Search results for: Stochastic matrix
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1268

Search results for: Stochastic matrix

1268 Passivity Analysis of Stochastic Neural Networks With Multiple Time Delays

Authors: Biao Qin, Jin Huang, Jiaojiao Ren, Wei Kang

Abstract:

This paper deals with the problem of passivity analysis for stochastic neural networks with leakage, discrete and distributed delays. By using delay partitioning technique, free weighting matrix method and stochastic analysis technique, several sufficient conditions for the passivity of the addressed neural networks are established in terms of linear matrix inequalities (LMIs), in which both the time-delay and its time derivative can be fully considered. A numerical example is given to show the usefulness and effectiveness of the obtained results.

Keywords: Passivity, Stochastic neural networks, Multiple time delays, Linear matrix inequalities (LMIs).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
1267 Novel Delay-Dependent Stability Criteria for Uncertain Discrete-Time Stochastic Neural Networks with Time-Varying Delays

Authors: Mengzhuo Luo, Shouming Zhong

Abstract:

This paper investigates the problem of exponential stability for a class of uncertain discrete-time stochastic neural network with time-varying delays. By constructing a suitable Lyapunov-Krasovskii functional, combining the stochastic stability theory, the free-weighting matrix method, a delay-dependent exponential stability criteria is obtained in term of LMIs. Compared with some previous results, the new conditions obtain in this paper are less conservative. Finally, two numerical examples are exploited to show the usefulness of the results derived.

Keywords: Delay-dependent stability, Neural networks, Time varying delay, Linear matrix inequality (LMI).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888
1266 Mean Square Exponential Synchronization of Stochastic Neutral Type Chaotic Neural Networks with Mixed Delay

Authors: Zixin Liu, Huawei Yang, Fangwei Chen

Abstract:

This paper studies the mean square exponential synchronization problem of a class of stochastic neutral type chaotic neural networks with mixed delay. On the Basis of Lyapunov stability theory, some sufficient conditions ensuring the mean square exponential synchronization of two identical chaotic neural networks are obtained by using stochastic analysis and inequality technique. These conditions are expressed in the form of linear matrix inequalities (LMIs), whose feasibility can be easily checked by using Matlab LMI Toolbox. The feedback controller used in this paper is more general than those used in previous literatures. One simulation example is presented to demonstrate the effectiveness of the derived results.

Keywords: Exponential synchronization, stochastic analysis, chaotic neural networks, neutral type system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
1265 Augmented Lyapunov Approach to Robust Stability of Discrete-time Stochastic Neural Networks with Time-varying Delays

Authors: Shu Lü, Shouming Zhong, Zixin Liu

Abstract:

In this paper, the robust exponential stability problem of discrete-time uncertain stochastic neural networks with timevarying delays is investigated. By introducing a new augmented Lyapunov function, some delay-dependent stable results are obtained in terms of linear matrix inequality (LMI) technique. Compared with some existing results in the literature, the conservatism of the new criteria is reduced notably. Three numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed method.

Keywords: Robust exponential stability, delay-dependent stability, discrete-time neural networks, stochastic, time-varying delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403
1264 Generic Filtering of Infinite Sets of Stochastic Signals

Authors: Anatoli Torokhti, Phil Howlett

Abstract:

A theory for optimal filtering of infinite sets of random signals is presented. There are several new distinctive features of the proposed approach. First, a single optimal filter for processing any signal from a given infinite signal set is provided. Second, the filter is presented in the special form of a sum with p terms where each term is represented as a combination of three operations. Each operation is a special stage of the filtering aimed at facilitating the associated numerical work. Third, an iterative scheme is implemented into the filter structure to provide an improvement in the filter performance at each step of the scheme. The final step of the scheme concerns signal compression and decompression. This step is based on the solution of a new rank-constrained matrix approximation problem. The solution to the matrix problem is described in this paper. A rigorous error analysis is given for the new filter.

Keywords: Optimal filtering, data compression, stochastic signals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1276
1263 On Generalized New Class of Matrix Polynomial Set

Authors: Ghazi S. Kahmmash

Abstract:

New generalization of the new class matrix polynomial set have been obtained. An explicit representation and an expansion of the matrix exponential in a series of these matrix are given for these matrix polynomials.

