Search results for: Temperature of a photovoltaic module
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2930

Search results for: Temperature of a photovoltaic module

2750 A Second Law Assessment of Organic Rankine Cycle Depending on Source Temperature

Authors: Kyoung Hoon Kim

Abstract:

Organic Rankine Cycle (ORC) has potential in reducing fossil fuels and relaxing environmental problems. In this work performance analysis of ORC is conducted based on the second law of thermodynamics for recovery of low temperature heat source from 100oC to 140oC using R134a as the working fluid. Effects of system parameters such as turbine inlet pressure or source temperature are theoretically investigated on the exergy destructions (anergies) at various components of the system as well as net work production or exergy efficiency. Results show that the net work or exergy efficiency has a peak with respect to the turbine inlet pressure when the source temperature is low, however, increases monotonically with increasing turbine inlet pressure when the source temperature is high.

Keywords: Organic Rankine cycle (ORC), low temperature heat source, exergy, source temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
2749 Bipolar PWM and LCL Filter Configuration to Reduce Leakage Currents in Transformerless PV System Connected to Utility Grid

Authors: Shanmuka Naga Raju

Abstract:

This paper  presents PV system without considering transformer connected to electric grid. This is considered more economic compared to present PV system. The problem that occurs when transformer is not considered appears with a leakage current near capacitor connected to ground. Bipolar Pulse Width Modulation (BPWM) technique along with filter L-C-L configuration in the circuit is modeled to shrink the leakage current in the circuit. The DC/AC inverter is modeled using H-bridge Insulated Gate Bipolar Transistor (IGBT) module which is controlled using proposed Bipolar PWM control technique. To extract maximum power, Maximum Power Point Technique (MPPT) controller is used in this model. Voltage and current regulators are used to determine the reference voltage for the inverter from active and reactive current where reactive current is set to zero. The PLL is modeled to synchronize the measurements. The model is designed with MATLAB Simulation blocks and compared with the methods available in literature survey to show its effectiveness.

Keywords: Photovoltaic, PV, pulse width modulation, PWM, perturb and observe, phase locked loop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 979
2748 Comparative Economic Analysis of Floating Photovoltaic Systems Using a Synthesis Approach

Authors: Ching-Feng Chen, Shih-Kai Chen

Abstract:

The Floating Photovoltaic (FPV) system highlights economic benefits and energy performance to carbon dioxide (CO2) discharges. Due to land resource scarcity and many negligent water territories, such as reservoirs, dams, and lakes in Japan and Taiwan, both countries are actively developing FPV and responding to the pricing of the emissions trading systems (ETS). This paper performs a case study through a synthesis approach to compare the economic indicators between the FPVs of Taiwan’s Agongdian Reservoir and Japan’s Yamakura Dam. The research results show that the metrics of the system capacity, installation costs, bank interest rates, and ETS and Electricity Bills affect FPV operating gains. In the post-Feed-In-Tariff (FIT) phase, investing in FPV in Japan is more profitable than in Taiwan. The former’s positive net present value (NPV), eminent internal rate of return (IRR) (11.6%), and benefit-cost ratio (BCR) above 1 (2.0) at the discount rate of 10% indicate that investing the FPV in Japan is more favorable than in Taiwan. In addition, the breakeven point is modest (about 61.3%). The presented methodology in the study helps investors evaluate schemes’ pros and cons and determine whether a decision is beneficial while funding PV or FPV projects.

Keywords: Carbon Border Adjustment Mechanism, Floating Photovoltaic, Emissions Trading Systems, Net Present Value, NPV, Internal Rate of Return, IRR, Benefit-Cost Ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 103
2747 Transformer Top-Oil Temperature Modeling and Simulation

Authors: T. C. B. N. Assunção, J. L. Silvino, P. Resende

Abstract:

The winding hot-spot temperature is one of the most critical parameters that affect the useful life of the power transformers. The winding hot-spot temperature can be calculated as function of the top-oil temperature that can estimated by using the ambient temperature and transformer loading measured data. This paper proposes the estimation of the top-oil temperature by using a method based on Least Squares Support Vector Machines approach. The estimated top-oil temperature is compared with measured data of a power transformer in operation. The results are also compared with methods based on the IEEE Standard C57.91-1995/2000 and Artificial Neural Networks. It is shown that the Least Squares Support Vector Machines approach presents better performance than the methods based in the IEEE Standard C57.91-1995/2000 and artificial neural networks.

