizers. However, finding optimal solution to complex high dimensional, multimodal problems often require highly computationally expensive function evaluations and hence are practically prohibitive. The Dynamic Approximate Fitness based Hybrid EA (DAFHEA) model presented in our earlier work [14] reduced computation time by controlled use of meta-models to partially replace the actual function evaluation by approximate function evaluation. However, the underlying assumption in DAFHEA is that the training samples for the meta-model are generated from a single uniform model. Situations like model formation involving variable input dimensions and noisy data certainly can not be covered by this assumption. In this paper we present an enhanced version of DAFHEA that incorporates a multiple-model based learning approach for the SVM approximator. DAFHEA-II (the enhanced version of the DAFHEA framework) also overcomes the high computational expense involved with additional clustering requirements of the original DAFHEA framework. The proposed framework has been tested on several benchmark functions and the empirical results illustrate the advantages of the proposed technique.

Keywords: Evolutionary algorithm, Fitness function, Optimization, Meta-model, Stochastic method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
259 Mirror Neuron System Study on Elderly Using Dynamic Causal Modeling fMRI Analysis

Authors: R. Keerativittatayut, B. Kaewkamnerdpong, J. Laothamatas, W. Sungkarat

Abstract:

Dynamic Causal Modeling (DCM) functional Magnetic Resonance Imaging (fMRI) is a promising technique to study the connectivity among brain regions and effects of stimuli through modeling neuronal interactions from time-series neuroimaging. The aim of this study is to study characteristics of a mirror neuron system (MNS) in elderly group (age: 60-70 years old). Twenty volunteers were MRI scanned with visual stimuli to study a functional brain network. DCM was employed to determine the mechanism of mirror neuron effects. The results revealed major activated areas including precentral gyrus, inferior parietal lobule, inferior occipital gyrus, and supplementary motor area. When visual stimuli were presented, the feed-forward connectivity from visual area to conjunction area was increased and forwarded to motor area. Moreover, the connectivity from the conjunction areas to premotor area was also increased. Such findings can be useful for future diagnostic process for elderly with diseases such as Parkinson-s and Alzheimer-s.

Keywords: Mirror Neuron System (MNS), Dynamic Causal Modeling (DCM), Functional Magnetic Resonance Imaging (fMRI)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
258 Production Planning for Animal Food Industry under Demand Uncertainty

Authors: Pirom Thangchitpianpol, Suttipong Jumroonrut

Abstract:

This research investigates the distribution of food demand for animal food and the optimum amount of that food production at minimum cost. The data consist of customer purchase orders for the food of laying hens, price of food for laying hens, cost per unit for the food inventory, cost related to food of laying hens in which the food is out of stock, such as fine, overtime, urgent purchase for material. They were collected from January, 1990 to December, 2013 from a factory in Nakhonratchasima province. The collected data are analyzed in order to explore the distribution of the monthly food demand for the laying hens and to see the rate of inventory per unit. The results are used in a stochastic linear programming model for aggregate planning in which the optimum production or minimum cost could be obtained. Programming algorithms in MATLAB and tools in Linprog software are used to get the solution. The distribution of the food demand for laying hens and the random numbers are used in the model. The study shows that the distribution of monthly food demand for laying has a normal distribution, the monthly average amount (unit: 30 kg) of production from January to December. The minimum total cost average for 12 months is Baht 62,329,181.77. Therefore, the production planning can reduce the cost by 14.64% from real cost.

Keywords: Animal food, Stochastic linear programming, Production planning, Demand Uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
257 Intrinsic Electromagnetic Fields and Atom-Field Coupling in Living Cells

Authors: Masroor H. S. Bukhari, Z. H. Shah

Abstract:

The possibility of intrinsic electromagnetic fields within living cells and their resonant self-interaction and interaction with ambient electromagnetic fields is suggested on the basis of a theoretical and experimental study. It is reported that intrinsic electromagnetic fields are produced in the form of radio-frequency and infra-red photons within atoms (which may be coupled or uncoupled) in cellular structures, such as the cell cytoskeleton and plasma membrane. A model is presented for the interaction of these photons among themselves or with atoms under a dipole-dipole coupling, induced by single-photon or two-photon processes. This resonance is manifested by conspicuous field amplification and it is argued that it is possible for these resonant photons to undergo tunnelling in the form of evanescent waves to a short range (of a few nanometers to micrometres). This effect, suggested as a resonant photon tunnelling mechanism in this report, may enable these fields to act as intracellular signal communication devices and as bridges between macromolecules or cellular structures in the cell cytoskeleton, organelles or membrane. A brief overview of an experimental technique and a review of some preliminary results are presented, in the detection of these fields produced in living cell membranes under physiological conditions.

