Search results for: Structural identification
1964 Multiple Mental Thought Parametric Classification: A New Approach for Individual Identification
Authors: Ramaswamy Palaniappan
Abstract:
This paper reports a new approach on identifying the individuality of persons by using parametric classification of multiple mental thoughts. In the approach, electroencephalogram (EEG) signals were recorded when the subjects were thinking of one or more (up to five) mental thoughts. Autoregressive features were computed from these EEG signals and classified by Linear Discriminant classifier. The results here indicate that near perfect identification of 400 test EEG patterns from four subjects was possible, thereby opening up a new avenue in biometrics.Keywords: Autoregressive, Biometrics, Electroencephalogram, Linear discrimination, Mental thoughts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14001963 Identification of Aircraft Gas Turbine Engine's Temperature Condition
Authors: Pashayev A., Askerov D., C. Ardil, Sadiqov R., Abdullayev P.
Abstract:
Groundlessness of application probability-statistic methods are especially shown at an early stage of the aviation GTE technical condition diagnosing, when the volume of the information has property of the fuzzy, limitations, uncertainty and efficiency of application of new technology Soft computing at these diagnosing stages by using the fuzzy logic and neural networks methods. It is made training with high accuracy of multiple linear and nonlinear models (the regression equations) received on the statistical fuzzy data basis. At the information sufficiency it is offered to use recurrent algorithm of aviation GTE technical condition identification on measurements of input and output parameters of the multiple linear and nonlinear generalized models at presence of noise measured (the new recursive least squares method (LSM)). As application of the given technique the estimation of the new operating aviation engine D30KU-154 technical condition at height H=10600 m was made.
Keywords: Identification of a technical condition, aviation gasturbine engine, fuzzy logic and neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16741962 Structural Behavior of Lightweight Concrete Made With Scoria Aggregates and Mineral Admixtures
Authors: M. Shannag, A. Charif, S. Naser, F. Faisal, A. Karim
Abstract:
Structural lightweight concrete is used primarily to reduce the dead-load weight in concrete members such as floors in high-rise buildings and bridge decks. With given materials, it is generally desired to have the highest possible strength/unit weight ratio with the lowest cost of concrete. The work presented herein is part of an ongoing research project that investigates the properties of concrete mixes containing locally available Scoria lightweight aggregates and mineral admixtures. Properties considered included: workability, unit weight, compressive strength, and splitting tensile strength. Test results indicated that developing structural lightweight concretes (SLWC) using locally available Scoria lightweight aggregates and specific blends of silica fume and fly ash seems to be feasible. The stress-strain diagrams plotted for the structural LWC mixes developed in this investigation were comparable to a typical stress-strain diagram for normal weight concrete with relatively larger strain capacity at failure in case of LWC.
Keywords: Lightweight Concrete, Scoria, Stress, Strain, Silica fume, Fly Ash.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35891961 Best Combination of Design Parameters for Buildings with Buckling-Restrained Braces
Authors: Ángel de J. López-Pérez, Sonia E. Ruiz, Vanessa A. Segovia
Abstract:
Buildings vulnerability due to seismic activity has been highly studied since the middle of last century. As a solution to the structural and non-structural damage caused by intense ground motions, several seismic energy dissipating devices, such as buckling-restrained braces (BRB), have been proposed. BRB have shown to be effective in concentrating a large portion of the energy transmitted to the structure by the seismic ground motion. A design approach for buildings with BRB elements, which is based on a seismic Displacement-Based formulation, has recently been proposed by the coauthors in this paper. It is a practical and easy design method which simplifies the work of structural engineers. The method is used here for the design of the structure-BRB damper system. The objective of the present study is to extend and apply a methodology to find the best combination of design parameters on multiple-degree-of-freedom (MDOF) structural frame – BRB systems, taking into account simultaneously: 1) initial costs and 2) an adequate engineering demand parameter. The design parameters considered here are: the stiffness ratio (α = Kframe/Ktotal), and the strength ratio (γ = Vdamper/Vtotal); where K represents structural stiffness and V structural strength; and the subscripts "frame", "damper" and "total" represent: the structure without dampers, the BRB dampers and the total frame-damper system, respectively. The selection of the best combination of design parameters α and γ is based on an initial costs analysis and on the structural dynamic response of the structural frame-damper system. The methodology is applied to a 12-story 5-bay steel building with BRB, which is located on the intermediate soil of Mexico City. It is found the best combination of design parameters α and γ for the building with BRB under study.