Keywords: Artificial Neural Networks, Hot-spot Temperature, Least Squares Support Vector, Top-oil Temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2464
2746 Thermal Distribution in Axial-Flow Fixed Bed with Flowing Gas

Authors: Kun Lei, Hongfang Ma, Haitao Zhang, Weiyong Ying, Dingye Fang

Abstract:

This paper reported an experimental research of steady-state heat transfer behaviour of a gas flowing through a fixed bed under the different operating conditions. Studies had been carried out in a fixed-bed packed methanol synthesis catalyst percolated by air at appropriate flow rate. Both radial and axial direction temperature distribution had been investigated under the different operating conditions. The effects of operating conditions including the reactor inlet air temperature, the heating pipe temperature and the air flow rate on temperature distribution was investigated and the experimental results showed that a higher inlet air temperature was conducive to uniform temperature distribution in the fixed bed. A large temperature drop existed at the radial direction, and the temperature drop increased with the heating pipe temperature increasing under the experimental conditions; the temperature profile of the vicinity of the heating pipe was strongly affected by the heating pipe temperature. A higher air flow rate can improve the heat transfer in the fixed bed. Based on the thermal distribution, heat transfer models of the fixed bed could be established, and the characteristics of the temperature distribution in the fixed bed could be finely described, that had an important practical significance.

Keywords: Thermal distribution, heat transfer, axial-flow, fixed bed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2454
2745 Online Monitoring Rheological Property of Polymer Melt during Injection Molding

Authors: Chung-Chih Lin, Chien-Liang Wu

Abstract:

The detection of the polymer melt state during manufacture process is regarded as an efficient way to control the molded part quality in advance. Online monitoring rheological property of polymer melt during processing procedure provides an approach to understand the melt state immediately. Rheological property reflects the polymer melt state at different processing parameters and is very important in injection molding process especially. An approach that demonstrates how to calculate rheological property of polymer melt through in-process measurement, using injection molding as an example, is proposed in this study. The system consists of two sensors and a data acquisition module can process the measured data, which are used for the calculation of rheological properties of polymer melt. The rheological properties of polymer melt discussed in this study include shear rate and viscosity which are investigated with respect to injection speed and melt temperature. The results show that the effect of injection speed on the rheological properties is apparent, especially for high melt temperature and should be considered for precision molding process.

Keywords: Injection molding, melt viscosity, shear rate, monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2775
2744 Experimental Parametric Investigation of Temperature Effects on 60W-QCW Diode Laser

Authors: E. Farsad, S. P. Abbasi, A. Goodarzi, M. S. Zabihi

Abstract:

Nowadays, quasi-continuous wave diode lasers are used in a widespread variety of applications. Temperature effects in these lasers can strongly influence their performance. In this paper, the effects of temperature have been experimentally investigated on different features of a 60W-QCW diode laser. The obtained results indicate that the conversion efficiency and operation voltage of diode laser decrease with the augmentation of the working temperature associated with a redshift in the laser peak wavelength. Experimental results show the emission peak wavelength of laser shifts 0.26 nm and the conversion efficiency decreases 1.76 % with the increase of temperature from 40 to 50 ̊C. Present study also shows the slope efficiency decreases gradually at low temperatures and rapidly at higher temperatures. Regarding the close dependence of the mentioned parameters to the operating temperature, it is of great importance to carefully control the working temperature of diode laser, particularly for medical applications.