Keywords: bioelectromagnetism, cell membrane, evanescentwaves, photon tunnelling, resonance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
256 DC Bus Voltage Regulator for Renewable Energy Based Microgrid Application

Authors: Bakari M. M. Mwinyiwiwa

Abstract:

Renewable Energy based microgrids are being considered to provide electricity for the expanding energy demand in the grid distribution network and grid isolated areas. The technical challenges associated with the operation and controls are immense. Electricity generation by Renewable Energy Sources is of stochastic nature such that there is a demand for regulation of voltage output in order to satisfy the standard loads’ requirements. In a renewable energy based microgrid, the energy sources give stochastically variable magnitude AC or DC voltages. AC voltage regulation of micro and mini sources pose practical challenges as well as unbearable costs. It is therefore practically and economically viable to convert the voltage outputs from stochastic AC and DC voltage sources to constant DC voltage to satisfy various DC loads including inverters which ultimately feed AC loads. This paper presents results obtained from SEPIC converter based DC bus voltage regulator as a case study for renewable energy microgrid application. Real-Time Simulation results show that upon appropriate choice of controller parameters for control of the SEPIC converter, the output DC bus voltage can be kept constant regardless of wide range of voltage variations of the source. This feature is particularly important in the situation that multiple renewable sources are to be integrated to supply a microgrid under main grid integration or isolated modes of operation.

Keywords: DC Voltage Regulator, microgrid, multisource, Renewable Energy, SEPIC Converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4311
255 Diagnosis of the Abdominal Aorta Aneurysm in Magnetic Resonance Imaging Images

Authors: W. Kultangwattana, K. Somkantha, P. Phuangsuwan

Abstract:

This paper presents a technique for diagnosis of the abdominal aorta aneurysm in magnetic resonance imaging (MRI) images. First, our technique is designed to segment the aorta image in MRI images. This is a required step to determine the volume of aorta image which is the important step for diagnosis of the abdominal aorta aneurysm. Our proposed technique can detect the volume of aorta in MRI images using a new external energy for snakes model. The new external energy for snakes model is calculated from Law-s texture. The new external energy can increase the capture range of snakes model efficiently more than the old external energy of snakes models. Second, our technique is designed to diagnose the abdominal aorta aneurysm by Bayesian classifier which is classification models based on statistical theory. The feature for data classification of abdominal aorta aneurysm was derived from the contour of aorta images which was a result from segmenting of our snakes model, i.e., area, perimeter and compactness. We also compare the proposed technique with the traditional snakes model. In our experiment results, 30 images are trained, 20 images are tested and compared with expert opinion. The experimental results show that our technique is able to provide more accurate results than 95%.

Keywords: Adbominal Aorta Aneurysm, Bayesian Classifier, Snakes Model, Texture Feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
254 Brain Image Segmentation Using Conditional Random Field Based On Modified Artificial Bee Colony Optimization Algorithm

Authors: B. Thiagarajan, R. Bremananth

Abstract:

Tumor is an uncontrolled growth of tissues in any part of the body. Tumors are of different types and they have different characteristics and treatments. Brain tumor is inherently serious and life-threatening because of its character in the limited space of the intracranial cavity (space formed inside the skull). Locating the tumor within MR (magnetic resonance) image of brain is integral part of the treatment of brain tumor. This segmentation task requires classification of each voxel as either tumor or non-tumor, based on the description of the voxel under consideration. Many studies are going on in the medical field using Markov Random Fields (MRF) in segmentation of MR images. Even though the segmentation process is better, computing the probability and estimation of parameters is difficult. In order to overcome the aforementioned issues, Conditional Random Field (CRF) is used in this paper for segmentation, along with the modified artificial bee colony optimization and modified fuzzy possibility c-means (MFPCM) algorithm. This work is mainly focused to reduce the computational complexities, which are found in existing methods and aimed at getting higher accuracy. The efficiency of this work is evaluated using the parameters such as region non-uniformity, correlation and computation time. The experimental results are compared with the existing methods such as MRF with improved Genetic Algorithm (GA) and MRF-Artificial Bee Colony (MRF-ABC) algorithm.