Keywords: Generating functions, Recurrences relation and Generalization of the new class matrix polynomial set.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1199
1262 Statistical Analysis of First Order Plus Dead-time System using Operational Matrix

Authors: Pham Luu Trung Duong, Moonyong Lee

Abstract:

To increase precision and reliability of automatic control systems, we have to take into account of random factors affecting the control system. Thus, operational matrix technique is used for statistical analysis of first order plus time delay system with uniform random parameter. Examples with deterministic and stochastic disturbance are considered to demonstrate the validity of the method. Comparison with Monte Carlo method is made to show the computational effectiveness of the method.

Keywords: First order plus dead-time, Operational matrix, Statistical analysis, Walsh function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1317
1261 Stochastic Subspace Modelling of Turbulence

Authors: M. T. Sichani, B. J. Pedersen, S. R. K. Nielsen

Abstract:

Turbulence of the incoming wind field is of paramount importance to the dynamic response of civil engineering structures. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper an empirical cross spectral density function for the along-wind turbulence component over the wind field area is taken as the starting point. The spectrum is spatially discretized in terms of a Hermitian cross-spectral density matrix for the turbulence state vector which turns out not to be positive definite. Since the succeeding state space and ARMA modelling of the turbulence rely on the positive definiteness of the cross-spectral density matrix, the problem with the non-positive definiteness of such matrices is at first addressed and suitable treatments regarding it are proposed. From the adjusted positive definite cross-spectral density matrix a frequency response matrix is constructed which determines the turbulence vector as a linear filtration of Gaussian white noise. Finally, an accurate state space modelling method is proposed which allows selection of an appropriate model order, and estimation of a state space model for the vector turbulence process incorporating its phase spectrum in one stage, and its results are compared with a conventional ARMA modelling method.

Keywords: Turbulence, wind turbine, complex coherence, state space modelling, ARMA modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
1260 Calculation of Reorder Point Level under Stochastic Parameters: A Case Study in Healthcare Area

Authors: Serap Akcan, Ali Kokangul

Abstract:

We consider a single-echelon, single-item inventory system where both demand and lead-time are stochastic. Continuous review policy is used to control the inventory system. The objective is to calculate the reorder point level under stochastic parameters. A case study is presented in Neonatal Intensive Care Unit.

Keywords: Inventory control system, reorder point level, stochastic demand, stochastic lead time

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3479
1259 Non-Stationary Stochastic Optimization of an Oscillating Water Column

Authors: María L. Jalón, Feargal Brennan

Abstract:

A non-stationary stochastic optimization methodology is applied to an OWC (oscillating water column) to find the design that maximizes the wave energy extraction. Different temporal cycles are considered to represent the long-term variability of the wave climate at the site in the optimization problem. The results of the non-stationary stochastic optimization problem are compared against those obtained by a stationary stochastic optimization problem. The comparative analysis reveals that the proposed non-stationary optimization provides designs with a better fit to reality. However, the stationarity assumption can be adequate when looking at averaged system response.

Keywords: Non-stationary stochastic optimization, oscillating water column, temporal variability, wave energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1330
1258 Dynamic Slope Scaling Procedure for Stochastic Integer Programming Problem

Authors: Takayuki Shiina

Abstract:

Mathematical programming has been applied to various problems. For many actual problems, the assumption that the parameters involved are deterministic known data is often unjustified. In such cases, these data contain uncertainty and are thus represented as random variables, since they represent information about the future. Decision-making under uncertainty involves potential risk. Stochastic programming is a commonly used method for optimization under uncertainty. A stochastic programming problem with recourse is referred to as a two-stage stochastic problem. In this study, we consider a stochastic programming problem with simple integer recourse in which the value of the recourse variable is restricted to a multiple of a nonnegative integer. The algorithm of a dynamic slope scaling procedure for solving this problem is developed by using a property of the expected recourse function. Numerical experiments demonstrate that the proposed algorithm is quite efficient. The stochastic programming model defined in this paper is quite useful for a variety of design and operational problems.