Keywords: diode laser, experimentally, temperature, wavelength

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2380
2743 Experimental and Numerical Analysis of Built-In Thermoelectric Generator Modules with an Elliptical Pin-Fin Heat Sink

Authors: J. Y. Jang, C. Y. Tseng

Abstract:

A three-dimensional numerical model of thermoelectric generator (TEG) modules attached to a large chimney plate is proposed and solved numerically using a control volume based finite difference formulation. The TEG module consists of a thermoelectric generator, an elliptical pin-fin heat sink, and a cold plate for water cooling. In the chimney, the temperature of flue gases is 450-650K. Although the TEG hot-side temperature and thus the electric power output can be increased by inserting an elliptical pin-fin heat sink into the chimney tunnel to increase the heat transfer area, the pin fin heat sink would cause extra pumping power at the same time. The main purpose of this study is to analyze the effects of geometrical parameters on the electric power output and chimney pressure drop characteristics. The effects of different operating conditions, including various inlet velocities (Vin= 1, 3, 5 m/s), inlet temperatures (Tgas = 450, 550, 650K) and different fin height (0 to 150 mm) are discussed in detail. The predicted numerical data for the power vs. current (P-I) curve are in good agreement (within 11%) with the experimental data.

Keywords: Thermoelectric generator, Waste heat recovery, Elliptical pin-fin heat sink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2422
2742 Temperature Field Study of Brake Disc in a Belt Conveyor Brake

Authors: Hou Youfu, Wang Daoming, Meng Qingrui

Abstract:

To reveal the temperature field distribution of disc brake in downward belt conveyor, mathematical models of heat transfer for disc brake were established combined with heat transfer theory. Then, the simulation process was stated in detail and the temperature field of disc brake under conditions of dynamic speed and dynamic braking torque was numerically simulated by using ANSYS software. Finally the distribution and variation laws of temperature field in the braking process were analyzed. Results indicate that the maximum surface temperature occurs at a time before the brake end and there exist large temperature gradients in both radial and axial directions, while it is relatively small in the circumferential direction.

Keywords: Downward belt conveyor, Disc brake, Temperature field, Numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
2741 Impact Temperature in Splat and Splat-Substrate Interface in HVOF Thermal Spraying

Authors: M. Jalali Azizpour, D. Sajedipour, H. Mohammadi Majd, M.R. Tahmasbi Birgani, M.Rabiae

Abstract:

An explicit axisymmetrical FE methodology is developed here to study the particle temperature arising in WC-Co particle on an AISI 1045 steel substrate. Parameters of constitutive Johnson-cook model were used for simulation. The results show that particle velocity and kinetic energy have important role in temperature arising of particles.

Keywords: FEM, HVOF, Interfacial Temperature, Splat

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852
2740 Different Ergonomic Exposure Risk and Infrared Thermal Temperature on Low Back

Authors: Sihao Lin, Bo Shen, Xuexiang Dai, Xuyan Xu, Zhenyi Wu, Xianzhe Zeng

Abstract:

Infrared Thermography (IRT) has been little documented in the objective measurement of ergonomic exposure. We aimed to examine the association between different ergonomic exposures and low back skin temperature measured by IRT. A total of 114 subjects among sedentary students, sports students and cleaning workers were selected as different ergonomic exposure levels. Low back skin temperature was measured by IRT before and post ergonomic exposure. Ergonomic exposure was assessed by Quick Exposure Check (QEC) and quantitative scores were calculated on the low back. Multiple regressions were constructed to examine the possible associations between ergonomic risk exposures and the skin temperature over the low back. Compared to the two student groups, clean workers had significantly higher ergonomic exposure scores on the low back. The low back temperature variations were different among the three groups. The temperature decreased significantly among students with ergonomic exposure (P < 0.01), while it increased among cleaning workers. With adjustment of confounding, the post-exposure temperature and the temperature changes after exposure showed a significantly negative association with ergonomic exposure scores. For maximum temperature, one increasing ergonomic score decreased -0.23 °C (95% CI -0.37, -0.10) of temperature after ergonomic exposure over the low back. There was a significant association between ergonomic exposures and infrared thermal temperature over low back. IRT could be used as an objective assessment of ergonomic exposure on the low back.