Keywords: Conditional random field, Magnetic resonance, Markov random field, Modified artificial bee colony.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2948
253 Mean-Variance Optimization of Portfolios with Return of Premium Clauses in a DC Pension Plan with Multiple Contributors under Constant Elasticity of Variance Model

Authors: Bright O. Osu, Edikan E. Akpanibah, Chidinma Olunkwa

Abstract:

In this paper, mean-variance optimization of portfolios with the return of premium clauses in a defined contribution (DC) pension plan with multiple contributors under constant elasticity of variance (CEV) model is studied. The return clauses which permit death members to claim their accumulated wealth are considered, the remaining wealth is not equally distributed by the remaining members as in literature. We assume that before investment, the surplus which includes funds of members who died after retirement adds to the total wealth. Next, we consider investments in a risk-free asset and a risky asset to meet up the expected returns of the remaining members and obtain an optimized problem with the help of extended Hamilton Jacobi Bellman equation. We obtained the optimal investment strategies for the two assets and the efficient frontier of the members by using a stochastic optimal control technique. Furthermore, we studied the effect of the various parameters of the optimal investment strategies and the effect of the risk-averse level on the efficient frontier. We observed that the optimal investment strategy is the same as in literature, secondly, we observed that the surplus decreases the proportion of the wealth invested in the risky asset.

Keywords: DC pension fund, Hamilton Jacobi Bellman equation, optimal investment strategies, stochastic optimal control technique, return of premiums clauses, mean-variance utility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 775
252 Profile Controlled Gold Nanostructures Fabricated by Nanosphere Lithography for Localized Surface Plasmon Resonance

Authors: Xiaodong Zhou, Nan Zhang

Abstract:

Localized surface plasmon resonance (LSPR) is the coherent oscillation of conductive electrons confined in noble metallic nanoparticles excited by electromagnetic radiation, and nanosphere lithography (NSL) is one of the cost-effective methods to fabricate metal nanostructures for LSPR. NSL can be categorized into two major groups: dispersed NSL and closely pack NSL. In recent years, gold nanocrescents and gold nanoholes with vertical sidewalls fabricated by dispersed NSL, and silver nanotriangles and gold nanocaps on silica nanospheres fabricated by closely pack NSL, have been reported for LSPR biosensing. This paper introduces several novel gold nanostructures fabricated by NSL in LSPR applications, including 3D nanostructures obtained by evaporating gold obliquely on dispersed nanospheres, nanoholes with slant sidewalls, and patchy nanoparticles on closely packed nanospheres, all of which render satisfactory sensitivity for LSPR sensing. Since the LSPR spectrum is very sensitive to the shape of the metal nanostructures, formulas are derived and software is developed for calculating the profiles of the obtainable metal nanostructures by NSL, for different nanosphere masks with different fabrication conditions. The simulated profiles coincide well with the profiles of the fabricated gold nanostructures observed under scanning electron microscope (SEM) and atomic force microscope (AFM), which proves that the software is a useful tool for the process design of different LSPR nanostructures.

Keywords: Nanosphere lithography, localized surface plasmonresonance, biosensor, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
251 Quality Evaluation of Compressed MRI Medical Images for Telemedicine Applications

Authors: Seddeq E. Ghrare, Salahaddin M. Shreef

Abstract:

Medical image modalities such as computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US), X-ray are adapted to diagnose disease. These modalities provide flexible means of reviewing anatomical cross-sections and physiological state in different parts of the human body. The raw medical images have a huge file size and need large storage requirements. So it should be such a way to reduce the size of those image files to be valid for telemedicine applications. Thus the image compression is a key factor to reduce the bit rate for transmission or storage while maintaining an acceptable reproduction quality, but it is natural to rise the question of how much an image can be compressed and still preserve sufficient information for a given clinical application. Many techniques for achieving data compression have been introduced. In this study, three different MRI modalities which are Brain, Spine and Knee have been compressed and reconstructed using wavelet transform. Subjective and objective evaluation has been done to investigate the clinical information quality of the compressed images. For the objective evaluation, the results show that the PSNR which indicates the quality of the reconstructed image is ranging from (21.95 dB to 30.80 dB, 27.25 dB to 35.75 dB, and 26.93 dB to 34.93 dB) for Brain, Spine, and Knee respectively. For the subjective evaluation test, the results show that the compression ratio of 40:1 was acceptable for brain image, whereas for spine and knee images 50:1 was acceptable.

Keywords: Medical Image, Magnetic Resonance Imaging, Image Compression, Discrete Wavelet Transform, Telemedicine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2978
250 Effect of Supplementary Premium on the Optimal Portfolio Policy in a Defined Contribution Pension Scheme with Refund of Premium Clauses

Authors: Edikan E. Akpanibah Obinichi C. Mandah Imoleayo S. Asiwaju

Abstract:

In this paper, we studied the effect of supplementary premium on the optimal portfolio policy in a defined contribution (DC) pension scheme with refund of premium clauses. This refund clause allows death members’ next of kin to withdraw their relative’s accumulated wealth during the accumulation period. The supplementary premium is to help sustain the scheme and is assumed to be stochastic. We considered cases when the remaining wealth is equally distributed and when it is not equally distributed among the remaining members. Next, we considered investments in cash and equity to help increase the remaining accumulated funds to meet up with the retirement needs of the remaining members and composed the problem as a continuous time mean-variance stochastic optimal control problem using the actuarial symbol and established an optimization problem from the extended Hamilton Jacobi Bellman equations. The optimal portfolio policy, the corresponding optimal fund size for the two assets and also the efficient frontier of the pension members for the two cases was obtained. Furthermore, the numerical simulations of the optimal portfolio policies with time were presented and the effect of the supplementary premium on the optimal portfolio policy was discussed and observed that the supplementary premium decreases the optimal portfolio policy of the risky asset (equity). Secondly we observed a disparity between the optimal policies for the two cases.

