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Abstract—In this paper, we deal with the fundamental concepts
and properties of ergodicity coefficients in a hierarchical sense by
making use of partition. Moreover, we establish a hierarchial Hajnal’s
inequality improving some previous results.

I. INTRODUCTION

THROUGHOUT the paper all matrices are of fixed size

n × n. A stochastic matrix P is a square matrix with

non-negative entries and unit row sums. For an n-dimensional

column vector x, we say it is stochastic if x has non-negative

entries and xT 1 = 1, where 1 is the n-dimensional column

vector with all entries equal to 1. Ergodicity coefficient [5],

[15] is a continuous scalar function μ(·) on the set of stochastic

matrices P (P is regarded as a point in R
n2

) that satisfies

0 ≤ μ(P ) ≤ 1. An ergodicity coefficient is called proper if

μ(P ) = 0 ⇐⇒ P = 1xT ,

for some stochastic vector x (i.e., all rows of P are identical).

Ergodicity coefficient is used to measure the convergence

rate of infinite products of stochastic matrices especially in the

context of inhomogeneous Markov chains [17], [18]. Roughly

speaking, a Markov chain is said to be ergodic if the associated

matrix products converge to a stochastic matrix whose rows

are all identical, that is, a rank-one matrix. For relevant back-

grounds on ergodicity and some classical stochastic matrices

such as Markov matrices and scrambling matrices, we refer to

[7], [8], [16] and references therein.

For a stochastic matrix P , denote pij the entry of P on the

ith row and jth column. Some common ergodicity coefficients

are defined as follows:

τ(P ) = 1 − mini,j

∑
k min{pik, pjk},

α(P ) = maxk maxi,j |pik − pjk|,

β(P ) = 1 − ∑
k mini pik.

τ is called the Markov-Dobrushin ergodicity coefficient [4],

[9]. It is easy to check [16] that they are all proper, and

furthermore, the following relation holds for every stochastic

matrix P

α(P ) ≤ τ(P ) ≤ β(P ).

Other variants of ergodicity coefficient can be found in e.g.

[1], [2], [3], [8].
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Let ‖·‖ be a vector norm in R
n. Define the Hajnal diameter

of a stochastic matrix P with row vectors P1, P2, · · · , Pn as

Δ(P ) = max
i,j

‖Pi − Pj‖.

Clearly, Δ(P ) = 0 if and only if all rows of P are identical.

As a useful tool in studying the ergodicity of Markov chains,

the well known Hajnal’s inequality (see the comment below),

in its general form, is established as follows.

Theorem 1. [20] For any two stochastic matrices P and Q,

Δ(PQ) ≤ τ(P )Δ(Q).

Note that when we take the L1 norm ‖ · ‖1,

Δ(P ) = 2τ(P ).

The resulting inequality is sharper than Hajnal’s in [5]. Histor-

ically, the classical form of the inequality was due to Markov

[9], and was rediscovered by others after [5] was published.

Some authors also call it Hajnal’s inequality (see [14], [16]

for historical development).

In this paper, motivated by applications in search of a

cluster consensus between a set of agents [6], [19], we aim

to refine ergodicity coefficients as well as Hajnal’s inequality

by means of partition (in a hierarchical nature). A partition

S = {S1,S2, · · · ,SK} of the set [n] = {1, 2, · · · , n} is

a sequence of subsets of [n] such that ∪K
s=1Ss = [n] and

Ss ∩ St = ∅ for s 	= t. As we will see below the partition

S allows us to extend some known results on ergodicity

elegantly.

We should mention that, in the literature, the application

of partitions to ergodicity coefficients has been made in some

papers (c.f. [10], [11], [12]). However, the coefficients studied

here have totally different definitions and the results are

different (see the discussion below).

II. HIERARCHICAL ERGODICITY COEFFICIENT

By virtue of the partition S, in this section we extend the

concepts of ergodicity coefficient mentioned above to those in

the hierarchical sense.