Keywords: Ergonomic exposure, infrared thermography, musculoskeletal disorders, skin temperature, low back.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51
2739 Email Based Global Automation with Raspberry Pi and Control Circuit Module: Development of Smart Home Application

Authors: Lochan Basyal

Abstract:

Global Automation is an emerging technology of today’s era and is based on Internet of Things (IoT). Global automation deals with the controlling of electrical appliances throughout the world. The fabrication of this system has been carried out with interfacing an electrical control system module to Raspberry Pi. An electrical control system module includes a relay driver mechanism through which appliances are controlled automatically in respective condition. In this research project, one email ID has been assigned to Raspberry Pi, and the users from different location having different email ID can mail to Raspberry Pi on assigned email address “[email protected]” with subject heading “Device Control” with predefined command on compose email line. Also, a notification regarding current working condition of this system has been updated on respective user email ID. This approach is an innovative way of implementing smart automation system through which a user can control their electrical appliances like light, fan, television, refrigerator, etc. in their home with the use of email facility. The development of this project helps to enhance the concept of smart home application as well as industrial automation.

Keywords: Control circuit, email, global automation, internet of things, Raspberry Pi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 807
2738 Quebec Elementary Pre-service Teachers’ Conceptual Representations about Heat and Temperature

Authors: Abdeljalil Métioui

Abstract:

This article identifies the conceptual representations of 128 students enrolled in elementary pre-service teachers’ education in the Province of Quebec, Canada (ages 19-24). To construct their conceptual representations relatively to notions of heat and temperature, we use a qualitative research approach. For that, we distributed them a questionnaire including four questions. The result demonstrates that these students tend to view the temperature as a measure of the hotness of an object or person. They also related the sensation of cold (or warm) to the difference in temperature, and for their majority, the physical change of the matter does not require a constant temperature. These representations are inaccurate relatively to the scientific views, and we will see that they are relevant to the design of teaching strategies based on conceptual conflict.

Keywords: Conceptual representations, heat, temperature, pre-service teachers, elementary school.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 586
2737 Heat transfer Characteristics of Fin-and-Tube heat Exchanger under Condensing Conditions

Authors: Abdenour Bourabaa, Mohamed Saighi, Said El Metenani

Abstract:

In the present work an investigation of the effects of the air frontal velocity, relative humidity and dry air temperature on the heat transfer characteristics of plain finned tube evaporator has been conducted. Using an appropriate correlation for the air side heat transfer coefficient the temperature distribution along the fin surface was calculated using a dimensionless temperature distribution. For a constant relative humidity and bulb temperature, it is found that the temperature distribution decreases with increasing air frontal velocity. Apparently, it is attributed to the condensate water film flowing over the fin surface. When dry air temperature and face velocity are being kept constant, the temperature distribution decreases with the increase of inlet relative humidity. An increase in the inlet relative humidity is accompanied by a higher amount of moisture on the fin surface. This results in a higher amount of latent heat transfer which involves higher fin surface temperature. For the influence of dry air temperature, the results here show an increase in the dimensionless temperature parameter with a decrease in bulb temperature. Increasing bulb temperature leads to higher amount of sensible and latent heat transfer when other conditions remain constant.

Keywords: Fin efficiency, heat and mass transfer, dehumidifying conditions, finned tube heat exchangers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2160
2736 Conceptual Design of Experimental Helium Cooling Loop for Indian TBM R&D Experiments

Authors: B. K. Yadav, A. Gandhi, A. K. Verma, T. S. Rao, A. Saraswat, E. R. Kumar, M. Sarkar, K. N. Vyas

Abstract:

This paper deals with the conceptual design of Experimental Helium Cooling Loop (EHCL) for Indian Test Blanket Module (TBM) and its related thermal hydraulic experiments. Indian TBM team is developing Lead Lithium cooled Ceramic Breeder (IN-LLCB) TBM to be tested in ITER. The TBM box structure is cooled by high pressure (8 MPa) and high temperature (300-500C) helium gas.