Keywords: Best combination of design parameters, BRB, buildings with energy dissipating devices, buckling-restrained braces, initial costs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11881960 Studying the Temperature Field of Hypersonic Vehicle Structure with Aero-Thermo-Elasticity Deformation
Authors: Geng Xiangren, Liu Lei, Gui Ye-Wei, Tang Wei, Wang An-ling
Abstract:
The malfunction of thermal protection system (TPS) caused by aerodynamic heating is a latent trouble to aircraft structure safety. Accurately predicting the structure temperature field is quite important for the TPS design of hypersonic vehicle. Since Thornton’s work in 1988, the coupled method of aerodynamic heating and heat transfer has developed rapidly. However, little attention has been paid to the influence of structural deformation on aerodynamic heating and structural temperature field. In the flight, especially the long-endurance flight, the structural deformation, caused by the aerodynamic heating and temperature rise, has a direct impact on the aerodynamic heating and structural temperature field. Thus, the coupled interaction cannot be neglected. In this paper, based on the method of static aero-thermo-elasticity, considering the influence of aero-thermo-elasticity deformation, the aerodynamic heating and heat transfer coupled results of hypersonic vehicle wing model were calculated. The results show that, for the low-curvature region, such as fuselage or center-section wing, structure deformation has little effect on temperature field. However, for the stagnation region with high curvature, the coupled effect is not negligible. Thus, it is quite important for the structure temperature prediction to take into account the effect of elastic deformation. This work has laid a solid foundation for improving the prediction accuracy of the temperature distribution of aircraft structures and the evaluation capacity of structural performance.
Keywords: Aero-thermo-elasticity, elastic deformation, structural temperature, multi-field coupling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8951959 Dynamic Response of a Water Tower Composed of Interlocked Panels
Authors: F. Gurkalo, K. Poutos
Abstract:
Earthquakes produce some of the most violent loading situations that a structure can be subjected to and if a structure fails under these loads then inevitably human life is put at risk. One of the most common methods by which a structure fails under seismic loading is at the connection of structural elements. The research presented in this paper investigates the interlock systems as a novel method for building structures. The main objective of this experimental study wasto determine the dynamic characteristics and the seismic behaviour of the proposed structures compared to conventional structural systemsduring seismic motions. Results of this study indicate that the interlock mechanism of the panels influences the behaviour of lateral load-resisting systems of the structures during earthquakes, contributing to better structural flexibility and easier maintenance.Keywords: Watertower, earthquake, seismic, interlocked panels
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20491958 Neural Network Based Icing Identification and Fault Tolerant Control of a 340 Aircraft
Authors: F. Caliskan
Abstract:
This paper presents a Neural Network (NN) identification of icing parameters in an A340 aircraft and a reconfiguration technique to keep the A/C performance close to the performance prior to icing. Five aircraft parameters are assumed to be considerably affected by icing. The off-line training for identifying the clear and iced dynamics is based on the Levenberg-Marquard Backpropagation algorithm. The icing parameters are located in the system matrix. The physical locations of the icing are assumed at the right and left wings. The reconfiguration is based on the technique known as the control mixer approach or pseudo inverse technique. This technique generates the new control input vector such that the A/C dynamics is not much affected by icing. In the simulations, the longitudinal and lateral dynamics of an Airbus A340 aircraft model are considered, and the stability derivatives affected by icing are identified. The simulation results show the successful NN identification of the icing parameters and the reconfigured flight dynamics having the similar performance before the icing. In other words, the destabilizing icing affect is compensated.Keywords: Aircraft Icing, Stability Derivatives, Neural NetworkIdentification, Reconfiguration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17031957 Development and Structural Performance Evaluation on Slit Circular Shear Panel Damper
Authors: Daniel Y. Abebe, Jaehyouk Choi
Abstract:
There are several types of metal-based devices conceived as dampers for the seismic energy absorber whereby damages to the major structural components could be minimized for both new and existing structures. This paper aimed to develop and evaluate structural performance of slit circular shear panel damper for passive seismic energy protection by inelastic deformation. Structural evaluation was done using commercially available nonlinear FE simulation program. The main parameters considered are: diameter-to-thickness (D/t) ratio and slit length-to-width ratio (l/w). Depending on these parameters three different buckling mode and hysteretic behavior was found: yielding prior to buckling without strength degradation, yielding prior to buckling with strength degradation and yielding with buckling and strength degradation which forms pinching at initial displacement. The susceptible location at which the possible crack is initiated is also identified for selected specimens using rupture index.