For a given partition S = {S1,S2, · · · ,SK}, a hierarchical
ergodicity coefficient, denoted μS(·), is a sort of ergodicity

coefficient defined for stochastic matrices P . We say μS is

hierarchial proper if

μS(P ) = 0 ⇐⇒ P =
K∑

s=1

1Ss
xT

s ,

where, for s = 1, · · · ,K, 1Ss is the sum of ith n-dimensional

coordinate vectors ei = (0, · · · , 0,
ith
1 , 0, · · · , 0)T over all i ∈

Ss, and xs is a stochastic vector.
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A hierarchical proper ergodicity coefficient is equal to zero

if the rows corresponding to each subset Ss for s = 1, · · · ,K
of the stochastic matrix are identical. As such, the rank of

the stochastic matrix equals K. Clearly, we reproduce the

concept of proper ergodicity coefficient when K = 1. In what

follows, we instantiate the above general μS in some special

cases. Specifically, the hierarchical counterparts for ergodicity

coefficients τ, α and β can be formulated as

τS(P ) = 1 − min1≤s≤K mini,j∈Ss

∑
k min{pik, pjk},

αS(P ) = maxk max1≤s≤K maxi,j∈Ss
|pik − pjk|,

βS(P ) = 1 − min1≤s≤K

∑
k mini∈Ss

pik.

It is direct to check that all these ergodicity coefficients

are hierarchical proper. The definition of τS first appears in

[11] geared towards the study of uniform weak S-ergodicity

of Markov chains. A sub-multiplicative property τS(PQ) ≤
τS(P )τS(Q) was established. In [10], an analogous general-

ized Markov-Dobrushin ergodicity coefficient was introduced

as

τ̄S(P ) = 1 − min
1≤s,t≤K

min
i∈Ss

j∈St,s �=t

∑
k

min{pik, pjk}.

Note that τ̄S measures the inter-group differences rather than

the intra-group ones. Under a decomposability condition, for

any non-unit eigenvalue λ of P , Pǎun [10] showed that

|λ| ≤ τ̄S(P ).

A stochastic matrix P is said to be doubly stochastic if

its transpose PT is also stochastic. We have the following

result for hierarchial ergodicity coefficient of doubly stochastic

matrices.

Proposition 1. For a given partition S =
{S1,S2, · · · ,SK}, if P is a doubly stochastic matrix
and μS a hierarchical proper ergodicity coefficient, then

μS(P ) = μS(PT ) = 0 ⇐⇒ P = PT .

Proof. =⇒ : By assumption, we can write

P =
K∑

s=1

1Ssx
T
s ,

where, for s = 1, · · · ,K, 1Ss
is the sum of ith n-dimensional

coordinate vectors ei = (0, · · · , 0,
ith
1 , 0, · · · , 0)T over all i ∈

Ss, and xs is a stochastic vector. Thus,

PT =
K∑

s=1

xs1T
Ss

.

Since μS(PT ) = 0, we obtain

K∑
s=1

xs1T
Ss

=
K∑

s=1

1Ss
yT

s

for stochastic vectors ys (s = 1, · · · ,K). Let xs =
(xs1, xs2, · · · , xsn)T and ys = (ys1, ys2, · · · , ysn)T , for all

s = 1, · · · ,K. Expanding both sides of the above equality,

we observe directly that ysi = xsi for all s = 1, · · · ,K and

i = 1, · · · , n. It follows that ys = xs, and hence P = PT .

⇐= : This direction follows simply from the definition of

hierarchical proper ergodicity coefficient. �

We remark that if K = 1, Proposition 1 reduces to the

known result [8], [13]

μ(P ) = μ(PT ) = 0 ⇐⇒ P =
1
n
11T .

To see how Proposition 1 works, a simple non-trivial example

could be n = 3, S = {{1, 3}, {2}} and

P =

⎛
⎝ 0.4 0.2 0.4

0.2 0.6 0.2
0.4 0.2 0.4

⎞
⎠ .

A useful relation between the above mentioned hierarchical

ergodicity coefficients τS , αS and βS are stated below. Anal-

ogous and further relations in non-hierarchial sense can be

found in e.g. [8], [13], [16].

Proposition 2. For a given partition S =
{S1,S2, · · · ,SK}, if P is a stochastic matrix, then the
following relation holds

αS(P ) ≤ τS(P ) ≤ βS(P ).

Proof. We start with the first inequality. By definition of

ergodicity coefficient αS , we have

αS(P ) = pmr − plr ≥ 0

for some indices l,m and r. Hence

τS(P ) =
1
2

max
1≤s≤K

max
i,j∈Ss

∑
k

|pik − pjk|

≥ 1
2

∑
k

|pmk − plk|.

We now partition [n] into two subsets: Pm, consisting of

indices k such that pmk ≥ plk, and Pl, consisting of indices

k such that pmk < plk. Since P is a stochastic matrix which

has unit row sums, we obtain∑
k∈Pl

pmk = 1 −
∑

k∈Pm

pmk

and ∑
k∈Pl

plk = 1 −
∑

k∈Pm

plk.