The first wall of TBM made of complex channel geometry having several parallel channels carrying helium gas for efficient heat extraction. Several mock-ups of these channels need to be tested before finalizing the TBM first wall design and fabrication. Besides the individual testing of such mock-ups of breeding blanket, the testing of Pb-Li to helium heat exchanger, the operational experience of helium loop and understanding of the behavior of high pressure and high temperature system components are very essential for final development of Helium Cooling System for LLCB TBM in ITER. The main requirements and characteristics of the EHCL and its conceptual design are presented in this paper.

Keywords: DEMO, EHCL, ITER, LLCB TBM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3190
2735 3D Modeling of Temperature by Finite Element in Machining with Experimental Authorization

Authors: P. Mottaghizadeh, M. Bagheri

Abstract:

In the present paper, the three-dimensional temperature field of tool is determined during the machining and compared with experimental work on C45 workpiece using carbide cutting tool inserts. During the metal cutting operations, high temperature is generated in the tool cutting edge which influence on the rate of tool wear. Temperature is most important characteristic of machining processes; since many parameters such as cutting speed, surface quality and cutting forces depend on the temperature and high temperatures can cause high mechanical stresses which lead to early tool wear and reduce tool life. Therefore, considerable attention is paid to determine tool temperatures. The experiments are carried out for dry and orthogonal machining condition. The results show that the increase of tool temperature depends on depth of cut and especially cutting speed in high range of cutting conditions.

Keywords: Finite element method, Machining, Temperature measurement, Thermal fields

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050
2734 Extraction Condition of Echinocactus grusonii

Authors: R. Oonsivilai, N. Chaijareonudomroung, Y. Huantanom, A. Oonsivilai

Abstract:

The optimal extraction condition of dried Echinocactus grusonii powder was studied. The three independent variables are raw material drying temperature, extraction temperature, and extraction time. The dependent variables are both yield percentage of crude extract and total phenolic quantification as gallic acid equivalent in crude extract. The experimental design was based on central composite design. Highest yield percentage of crude extract could get from extraction condition at raw material drying temperature at 60°C, extraction temperature at 15°C, and extraction time for 25 min °C. Moreover, the crude extract with highest phenolic occurred by extraction condition of raw material drying temperature at 60°C, extraction temperature at 35 °C, and extraction lasting 25 min.

Keywords: Drying temperature, Extraction temperature, Optimal condition, Total phenolic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147
2733 Active Power Filtering Implementation Using Photovoltaic System with Reduced Energy Storage Capacitor

Authors: Horng-Yuan Wu, Chin-Yuan Hsu, Tsair-Fwu Lee

Abstract:

A novel three-phase active power filter (APF) circuit with photovoltaic (PV) system to improve the quality of service and to reduce the capacity of energy storage capacitor is presented. The energy balance concept and sampling technique were used to simplify the calculation algorithm for the required utility source current and to control the voltage of the energy storage capacitor. The feasibility was verified by using the Pspice simulations and experiments. When the APF mode was used during non-operational period, not only the utilization rate, power factor and power quality could be improved, but also the capacity of energy storage capacitor could sparing. As the results, the advantages of the APF circuit are simplicity of control circuits, low cost, and good transient response.

Keywords: active power filter, sampling, energy-storagecapacitor, harmonic current, energy balance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
2732 Wireless Healthcare Monitoring System for Home

Authors: T. Hui Teo, Wee Tiong Tan, Pradeep K. Gopalakrishnan, Victor K. H. Phay, Ma Su M. M. Shwe

Abstract:

A healthcare monitoring system is presented in this paper. This system is based on ultra-low power sensor nodes and a personal server, which is based on hardware and software extensions to a Personal Digital Assistant (PDA)/Smartphone. The sensor node collects data from the body of a patient and sends it to the personal server where the data is processed, displayed and made ready to be sent to a healthcare network, if necessary. The personal server consists of a compact low power receiver module and equipped with a Smartphone software. The receiver module takes less than 30 × 30 mm board size and consumes approximately 25 mA in active mode.