Keywords: Slit circular shear panel damper, Hysteresis Characteristics, Slip length-to-width ratio, D/t ratio, FE analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25001956 A Security Module for Car Appliances
Authors: Pang-Chieh Wang, Ting-Wei Hou, Jung-Hsuan Wu, Bo-Chiuan Chen
Abstract:
In this paper we discuss on the security module for the car appliances to prevent stealing and illegal use on other cars. We proposed an open structure including authentication and encryption by embed a security module in each to protect car appliances. Illegal moving and use a car appliance with the security module without permission will lead the appliance to useless. This paper also presents the component identification and deal with relevant procedures. It is at low cost to recover from destroys by the burglar. Expect this paper to offer the new business opportunity to the automotive and technology industry.Keywords: Automotive, component identification, electronic immobilizer, key management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18471955 Wavelet Based Identification of Second Order Linear System
Authors: Sudipta Majumdar, Harish Parthasarathy
Abstract:
In this paper, a wavelet based method is proposed to identify the constant coefficients of a second order linear system and is compared with the least squares method. The proposed method shows improved accuracy of parameter estimation as compared to the least squares method. Additionally, it has the advantage of smaller data requirement and storage requirement as compared to the least squares method.Keywords: Least squares method, linear system, system identification, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15811954 Self-Sensing Concrete Nanocomposites for Smart Structures
Authors: A. D'Alessandro, F. Ubertini, A. L. Materazzi
Abstract:
In the field of civil engineering, Structural Health Monitoring is a topic of growing interest. Effective monitoring instruments permit the control of the working conditions of structures and infrastructures, through the identification of behavioral anomalies due to incipient damages, especially in areas of high environmental hazards as earthquakes. While traditional sensors can be applied only in a limited number of points, providing a partial information for a structural diagnosis, novel transducers may allow a diffuse sensing. Thanks to the new tools and materials provided by nanotechnology, new types of multifunctional sensors are developing in the scientific panorama. In particular, cement-matrix composite materials capable of diagnosing their own state of strain and tension, could be originated by the addition of specific conductive nanofillers. Because of the nature of the material they are made of, these new cementitious nano-modified transducers can be inserted within the concrete elements, transforming the same structures in sets of widespread sensors. This paper is aimed at presenting the results of a research about a new self-sensing nanocomposite and about the implementation of smart sensors for Structural Health Monitoring. The developed nanocomposite has been obtained by inserting multi walled carbon nanotubes within a cementitious matrix. The insertion of such conductive carbon nanofillers provides the base material with piezoresistive characteristics and peculiar sensitivity to mechanical modifications. The self-sensing ability is achieved by correlating the variation of the external stress or strain with the variation of some electrical properties, such as the electrical resistance or conductivity. Through the measurement of such electrical characteristics, the performance and the working conditions of an element or a structure can be monitored. Among conductive carbon nanofillers, carbon nanotubes seem to be particularly promising for the realization of self-sensing cement-matrix materials. Some issues related to the nanofiller dispersion or to the influence of the nano-inclusions amount in the cement matrix need to be carefully investigated: the strain sensitivity of the resulting sensors is influenced by such factors. This work analyzes the dispersion of the carbon nanofillers, the physical properties of the fresh dough, the electrical properties of the hardened composites and the sensing properties of the realized sensors. The experimental campaign focuses specifically on their dynamic characterization and their applicability to the monitoring of full-scale elements. The results of the electromechanical tests with both slow varying and dynamic loads show that the developed nanocomposite sensors can be effectively used for the health monitoring of structures.