Keywords: stochastic programming problem with recourse, simple integer recourse, dynamic slope scaling procedure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
1257 Computational Simulations on Stability of Model Predictive Control for Linear Discrete-time Stochastic Systems

Authors: Tomoaki Hashimoto

Abstract:

Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial time and a moving terminal time. This paper examines the stability of model predictive control for linear discrete-time systems with additive stochastic disturbances. A sufficient condition for the stability of the closed-loop system with model predictive control is derived by means of a linear matrix inequality. The objective of this paper is to show the results of computational simulations in order to verify the effectiveness of the obtained stability condition.

Keywords: Computational simulations, optimal control, predictive control, stochastic systems, discrete-time systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806
1256 Stochastic Estimation of Cavity Flowfield

Authors: Yin Yin Pey, Leok Poh Chua, Wei Long Siauw

Abstract:

Linear stochastic estimation and quadratic stochastic estimation techniques were applied to estimate the entire velocity flow-field of an open cavity with a length to depth ratio of 2. The estimations were done through the use of instantaneous velocity magnitude as estimators. These measurements were obtained by Particle Image Velocimetry. The predicted flow was compared against the original flow-field in terms of the Reynolds stresses and turbulent kinetic energy. Quadratic stochastic estimation proved to be more superior than linear stochastic estimation in resolving the shear layer flow. When the velocity fluctuations were scaled up in the quadratic estimate, both the time-averaged quantities and the instantaneous cavity flow can be predicted to a rather accurate extent.

Keywords: Open cavity, Particle Image Velocimetry, Stochastic estimation, Turbulent kinetic energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
1255 Stochastic Programming Model for Power Generation

Authors: Takayuki Shiina

Abstract:

We consider power system expansion planning under uncertainty. In our approach, integer programming and stochastic programming provide a basic framework. We develop a multistage stochastic programming model in which some of the variables are restricted to integer values. By utilizing the special property of the problem, called block separable recourse, the problem is transformed into a two-stage stochastic program with recourse. The electric power capacity expansion problem is reformulated as the problem with first stage integer variables and continuous second stage variables. The L-shaped algorithm to solve the problem is proposed.

Keywords: electric power capacity expansion problem, integerprogramming, L-shaped method, stochastic programming

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776
1254 The Partial Non-combinatorially Symmetric N10 -Matrix Completion Problem

Authors: Gu-Fang Mou, Ting-Zhu Huang

Abstract:

An n×n matrix is called an N1 0 -matrix if all principal minors are non-positive and each entry is non-positive. In this paper, we study the partial non-combinatorially symmetric N1 0 -matrix completion problems if the graph of its specified entries is a transitive tournament or a double cycle. In general, these digraphs do not have N1 0 -completion. Therefore, we have given sufficient conditions that guarantee the existence of the N1 0 -completion for these digraphs.

Keywords: Matrix completion, matrix completion, N10 -matrix, non-combinatorially symmetric, cycle, digraph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1043
1253 Fuzzy Adjacency Matrix in Graphs

Authors: Mahdi Taheri, Mehrana Niroumand

Abstract:

In this paper a new definition of adjacency matrix in the simple graphs is presented that is called fuzzy adjacency matrix, so that elements of it are in the form of 0 and n N n 1 , ∈ that are in the interval [0, 1], and then some charactristics of this matrix are presented with the related examples . This form matrix has complete of information of a graph.

Keywords: Graph, adjacency matrix, fuzzy numbers

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2319
1252 Stochastic Scheduling to Minimize Expected Lateness in Multiple Identical Machines

Authors: Ghulam Zakria, Zailin Guan , Yasser Riaz Awan, Wan Lizhi

Abstract:

There are many real world problems in which parameters like the arrival time of new jobs, failure of resources, and completion time of jobs change continuously. This paper tackles the problem of scheduling jobs with random due dates on multiple identical machines in a stochastic environment. First to assign jobs to different machine centers LPT scheduling methods have been used, after that the particular sequence of jobs to be processed on the machine have been found using simple stochastic techniques. The performance parameter under consideration has been the maximum lateness concerning the stochastic due dates which are independent and exponentially distributed. At the end a relevant problem has been solved using the techniques in the paper..