Keywords: healthcare monitoring, sensor node, personal server, wireless.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968
2731 Parametric Analysis of Solid Oxide Fuel Cell Using Lattice Boltzmann Method

Authors: Abir Yahya, Hacen Dhahri, Khalifa Slimi

Abstract:

The present paper deals with a numerical simulation of temperature field inside a solid oxide fuel cell (SOFC) components. The temperature distribution is investigated using a co-flow planar SOFC comprising the air and fuel channel and two-ceramic electrodes, anode and cathode, separated by a dense ceramic electrolyte. The Lattice Boltzmann method (LBM) is used for the numerical simulation of the physical problem. The effects of inlet temperature, anode thermal conductivity and current density on temperature distribution are discussed. It was found that temperature distribution is very sensitive to the inlet temperature and the current density.

Keywords: Solid oxide fuel cell, Heat sources, temperature, Lattice Boltzmann method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 865
2730 A High Precision Temperature Insensitive Current and Voltage Reference Generator

Authors: Kimberly Jane S. Uy, Patricia Angela Reyes-Abu, Wen Yaw Chung

Abstract:

A high precision temperature insensitive current and voltage reference generator is presented. It is specifically developed for temperature compensated oscillator. The circuit, designed using MXIC 0.5um CMOS technology, has an operating voltage that ranges from 2.6V to 5V and generates a voltage of 1.21V and a current of 6.38 ӴA. It exhibits a variation of ±0.3nA for the current reference and a stable output for voltage reference as the temperature is varied from 0°C to 70°C. The power supply rejection ratio obtained without any filtering capacitor at 100Hz and 10MHz is -30dB and -12dB respectively.

Keywords: Current reference, voltage reference, threshold voltage, temperature compensation, mobility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2321
2729 An Overview of Islanding Detection Methods in Photovoltaic Systems

Authors: Wei Yee Teoh, Chee Wei Tan

Abstract:

The issue of unintentional islanding in PV grid interconnection still remains as a challenge in grid-connected photovoltaic (PV) systems. This paper discusses the overview of popularly used anti-islanding detection methods, practically applied in PV grid-connected systems. Anti-islanding methods generally can be classified into four major groups, which include passive methods, active methods, hybrid methods and communication base methods. Active methods have been the preferred detection technique over the years due to very small non-detected zone (NDZ) in small scale distribution generation. Passive method is comparatively simpler than active method in terms of circuitry and operations. However, it suffers from large NDZ that significantly reduces its performance. Communication base methods inherit the advantages of active and passive methods with reduced drawbacks. Hybrid method which evolved from the combination of both active and passive methods has been proven to achieve accurate anti-islanding detection by many researchers. For each of the studied anti-islanding methods, the operation analysis is described while the advantages and disadvantages are compared and discussed. It is difficult to pinpoint a generic method for a specific application, because most of the methods discussed are governed by the nature of application and system dependent elements. This study concludes that the setup and operation cost is the vital factor for anti-islanding method selection in order to achieve minimal compromising between cost and system quality.

Keywords: Active method, hybrid method, islanding detection, passive method, photovoltaic (PV), utility method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9726
2728 Temperature-Dependence of Hardness and Wear Resistance of Stellite Alloys

Authors: S. Kapoor, R. Liu, X. J. Wu, M. X. Yao

Abstract:

A group of Stellite alloys are studied in consideration of temperature effects on their hardness and wear resistance. The hardness test is conducted on a micro-hardness tester with a hot stage equipped that allows heating the specimen up to 650°C. The wear resistance of each alloy is evaluated using a pin-on-disc tribometer with a heating furnace built-in that provides the temperature capacity up to 450°C. The experimental results demonstrate that the hardness and wear resistance of Stellite alloys behave differently at room temperature and at high temperatures. The wear resistance of Stellite alloys at room temperature mainly depends on their carbon content and also influenced by the tungsten content in the alloys. However, at high temperatures the wear mechanisms of Stellite alloys become more complex, involving multiple factors. The relationships between chemical composition, microstructure, hardness and wear resistance of these alloys are studied, with focus on temperature effect on these relations.