Keywords: Carbon nanotubes, self-sensing nanocomposites, smart cement-matrix sensors, structural health monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34661953 Short Time Identification of Feed Drive Systems using Nonlinear Least Squares Method
Authors: M.G.A. Nassef, Linghan Li, C. Schenck, B. Kuhfuss
Abstract:
Design and modeling of nonlinear systems require the knowledge of all inside acting parameters and effects. An empirical alternative is to identify the system-s transfer function from input and output data as a black box model. This paper presents a procedure using least squares algorithm for the identification of a feed drive system coefficients in time domain using a reduced model based on windowed input and output data. The command and response of the axis are first measured in the first 4 ms, and then least squares are applied to predict the transfer function coefficients for this displacement segment. From the identified coefficients, the next command response segments are estimated. The obtained results reveal a considerable potential of least squares method to identify the system-s time-based coefficients and predict accurately the command response as compared to measurements.Keywords: feed drive systems, least squares algorithm, onlineparameter identification, short time window
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20991952 Evaluation of the ANN Based Nonlinear System Models in the MSE and CRLB Senses
Authors: M.V Rajesh, Archana R, A Unnikrishnan, R Gopikakumari, Jeevamma Jacob
Abstract:
The System Identification problem looks for a suitably parameterized model, representing a given process. The parameters of the model are adjusted to optimize a performance function based on error between the given process output and identified process output. The linear system identification field is well established with many classical approaches whereas most of those methods cannot be applied for nonlinear systems. The problem becomes tougher if the system is completely unknown with only the output time series is available. It has been reported that the capability of Artificial Neural Network to approximate all linear and nonlinear input-output maps makes it predominantly suitable for the identification of nonlinear systems, where only the output time series is available. [1][2][4][5]. The work reported here is an attempt to implement few of the well known algorithms in the context of modeling of nonlinear systems, and to make a performance comparison to establish the relative merits and demerits.Keywords: Multilayer neural networks, Radial Basis Functions, Clustering algorithm, Back Propagation training, Extended Kalmanfiltering, Mean Square Error, Nonlinear Modeling, Cramer RaoLower Bound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16491951 Reliability-Based Topology Optimization Based on Evolutionary Structural Optimization
Authors: Sang-Rak Kim, Jea-Yong Park, Won-Goo Lee, Jin-Shik Yu, Seog-Young Han
Abstract:
This paper presents a Reliability-Based Topology Optimization (RBTO) based on Evolutionary Structural Optimization (ESO). An actual design involves uncertain conditions such as material property, operational load and dimensional variation. Deterministic Topology Optimization (DTO) is obtained without considering of the uncertainties related to the uncertainty parameters. However, RBTO involves evaluation of probabilistic constraints, which can be done in two different ways, the reliability index approach (RIA) and the performance measure approach (PMA). Limit state function is approximated using Monte Carlo Simulation and Central Composite Design for reliability analysis. ESO, one of the topology optimization techniques, is adopted for topology optimization. Numerical examples are presented to compare the DTO with RBTO.Keywords: Evolutionary Structural Optimization, PerformanceMeasure Approach, Reliability-Based Topology Optimization, Reliability Index Approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28031950 The Analysis of Hazard and Sensitivity of Potential Resource of Emergency Water Supply
Authors: A. Bumbová, M. Čáslavský, F. Božek, J. Dvořák
Abstract:
The paper deals with the analysis of hazards and sensitivity of potential resource of emergency water supply of population in a selected region of the Czech Republic. The procedure of identification and analysis of hazards and sensitivity is carried out on the basis of a unique methodology of classifying the drinking water resources earmarked for emergency supply of population. The hazard identification is based on a general register of hazards for individual parts of hydrological structure and the elements of technological equipment. It is followed by a semi-quantitative point indexation for the activation of each identified hazard, i.e. fires of anthropogenic origin, flood and the increased radioactive background accompanied by the leak of radon. Point indexation of sensitivity has been carried out at the same time. The analysis is the basis for a risk assessment of potential resource of emergency supply of population and the subsequent classification of such resource within the system of crisis planning.