Keywords: Quantity Production Flow Shop, LPT Scheduling, Stochastic Scheduling, Maximum Lateness, Random Due Dates

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1349
1251 Comparison of Reliability Systems Based Uncertainty

Authors: A. Aissani, H. Benaoudia

Abstract:

Stochastic comparison has been an important direction of research in various area. This can be done by the use of the notion of stochastic ordering which gives qualitatitive rather than purely quantitative estimation of the system under study. In this paper we present applications of comparison based uncertainty related to entropy in Reliability analysis, for example to design better systems. These results can be used as a priori information in simulation studies.

Keywords: Uncertainty, Stochastic comparison, Reliability, serie's system, imperfect repair.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1205
1250 On Diffusion Approximation of Discrete Markov Dynamical Systems

Authors: Jevgenijs Carkovs

Abstract:

The paper is devoted to stochastic analysis of finite dimensional difference equation with dependent on ergodic Markov chain increments, which are proportional to small parameter ". A point-form solution of this difference equation may be represented as vertexes of a time-dependent continuous broken line given on the segment [0,1] with "-dependent scaling of intervals between vertexes. Tending " to zero one may apply stochastic averaging and diffusion approximation procedures and construct continuous approximation of the initial stochastic iterations as an ordinary or stochastic Ito differential equation. The paper proves that for sufficiently small " these equations may be successfully applied not only to approximate finite number of iterations but also for asymptotic analysis of iterations, when number of iterations tends to infinity.

Keywords: Markov dynamical system, diffusion approximation, equilibrium stochastic stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
1249 The Strict Stability of Impulsive Stochastic Functional Differential Equations with Markovian Switching

Authors: Dezhi Liu Guiyuan Yang Wei Zhang

Abstract:

Strict stability can present the rate of decay of the solution, so more and more investigators are beginning to study the topic and some results have been obtained. However, there are few results about strict stability of stochastic differential equations. In this paper, using Lyapunov functions and Razumikhin technique, we have gotten some criteria for the strict stability of impulsive stochastic functional differential equations with markovian switching.

Keywords: Impulsive; Stochastic functional differential equation; Strict stability; Razumikhin technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1239
1248 Mean Square Stability of Impulsive Stochastic Delay Differential Equations with Markovian Switching and Poisson Jumps

Authors: Dezhi Liu

Abstract:

In the paper, based on stochastic analysis theory and Lyapunov functional method, we discuss the mean square stability of impulsive stochastic delay differential equations with markovian switching and poisson jumps, and the sufficient conditions of mean square stability have been obtained. One example illustrates the main results. Furthermore, some well-known results are improved and generalized in the remarks.

Keywords: Impulsive, stochastic, delay, Markovian switching, Poisson jumps, mean square stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
1247 Segmentation of Noisy Digital Images with Stochastic Gradient Kernel

Authors: Abhishek Neogi, Jayesh Verma, Pinaki Pratim Acharjya

Abstract:

Image segmentation and edge detection is a fundamental section in image processing. In case of noisy images Edge Detection is very less effective if we use conventional Spatial Filters like Sobel, Prewitt, LOG, Laplacian etc. To overcome this problem we have proposed the use of Stochastic Gradient Mask instead of Spatial Filters for generating gradient images. The present study has shown that the resultant images obtained by applying Stochastic Gradient Masks appear to be much clearer and sharper as per Edge detection is considered.

Keywords: Image segmentation, edge Detection, noisy images, spatialfilters, stochastic gradient kernel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473
1246 Noise Analysis of Single-Ended Input Differential Amplifier using Stochastic Differential Equation

Authors: Tarun Kumar Rawat, Abhirup Lahiri, Ashish Gupta

Abstract:

In this paper, we analyze the effect of noise in a single- ended input differential amplifier working at high frequencies. Both extrinsic and intrinsic noise are analyzed using time domain method employing techniques from stochastic calculus. Stochastic differential equations are used to obtain autocorrelation functions of the output noise voltage and other solution statistics like mean and variance. The analysis leads to important design implications and suggests changes in the device parameters for improved noise characteristics of the differential amplifier.

Keywords: Single-ended input differential amplifier, Noise, stochastic differential equation, mean and variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
1245 A Scenario-Based Approach for the Air Traffic Flow Management Problem with Stochastic Capacities

Authors: Soumia Ichoua

Abstract:

In this paper, we investigate the strategic stochastic air traffic flow management problem which seeks to balance airspace capacity and demand under weather disruptions. The goal is to reduce the need for myopic tactical decisions that do not account for probabilistic knowledge about the NAS near-future states. We present and discuss a scenario-based modeling approach based on a time-space stochastic process to depict weather disruption occurrences in the NAS. A solution framework is also proposed along with a distributed implementation aimed at overcoming scalability problems. Issues related to this implementation are also discussed.