Keywords: Stellite alloy, temperature, hardness, wear resistance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6413
2727 Trajectory Tracking of a Redundant Hybrid Manipulator Using a Switching Control Method

Authors: Atilla Bayram

Abstract:

This paper presents the trajectory tracking control of a spatial redundant hybrid manipulator. This manipulator consists of two parallel manipulators which are a variable geometry truss (VGT) module. In fact, each VGT module with 3-degress of freedom (DOF) is a planar parallel manipulator and their operational planes of these VGT modules are arranged to be orthogonal to each other. Also, the manipulator contains a twist motion part attached to the top of the second VGT module to supply the missing orientation of the endeffector. These three modules constitute totally 7-DOF hybrid (parallel-parallel) redundant spatial manipulator. The forward kinematics equations of this manipulator are obtained, then, according to these equations, the inverse kinematics is solved based on an optimization with the joint limit avoidance. The dynamic equations are formed by using virtual work method. In order to test the performance of the redundant manipulator and the controllers presented, two different desired trajectories are followed by using the computed force control method and a switching control method. The switching control method is combined with the computed force control method and genetic algorithm. In the switching control method, the genetic algorithm is only used for fine tuning in the compensation of the trajectory tracking errors.

Keywords: Computed force control method, genetic algorithm, hybrid manipulator, inverse kinematics of redundant manipulators, variable geometry truss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
2726 Up Scaling of Highly Transparent Quasi-Solid State, Dye-Sensitized Solar Devices Composed of Nanocomposite Materials

Authors: Dimitra Sygkridou, Andreas Rapsomanikis, Elias Stathatos, Polycarpos Falaras, Evangelos Vitoratos

Abstract:

At the present work, highly transparent strip type quasi-solid state dye-sensitized solar cells (DSSCs) were fabricated through inkjet printing using nanocomposite TiO2 inks as raw materials and tested under outdoor illumination conditions. The cells, which can be considered as the structural units of large area modules, were fully characterized electrically and electrochemically and after the evaluation of the received results a large area DSSC module was manufactured. The module design was a sandwich Z-interconnection where the working electrode is deposited on one conductive glass and the counter electrode on a second glass. Silver current collective fingers were printed on the conductive glasses to make the internal electrical connections and the adjacent cells were connected in series and finally insulated using a UV curing resin to protect them from the corrosive (I-/I3-) redox couple of the electrolyte. Finally, outdoor tests were carried out to the fabricated dye-sensitized solar module and its performance data were collected and assessed.

Keywords: Dye-sensitized solar devices, inkjet printing, quasi-solid state electrolyte, transparency, up scaling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
2725 Localization for Indoor Service Robot Using Natural Landmark on the Ceiling

Authors: Seung-Hun Kim, Changwoo Park

Abstract:

In this paper, we present a localization of a mobile robot with localization modules which have two ceiling-view cameras in indoor environments. We propose two kinds of localization method. The one is the localization in the local space; we use the line feature and the corner feature between the ceiling and wall. The other is the localization in the large space; we use the natural features such as bulbs, structures on the ceiling. These methods are installed on the embedded module able to mount on the robot. The embedded module has two cameras to be able to localize in both the local space and the large spaces. The experiment is practiced in our indoor test-bed and a government office. The proposed method is proved by the experimental results.

Keywords: Robot, Localization, Indoor, Ceiling vision, Local space, Large space, Complex space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154
2724 Designing a Tool for Software Maintenance

Authors: Amir Ngah, Masita Abdul Jalil, Zailani Abdullah

Abstract:

The aim of software maintenance is to maintain the software system in accordance with advancement in software and hardware technology. One of the early works on software maintenance is to extract information at higher level of abstraction. In this paper, we present the process of how to design an information extraction tool for software maintenance. The tool can extract the basic information from old programs such as about variables, based classes, derived classes, objects of classes, and functions. The tool have two main parts; the lexical analyzer module that can read the input file character by character, and the searching module which users can get the basic information from the existing programs. We implemented this tool for a patterned sub-C++ language as an input file.