Keywords: Defined contribution pension scheme, extended Hamilton Jacobi Bellman equations, optimal portfolio policies, refund of premium clauses, supplementary premium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 661
249 Preliminary Results of In-Vitro Skin Tissue Soldering using Gold Nanoshells and ICG Combination

Authors: M. S. Nourbakhsh, M. E. Khosroshahi

Abstract:

Laser soldering is based on applying some soldering material (albumin) onto the approximated edges of the cut and heating the solder (and the underlying tissues) by a laser beam. Endogenous and exogenous materials such as indocyanine green (ICG) are often added to solders to enhance light absorption. Gold nanoshells are new materials which have an optical response dictated by the plasmon resonance. The wavelength at which the resonance occurs depends on the core and shell sizes, allowing nanoshells to be tailored for particular applications. The purposes of this study was use combination of ICG and different concentration of gold nanoshells for skin tissue soldering and also to examine the effect of laser soldering parameters on the properties of repaired skin. Two mixtures of albumin solder and different combinations of ICG and gold nanoshells were prepared. A full thickness incision of 2×20 mm2 was made on the surface and after addition of mixtures it was irradiated by an 810nm diode laser at different power densities. The changes of tensile strength σt due to temperature rise, number of scan (Ns), and scan velocity (Vs) were investigated. The results showed at constant laser power density (I), σt of repaired incisions increases by increasing the concentration of gold nanoshells in solder, Ns and decreasing Vs. It is therefore important to consider the tradeoff between the scan velocity and the surface temperature for achieving an optimum operating condition. In our case this corresponds to σt =1800 gr/cm2 at I~ 47 Wcm-2, T ~ 85ºC, Ns =10 and Vs=0.3mms-1.

Keywords: Tissue soldering, gold nanoshells, indocyanine green, combination, tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502
248 Detailed Sensitive Detection of Impurities in Waste Engine Oils Using Laser Induced Breakdown Spectroscopy, Rotating Disk Electrode Optical Emission Spectroscopy and Surface Plasmon Resonance

Authors: Cherry Dhiman, Ayushi Paliwal, Mohd. Shahid Khan, M. N. Reddy, Vinay Gupta, Monika Tomar

Abstract:

The laser based high resolution spectroscopic experimental techniques such as Laser Induced Breakdown Spectroscopy (LIBS), Rotating Disk Electrode Optical Emission spectroscopy (RDE-OES) and Surface Plasmon Resonance (SPR) have been used for the study of composition and degradation analysis of used engine oils. Engine oils are mainly composed of aliphatic and aromatics compounds and its soot contains hazardous components in the form of fine, coarse and ultrafine particles consisting of wear metal elements. Such coarse particulates matter (PM) and toxic elements are extremely dangerous for human health that can cause respiratory and genetic disorder in humans. The combustible soot from thermal power plants, industry, aircrafts, ships and vehicles can lead to the environmental and climate destabilization. It contributes towards global pollution for land, water, air and global warming for environment. The detection of such toxicants in the form of elemental analysis is a very serious issue for the waste material management of various organic, inorganic hydrocarbons and radioactive waste elements. In view of such important points, the current study on used engine oils was performed. The fundamental characterization of engine oils was conducted by measuring water content and kinematic viscosity test that proves the crude analysis of the degradation of used engine oils samples. The microscopic quantitative and qualitative analysis was presented by RDE-OES technique which confirms the presence of elemental impurities of Pb, Al, Cu, Si, Fe, Cr, Na and Ba lines for used waste engine oil samples in few ppm. The presence of such elemental impurities was confirmed by LIBS spectral analysis at various transition levels of atomic line. The recorded transition line of Pb confirms the maximum degradation which was found in used engine oil sample no. 3 and 4. Apart from the basic tests, the calculations for dielectric constants and refractive index of the engine oils were performed via SPR analysis.

Keywords: Laser induced breakdown spectroscopy, rotating disk electrode optical emission spectroscopy, surface plasmon resonance, ICCD spectrometer, Nd:YAG laser, engine oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 752