Keywords: Air traffic management, sample average approximation, scenario-based approach, stochastic capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029
1244 Inverse Matrix in the Theory of Dynamic Systems

Authors: R. Masarova, M. Juhas, B. Juhasova, Z. Sutova

Abstract:

In dynamic system theory a mathematical model is often used to describe their properties. In order to find a transfer matrix of a dynamic system we need to calculate an inverse matrix. The paper contains the fusion of the classical theory and the procedures used in the theory of automated control for calculating the inverse matrix. The final part of the paper models the given problem by the Matlab.

Keywords: Dynamic system, transfer matrix, inverse matrix, modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2358
1243 PTH Moment Exponential Stability of Stochastic Recurrent Neural Networks with Distributed Delays

Authors: Zixin Liu, Jianjun Jiao Wanping Bai

Abstract:

In this paper, the issue of pth moment exponential stability of stochastic recurrent neural network with distributed time delays is investigated. By using the method of variation parameters, inequality techniques, and stochastic analysis, some sufficient conditions ensuring pth moment exponential stability are obtained. The method used in this paper does not resort to any Lyapunov function, and the results derived in this paper generalize some earlier criteria reported in the literature. One numerical example is given to illustrate the main results.

Keywords: Stochastic recurrent neural networks, pth moment exponential stability, distributed time delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1211
1242 A Computational Stochastic Modeling Formalism for Biological Networks

Authors: Werner Sandmann, Verena Wolf

Abstract:

Stochastic models of biological networks are well established in systems biology, where the computational treatment of such models is often focused on the solution of the so-called chemical master equation via stochastic simulation algorithms. In contrast to this, the development of storage-efficient model representations that are directly suitable for computer implementation has received significantly less attention. Instead, a model is usually described in terms of a stochastic process or a "higher-level paradigm" with graphical representation such as e.g. a stochastic Petri net. A serious problem then arises due to the exponential growth of the model-s state space which is in fact a main reason for the popularity of stochastic simulation since simulation suffers less from the state space explosion than non-simulative numerical solution techniques. In this paper we present transition class models for the representation of biological network models, a compact mathematical formalism that circumvents state space explosion. Transition class models can also serve as an interface between different higher level modeling paradigms, stochastic processes and the implementation coded in a programming language. Besides, the compact model representation provides the opportunity to apply non-simulative solution techniques thereby preserving the possible use of stochastic simulation. Illustrative examples of transition class representations are given for an enzyme-catalyzed substrate conversion and a part of the bacteriophage λ lysis/lysogeny pathway.

Keywords: Computational Modeling, Biological Networks, Stochastic Models, Markov Chains, Transition Class Models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
1241 On the Hierarchical Ergodicity Coefficient

Authors: Yilun Shang

Abstract:

In this paper, we deal with the fundamental concepts and properties of ergodicity coefficients in a hierarchical sense by making use of partition. Moreover, we establish a hierarchial Hajnal’s inequality improving some previous results.

Keywords: Stochastic matrix, ergodicity coefficient, partition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1294
1240 Numerical Treatment of Matrix Differential Models Using Matrix Splines

Authors: Kholod M. Abualnaja

Abstract:

This paper consider the solution of the matrix differential models using quadratic, cubic, quartic, and quintic splines. Also using the Taylor’s and Picard’s matrix methods, one illustrative example is included.

Keywords: Matrix Splines, Cubic Splines, Quartic Splines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
1239 Existence of Solution of Nonlinear Second Order Neutral Stochastic Differential Inclusions with Infinite Delay

Authors: Yong Li

Abstract:

The paper is concerned with the existence of solution of nonlinear second order neutral stochastic differential inclusions with infinite delay in a Hilbert Space. Sufficient conditions for the existence are obtained by using a fixed point theorem for condensing maps.

Keywords: Mild solution, Convex multivalued map, Neutral stochastic differential inclusions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558