Keywords: Extraction tool, software maintenance, reverse engineering, C++.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2371
2723 Microstructure and High Temperature Deformation Behavior of Cast 310S Alloy

Authors: Jung-Ho Moon, Myung-Gon Yoon, Tae Kwon Ha

Abstract:

High temperature deformation behavior of cast 310S stainless steel has been investigated in this study by performing tensile and compression tests at temperatures from 900 to 1200oC. Rectangular ingots of which the dimensions were 350×350×100 in millimeter were cast using vacuum induction melting. Phase equilibrium was calculated using the FactSage®, thermodynamic software and database. Thermal expansion coefficient was also measured on the ingot in the temperature range from room temperature to 1200oC. Tensile strength of cast 310S stainless steel was 9 MPa at 1200oC, which is a little higher than that of a wrought 310S. With temperature decreased, tensile strength increased rapidly and reached up to 72 MPa at 900oC. Elongation also increased with temperature decreased. Microstructure observation revealed that s phase was precipitated along the grain boundary and within the matrix over 1200oC, which is detrimental to high temperature elongation.

Keywords: Stainless steel, STS 310S, high temperature deformation, microstructure, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3231
2722 A Performance Study of Fixed, Single-Axis and Dual-Axis Photovoltaic Systems in Kuwait

Authors: A. Al-Rashidi, A. El-Hamalawi

Abstract:

In this paper, a performance study was conducted to investigate single and dual-axis PV systems to generate electricity in five different sites in Kuwait. Relevant data were obtained by using two sources for validation purposes. A commercial software, PVsyst, was used to analyse the data, such as metrological data and other input parameters, and compute the performance parameters such as capacity factor (CF) and final yield (YF). The results indicated that single and dual-axis PV systems would be very beneficial to electricity generation in Kuwait as an alternative source to conventional power plants, especially with the increased demand over time. The ranges were also found to be competitive in comparison to leading countries using similar systems. A significant increase in CF and YF values around 24% and 28.8% was achieved related to the use of single and dual systems, respectively.

Keywords: Single-axis and dual-axis photovoltaic systems, capacity factor, final yield, renewable energy, Kuwait.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
2721 A Grid Synchronization Method Based on Adaptive Notch Filter for SPV System with Modified MPPT

Authors: Priyanka Chaudhary, M. Rizwan

Abstract:

This paper presents a grid synchronization technique based on adaptive notch filter for SPV (Solar Photovoltaic) system along with MPPT (Maximum Power Point Tracking) techniques. An efficient grid synchronization technique offers proficient detection of various components of grid signal like phase and frequency. It also acts as a barrier for harmonics and other disturbances in grid signal. A reference phase signal synchronized with the grid voltage is provided by the grid synchronization technique to standardize the system with grid codes and power quality standards. Hence, grid synchronization unit plays important role for grid connected SPV systems. As the output of the PV array is fluctuating in nature with the meteorological parameters like irradiance, temperature, wind etc. In order to maintain a constant DC voltage at VSC (Voltage Source Converter) input, MPPT control is required to track the maximum power point from PV array. In this work, a variable step size P & O (Perturb and Observe) MPPT technique with DC/DC boost converter has been used at first stage of the system. This algorithm divides the dPpv/dVpv curve of PV panel into three separate zones i.e. zone 0, zone 1 and zone 2. A fine value of tracking step size is used in zone 0 while zone 1 and zone 2 requires a large value of step size in order to obtain a high tracking speed. Further, adaptive notch filter based control technique is proposed for VSC in PV generation system. Adaptive notch filter (ANF) approach is used to synchronize the interfaced PV system with grid to maintain the amplitude, phase and frequency parameters as well as power quality improvement. This technique offers the compensation of harmonics current and reactive power with both linear and nonlinear loads. To maintain constant DC link voltage a PI controller is also implemented and presented in this paper. The complete system has been designed, developed and simulated using SimPower System and Simulink toolbox of MATLAB. The performance analysis of three phase grid connected solar photovoltaic system has been carried out on the basis of various parameters like PV output power, PV voltage, PV current, DC link voltage, PCC (Point of Common Coupling) voltage, grid voltage, grid current, voltage source converter current, power supplied by the voltage source converter etc. The results obtained from the proposed system are found satisfactory.

Keywords: Solar photovoltaic systems, MPPT, voltage source converter, grid synchronization technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941