Therefore,∑
k

|pmk − plk| =
∑

k∈Pm

(pmk − plk) +
∑
k∈Pl

(plk − pmk)

= 2
∑

k∈Pm

(pmk − plk).
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Recall that for any k ∈ Pm, we have pmk − plk ≥ 0. Thus,

we obtain

τS(P ) ≥ 1
2

∑
k

|pmk − plk|

=
∑

k∈Pm

(pmk − plk)

= pmr − plr +
∑

k∈Pm
k �=r

(pmk − plk)

≥ αS(P ),

as desired.

As for the second inequality, for every s = 1, · · · ,K, we

can choose two indices is and js such that

min
i,j∈Ss

∑
k

min{pik, pjk} =
∑

k

min{pisk, pjsk}.

Hence, we obtain

1 − τS(P ) = min
1≤s≤K

∑
k

min{pisk, pjsk}

≥ min
1≤s≤K

∑
k

min
i∈Ss

pik

= 1 − βs(P ).

�

III. EXTENDED HAJNAL’S INEQUALITY

In this section, we extend the Hajnal inequality to the

hierarchical case.

To this end, we first introduce a hierarchical Hajnal diameter

[6]. Given a partition S = {S1,S2, · · · ,SK}, and a stochastic

matrix P , which has row vectors P1, P2, · · · , Pn, the hierar-
chial Hajnal diameter is defined as

ΔS(P ) = max
1≤s≤K

max
i,j∈Ss

‖Pi − Pj‖.

Note that ΔS(P ) = 0 if and only if P =
∑K

s=1 1Ssx
T
s for

some stochastic vectors x1, · · · , xK .
Given a partition S, a stochastic matrix P is said to be

hierarchical balanced if, for i ∈ Ss,

γst :=
∑
j∈St

pij

is independent of i. In other words, γst only depends on the

partition indices s and t. This property is dubbed “inter-cluster

common influence” in [6].

Theorem 2. For a given partition S = {S1,S2, · · · ,SK},
if P and Q are two hierarchical balanced stochastic matrices,
then

ΔS(PQ) ≤ τS(P )ΔS(Q).

In particular, if Q = I (i.e., the identity matrix), then

ΔS(P ) ≤ τS(P ).

Proof. Let R = PQ and R1, R2, · · · , Rn denote the rows of

R. Namely, R = (RT
1 , RT

2 , · · · , RT
n )T . Moreover, suppose

that Q1, Q2, · · · , Qn are the rows of Q. Then we have

Ri =
∑

k

pikQk,

for all i = 1, · · · , n.

Fix i ∈ St and j ∈ St for some 1 ≤ t ≤ K. We have

Ri =
K∑

s=1

∑
k∈Ss

pikQk

and

Rj =
K∑

s=1

∑
k∈Ss

pjkQk.

Define a set Y as follows

Y = {y = (y1, y2, · · · , yK) : ys ∈ Ss, s = 1, · · · ,K}.
In other words, y is an index vector with the sth element

belonging to Ss, for s = 1, · · · ,K. For every y ∈ Y , we

define a convex combination of Q1, · · · , Qn as

Cy =
K∑

s=1

⎛
⎜⎝ ∑

k∈Ss
k �=ys

min{pik, pjk}Qk

+

⎛
⎜⎝γst −

∑
k∈Ss
k �=ys

min{pik, pjk}

⎞
⎟⎠ Qys

⎞
⎟⎠ .

Since Ri and Rj are in the convex hull of {Cy : y ∈ Y }, we

obtain

‖Ri − Rj‖ ≤ max
y,y′∈Y

‖Cy − Cy′‖

≤ max
y,y′∈Y

K∑
s=1

(
γst −

∑
k∈Ss

min{pik, pjk}
)

·‖Qys
− Qy′

s
‖

≤ τS(P )ΔS(Q).

By the arbitrariness of i, j and t, we finally arrive at

ΔS(R) ≤ τS(P )ΔS(Q)

as desired.

When Q = I , it is easy to see that ΔS(Q) = 1 and therefore

ΔS(P ) ≤ τS(P ). �

We remark that the stronger inequality

ΔS(PQ) ≤ αS(P )ΔS(Q)

does not hold. To see this, set K = 1. Using the l1 norm for Δ,

it reads τ(PQ) ≤ α(P )τ(Q). Taking Q = P , and choosing P
periodic of period 2, we obtain τ(P ) = τ(P 2) = 1. If α(P ) <
1 the result of the above implies 1 < 1, a contradiction.
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