Keywords: Hazard identification, sensitivity, semi-quantitative assessment, emergency water supply, crisis situation, ground water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16151949 A Structural Equation Model of Risk Perception of Rockfall for Revisit Intention
Authors: Ya-Fen Lee, Yun-Yao Chi
Abstract:
The study aims to explore the relationship between risk perception of rockfall and revisit intention using a Structural Equation Modeling (SEM) analysis. A total of 573 valid questionnaires are collected from travelers to Taroko National Park, Taiwan. The findings show the majority of travelers have the medium perception of rockfall risk, and are willing to revisit the Taroko National Park. The revisit intention to Taroko National Park is influenced by hazardous preferences, willingness-to-pay, obstruction and attraction. The risk perception has an indirect effect on revisit intention through influencing willingness-to-pay. The study results can be a reference for mitigation the rockfall disaster.
Keywords: Risk perception, rockfall, revisit intention, structural equation modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21571948 Internal Force State Recognition of Jiujiang Bridge Based on Cable Force-displacement Relationship
Authors: Weifeng Wang, Guoqing Huang, Xianwei Zeng
Abstract:
The nearly 21-year-old Jiujiang Bridge, which is suffering from uneven line shape, constant great downwarping of the main beam and cracking of the box girder, needs reinforcement and cable adjustment. It has undergone cable adjustment for twice with incomplete data. Therefore, the initial internal force state of the Jiujiang Bridge is identified as the key for the cable adjustment project. Based on parameter identification by means of static force test data, this paper suggests determining the initial internal force state of the cable-stayed bridge according to the cable force-displacement relationship parameter identification method. That is, upon measuring the displacement and the change in cable forces for twice, one can identify the parameters concerned by means of optimization. This method is applied to the cable adjustment, replacement and reinforcement project for the Jiujiang Bridge as a guidance for the cable adjustment and reinforcement project of the bridge.
Keywords: Cable-stayed bridge, cable force-displacement, parameter identification, internal force state
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15481947 Structural Performance Evaluation of Segmented Wind Turbine Blade through Finite Element Simulation
Authors: Chandrashekhar Bhat, Dilifa J. Noronha, Faber A. Saldanha
Abstract:
Transportation of long turbine blades from one place to another is a difficult process. Hence a feasibility study of modularization of wind turbine blade was taken from structural standpoint through finite element analysis. Initially, a non-segmented blade is modeled and its structural behavior is evaluated to serve as reference. The resonant, static bending and fatigue tests are simulated in accordance with IEC61400-23 standard for comparison purpose. The non-segmented test blade is separated at suitable location based on trade off studies and the segments are joined with an innovative double strap bonded joint configuration. The adhesive joint is modeled by adopting cohesive zone modeling approach in ANSYS. The developed blade model is analyzed for its structural response through simulation. Performances of both the blades are found to be similar, which indicates that, efficient segmentation of the long blade is possible which facilitates easy transportation of the blades and on site reassembling. The location selected for segmentation and adopted joint configuration has resulted in an efficient segmented blade model which proves the methodology adopted for segmentation was quite effective. The developed segmented blade appears to be the viable alternative considering its structural response specifically in fatigue within considered assumptions.Keywords: Cohesive zone modeling, fatigue, segmentation, wind turbine blade.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32991946 Experimental Investigation on the Fire Performance of Corrugated Sandwich Panels made from Renewable Material
Authors: Avishek Chanda, Nam Kyeun Kim, Debes Bhattacharyya
Abstract:
The use of renewable substitutes in various semi-structural and structural applications has experienced an increase since the last few decades. Sandwich panels have been used for many decades, although research on understanding the effects of the core structures on the panels’ fire-reaction properties is limited. The current work investigates the fire-performance of a corrugated sandwich panel made from renewable, biodegradable, and sustainable material, plywood. The bench-scale fire testing apparatus, cone-calorimeter, was employed to evaluate the required fire-reaction properties of the sandwich core in a panel configuration, with three corrugated layers glued together with face-sheets under a heat irradiance of 50 kW/m2. The study helped in documenting a unique heat release trend associated with the fire performance of the 3-layered corrugated sandwich panels and in understanding the structural stability of the samples in the event of a fire. Furthermore, the total peak heat release rate was observed to be around 421 kW/m2, which is significantly low compared to many polymeric materials in the literature. The total smoke production was also perceived to be very limited compared to other structural materials, and the total heat release was also nominal. The time to ignition of 21.7 s further outlined the advantages of using the plywood component since polymeric composites, even with flame-retardant additives, tend to ignite faster. Overall, the corrugated plywood sandwich panels had significant fire-reaction properties and could have important structural applications. The possible use of structural panels made from bio-degradable material opens a new avenue for the use of similar structures in sandwich panel preparation.
Keywords: Corrugated sandwich panel, fire-reaction properties, plywood, renewable material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4331945 Structural Monitoring and Control During Support System Replacement of a Historical Gate
Authors: Ahmet Turer
Abstract:
Middle-gate is located in Hasankeyf, Batman dating back to 1800 BC and is one of the important historical structures in Turkey. The ancient structure has suffered major structural cracks due to aging as well as lateral pressure of a cracked rock which is predicted to be about 100 tons. The existing support system was found to be inadequate to support the load especially after a recent rock fall in the close vicinity. Concerns were increased since the existing support system that is integral with a damaged and cracked gate wall needed to be replaced by a new support system. The replacement process must be carefully monitored by crackmeters and control mechanisms should be integrated to prevent cracks to expand while the same crack width needs to be maintained after the operation. The control system and actions taken during the intervention are explained in this paper.Keywords: structural control, crack width, replacement, support
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12751944 Identification of Non-Lexicon Non-Slang Unigrams in Body-enhancement Medicinal UBE
Authors: Jatinderkumar R. Saini, Apurva A. Desai
Abstract:
Email has become a fast and cheap means of online communication. The main threat to email is Unsolicited Bulk Email (UBE), commonly called spam email. The current work aims at identification of unigrams in more than 2700 UBE that advertise body-enhancement drugs. The identification is based on the requirement that the unigram is neither present in dictionary, nor is a slang term. The motives of the paper are many fold. This is an attempt to analyze spamming behaviour and employment of wordmutation technique. On the side-lines of the paper, we have attempted to better understand the spam, the slang and their interplay. The problem has been addressed by employing Tokenization technique and Unigram BOW model. We found that the non-lexicon words constitute nearly 66% of total number of lexis of corpus whereas non-slang words constitute nearly 2.4% of non-lexicon words. Further, non-lexicon non-slang unigrams composed of 2 lexicon words, form more than 71% of the total number of such unigrams. To the best of our knowledge, this is the first attempt to analyze usage of non-lexicon non-slang unigrams in any kind of UBE.Keywords: Body Enhancement, Lexicon, Medicinal, Slang, Unigram, Unsolicited Bulk e-mail (UBE)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18231943 Fabrication of Nanoengineered Radiation Shielding Multifunctional Polymeric Sandwich Composites
Authors: Nasim Abuali Galehdari, Venkat Mani, Ajit D. Kelkar
Abstract:
Space Radiation has become one of the major factors in successful long duration space exploration. Exposure to space radiation not only can affect the health of astronauts but also can disrupt or damage materials and electronics. Hazards to materials include degradation of properties, such as, modulus, strength, or glass transition temperature. Electronics may experience single event effects, gate rupture, burnout of field effect transistors and noise. Presently aluminum is the major component in most of the space structures due to its lightweight and good structural properties. However, aluminum is ineffective at blocking space radiation. Therefore, most of the past research involved studying at polymers which contain large amounts of hydrogen. Again, these materials are not structural materials and would require large amounts of material to achieve the structural properties needed. One of the materials to alleviate this problem is polymeric composite materials, which has good structural properties and use polymers that contained large amounts of hydrogen. This paper presents steps involved in fabrication of multi-functional hybrid sandwich panels that can provide beneficial radiation shielding as well as structural strength. Multifunctional hybrid sandwich panels were manufactured using vacuum assisted resin transfer molding process and were subjected to radiation treatment. Study indicates that various nanoparticles including Boron Nano powder, Boron Carbide and Gadolinium nanoparticles can be successfully used to block the space radiation without sacrificing the structural integrity.Keywords: Multi-functional, polymer composites, radiation shielding, sandwich composites.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18191942 An Improved Optimal Sliding Mode Control for Structural Stability
Authors: Leila Fatemi, Morteza Moradi, Azadeh Mansouri
Abstract:
In this paper, the modified optimal sliding mode control with a proposed method to design a sliding surface is presented. Because of the inability of the previous approach of the sliding mode method to design a bounded and suitable input, the new variation is proposed in the sliding manifold to obviate problems in a structural system. Although the sliding mode control is a powerful method to reject disturbances and noises, the chattering problem is not good for actuators. To decrease the chattering phenomena, the optimal control is added to the sliding mode control. Not only the proposed method can decline the intense variations in the inputs of the system but also it can produce the efficient responses respect to the sliding mode control and optimal control that are shown by performing some numerical simulations.
Keywords: Structural Control, optimal control, optimal sliding mode controller, modified sliding surface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20101941 Kuehne + Nagel's PharmaChain: IoT-Enabled Product Monitoring Using Radio Frequency Identification
Authors: Rebecca Angeles
Abstract:
This case study features the Kuehne + Nagel PharmaChain solution for ‘cold chain’ pharmaceutical and biologic product shipments with IOT-enabled features for shipment temperature and location tracking. Using the case study method and content analysis, this research project investigates the application of the structurational model of technology theory introduced by Orlikowski in order to interpret the firm’s entry and participation in the IOT-impelled marketplace.
Keywords: Internet of things, IoT, radio frequency identification, supply chain management, business intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19831940 Sparsity-Aware Affine Projection Algorithm for System Identification
Authors: Young-Seok Choi
Abstract:
This work presents a new type of the affine projection (AP) algorithms which incorporate the sparsity condition of a system. To exploit the sparsity of the system, a weighted l1-norm regularization is imposed on the cost function of the AP algorithm. Minimizing the cost function with a subgradient calculus and choosing two distinct weighting for l1-norm, two stochastic gradient based sparsity regularized AP (SR-AP) algorithms are developed. Experimental results exhibit that the SR-AP algorithms outperform the typical AP counterparts for identifying sparse systems.Keywords: System identification, adaptive filter, affine projection, sparsity, sparse system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15571939 Influence of Deficient Materials on the Reliability of Reinforced Concrete Members
Authors: Sami W. Tabsh
Abstract:
The strength of reinforced concrete depends on the member dimensions and material properties. The properties of concrete and steel materials are not constant but random variables. The variability of concrete strength is due to batching errors, variations in mixing, cement quality uncertainties, differences in the degree of compaction and disparity in curing. Similarly, the variability of steel strength is attributed to the manufacturing process, rolling conditions, characteristics of base material, uncertainties in chemical composition, and the microstructure-property relationships. To account for such uncertainties, codes of practice for reinforced concrete design impose resistance factors to ensure structural reliability over the useful life of the structure. In this investigation, the effects of reductions in concrete and reinforcing steel strengths from the nominal values, beyond those accounted for in the