Shape Restoration of the Left Ventricle
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Shape Restoration of the Left Ventricle

Authors: May-Ling Tan, Yi Su, Chi-Wan Lim, Liang Zhong, Ru-San Tan

Abstract:

This paper describes an automatic algorithm to restore the shape of three-dimensional (3D) left ventricle (LV) models created from magnetic resonance imaging (MRI) data using a geometry-driven optimization approach. Our basic premise is to restore the LV shape such that the LV epicardial surface is smooth after the restoration. A geometrical measure known as the Minimum Principle Curvature (κ2) is used to assess the smoothness of the LV. This measure is used to construct the objective function of a two-step optimization process. The objective of the optimization is to achieve a smooth epicardial shape by iterative in-plane translation of the MRI slices. Quantitatively, this yields a minimum sum in terms of the magnitude of κ 2, when κ2 is negative. A limited memory quasi-Newton algorithm, L-BFGS-B, is used to solve the optimization problem. We tested our algorithm on an in vitro theoretical LV model and 10 in vivo patient-specific models which contain significant motion artifacts. The results show that our method is able to automatically restore the shape of LV models back to smoothness without altering the general shape of the model. The magnitudes of in-plane translations are also consistent with existing registration techniques and experimental findings.

Keywords: Magnetic Resonance Imaging, Left Ventricle, ShapeRestoration, Principle Curvature, Optimization

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1334229

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645

References:


[1] L. Zhong, Y. Su, L. Gobeawan, S. Sola, R.-S. Tan, J. L. Navia, D. N. Ghista, T. Chua, J. Guccione, and G. S. Kassab, "Impact of surgical ventricular restoration on ventricular shape, wall stress, and function in heart failure patients," Am. J. Physiol. Heart Circ. Physiol., 300(5): H1653-H1660, 2011.
[2] L. Zhong, Y. Su, S. Y. Yeo, R.-S. Tan, D. N. Ghista, and G. Kassab, "Left ventricular regional wall curvedness and wall stress assessment in patients with ischemic dilated cardiomyopathy," Am. J. Physiol. Heart Circ. Physiol., 296(3): H573-H584, 2009.
[3] Q. Li, L. Zamorano, Z. Jiang, F. Vinas, and F. Diaz, "The application accuracy of the frameless implantable marker system and analysis of related affecting factors," in Lecture Notes in Computer Science 1496: Medical Image Computing and Computer-Assisted Intervention, MICCAI98, W. M. Wells, A. Colchester, and S. Delp, Eds., 1998, pp. 253-260.
[4] S. Eberl, I. Kanno, R. R. Fulton, A. Ryan, B. F. Hutton, and M. J. Fulham, "Automated interstudy image registration technique for SPECT and PET," J. Nucl. Med., vol. 37, no. 1, pp. 137-145, 1996.
[5] G. J. Klein and R. H. Huesman, "Four-dimensional processing of deformable cardiac PET data," Med. Image Anal., vol. 6, pp. 29-46, 2002.
[6] T. Mäkelä, P. Clarysse, O. Sipilä, N. Pauna, Q. C. Pham, T. Katila, and I.E. Magnin, "A review of cardiac image registration methods", IEEE Transaction on Medical Imaging, 21, pp. 1011-1021, 2002.
[7] A. Elen, J. Hermans, J. Ganame, D. Loeckx, J. Bogaert, F. Maes, and P. Suetens, "Automatic 3-D breath-hold related motion correction of dynamic multislice MRI", IEEE Transaction on Medical Imaging, 29, pp. 868-878, 2010.
[8] C.-Y. Zhu, R. H. Byrd, P.-H. Lu, and J. Nocedal, "L-BFGS-B: Fortran Subroutines for large-scale bound constrained optimization," in ACM Transactions on Mathematical Software (TOMS) Vol. 23 Issue 4, Dec. 1997.
[9] Y. Su, L. Zhong, C.-W. Lim, D. Ghista, T. Chua, and R.-S. Tan, "A geometrical approach for evaluating left ventricular remodeling in myocardial infarct patients," Comput. Methods Programs Biomed., 2011, in press. DOI:10.1016/j.cmpb.2011.03.008
[10] K. McLeish, D. L. G. Hill, D. Atkinson, J. M. Blackall, and R. Razavi, "A study of the motion and deformation of the heart due to respiration," IEEE Transaction on Medical Imaging, 21, pp. 1142-1150, 2002.
[11] R. P Woods, Handbook of Medical Imaging: Processing and Analysis. New York: Academic, 2000, ch. Validation of registration accuracy, pp. 491-497.
[12] S. Pallotta, M. C. Gilardi, V. Bettinardi, G. Rizzo, C. Landoni, G. Striano, R. Masi, and F. Fazio, "Application of a surface matching image registration technique to the correlation of cardiac studies in positron emission tomography by transmission images," Phys. Med. Biol., vol. 40, pp. 1695-1708, 1995
[13] M. C. Gilardi, G. Rizzo, A. Savi, C. Landoni, V. Bettinardi, C. Rossetti, G. Striano, and F. N. Fazio, "Correlation of SPECT and PET cardiac images by a surface matching registration technique," Comput. Med. Imag. Graph., vol. 22, pp. 391-398, Dec. 1998.
[14] T. J. M├ñkel├ñ, P. Clarysse, J. Lötjönen, O. Sipil├ñ, K. Lauerma, H. H├ñnninen, E.-P Pyökkimies, J. Nenonen, J. Knuuti, T. Katila, and I. E. Magnin, "A new method for the registration of cardiac PET and MR images using deformable model based segmentation of the main thorax structures," in Lecture Notes in Computer Science 2208: Medical Image Computing and Computer-Assisted Intervention, MICCAI01, W. J. Niessen and M. Viergever, Eds., 2001, pp. 557-564.
[15] T. L. Faber, R. W. McColl, R. M. Opperman, J. R. Corbett, and R. M. Peshock, "Spatial and temporal registration of cardiac SPECT and MR images: Methods and evaluation," Radiology, vol. 179, no. 3, pp. 857-861, 1991.
[16] S. Sinha, U. Sinha, J. Czernin, G. Porenta, and H. R. Schelbert, "Noninvasive assessment of myocardial perfusion and metabolism: Feasibility of registering gated MR and PET images," Amer. J. Roentgenol., vol. 36, pp. 301-307, 1995.
[17] S. Nekolla, T. Ibrahim, T. Balbach, and C. Klein, Understanding Cardiac Imaging TechniquesÔÇöFrom Basic Pathology to Image Fusion, Amsterdam, The Netherlands: IOS Press, 2001, vol. 322, ch. Coregistration and fusion of cardiac magnetic resonance and positron emission tomography studies, pp. 144-154.
[18] C. M. Gallippi and G. E. Trahey, "Automatic image registration for MR and ultrasound cardiac images," in Lecture Notes in Computer Science 2082: Information Processing in Medical Imaging, IPMI01, M. F. Insana and R. M. Leahy, Eds., 2001, pp. 141-147.
[19] L. M. Bidaut and J.-P. Vallee, "Automated registration of dynamic MR images for the quantification of myocardial perfusion," J. Magn. Res. Imag., vol. 13, pp. 648-655, 2001.
[20] S. L. Bacharach, M. A. Douglas, R. E. Carson, P. J. Kalkowski, N. M. Freedman, P. Perrone, and R. O. Bonow, "Three-dimensional registration of cardiac positron emission tomography attenution scans," Comput. Vision, Graph. Image Process, vol. 34, no. 2, pp. 311-321, 1993.
[21] T. G. Turkington, T. R. DeGrado, M. W. Hanson, and R. E. Coleman, "Alignment of dynamic cardiac PET images for correction of motion," IEEE Trans. Nucl. Sci., vol. 44, pp. 235-242, Apr. 1997.
[22] G. J. Klein and R. H. Huesman, "Four-dimensional processing of deformable cardiac PET data," Med. Image Anal., vol. 6, pp. 29-46, 2002.
[23] C. K. Hoh, M. Dahlbom, G. Harris, Y. Choi, R. A. Hawkins, M. E. Philps, and J. Maddahi, "Automated iterative three-dimensional registration of positron emission tomography images," J. Nucl. Med., vol. 34, no. 11, pp. 2009-2018, 1993.
[24] D. Dey, P. J. Slomka, L. J. Hahn, and R. Kloiber, "Automatic three-dimensional multimodality registration using radionuclide transmission CT attenuation maps: A phantom study," J. Nucl. Med., vol. 40, no. 3, pp. 448-455, 1999.
[25] S. Eberl, I. Kanno, R. R. Fulton, A. Ryan, B. F. Hutton, and M. J. Fulham, "Automated interstudy image registration technique for SPECT and PET," J. Nucl. Med., vol. 37, no. 1, pp. 137-145, 1996.
[26] P. J. Slomka, A. H. Gilbert, J. Stephenson, and T. Cradduc, "Automated alignment and sizing of myocardial stress and rest scans to three-dimensional normal templates using an image registration algorithm," J. Nucl. Med., vol. 36, pp. 1115-1122, 1995.