structural design codes, on the structural reliability are assessed. The considered limit states are flexure, shear and axial compression based on the ACI 318-11 structural concrete building code. Structural safety is measured in terms of a reliability index. Probabilistic resistance and load models are compiled from the available literature. The study showed that there is a wide variation in the reliability index for reinforced concrete members designed for flexure, shear or axial compression, especially when the live-to-dead load ratio is low. Furthermore, variations in concrete strength have minor effect on the reliability of beams in flexure, moderate effect on the reliability of beams in shear, and sever effect on the reliability of columns in axial compression. On the other hand, changes in steel yield strength have great effect on the reliability of beams in flexure, moderate effect on the reliability of beams in shear, and mild effect on the reliability of columns in axial compression. Based on the outcome, it can be concluded that the reliability of beams is sensitive to changes in the yield strength of the steel reinforcement, whereas the reliability of columns is sensitive to variations in the concrete strength. Since the embedded target reliability in structural design codes results in lower structural safety in beams than in columns, large reductions in material strengths compromise the structural safety of beams much more than they affect columns.
Keywords: Code, flexure, limit states, random variables, reinforced concrete, reliability, reliability index, shear, structural safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25861938 Model-free Prediction based on Tracking Theory and Newton Form of Polynomial
Authors: Guoyuan Qi , Yskandar Hamam, Barend Jacobus van Wyk, Shengzhi Du
Abstract:
The majority of existing predictors for time series are model-dependent and therefore require some prior knowledge for the identification of complex systems, usually involving system identification, extensive training, or online adaptation in the case of time-varying systems. Additionally, since a time series is usually generated by complex processes such as the stock market or other chaotic systems, identification, modeling or the online updating of parameters can be problematic. In this paper a model-free predictor (MFP) for a time series produced by an unknown nonlinear system or process is derived using tracking theory. An identical derivation of the MFP using the property of the Newton form of the interpolating polynomial is also presented. The MFP is able to accurately predict future values of a time series, is stable, has few tuning parameters and is desirable for engineering applications due to its simplicity, fast prediction speed and extremely low computational load. The performance of the proposed MFP is demonstrated using the prediction of the Dow Jones Industrial Average stock index.Keywords: Forecast, model-free predictor, prediction, time series
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17851937 An Examination of Backing Effects on Ratings for Masonry Arch Bridges
Authors: Muhammad E. Rahman, Paul J. Fanning
Abstract:
Many single or multispan arch bridges are strengthened with the addition of some kind of structural support between adjacent arches of multispan or beside the arch barrel of a single span to increase the strength of the overall structure. It was traditionally formed by either placing loose rubble masonry blocks between the arches and beside the arches or using mortar or concrete to construct a more substantial structural bond between the spans. On the other hand backing materials are present in some existing bridges. Existing arch assessment procedures generally ignore the effects of backing materials. In this paper an investigation of the effects of backing on ratings for masonry arch bridges is carried out. It is observed that increasing the overall lateral stability of the arch system through the inclusion of structural backing results in an enhanced failure load by reducing the likelihood of any tension occurring at the top of the arch.Keywords: Arch, Backing, Bridge, Masonry
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22441936 The First Prevalence Report of Direct Identification and Differentiation of B. abortus and B. melitensis using Real Time PCR in House Mouse of Iran
Authors: A. Doosti, S. Moshkelani
Abstract:
Brucellosis is a zoonotic disease; its symptoms and appearances are not exclusive in human and its traditional diagnosis is based on culture, serological methods and conventional PCR. For more sensitive, specific detection and differentiation of Brucella spp., the real time PCR method is recommended. This research has performed to determine the presence and prevalence of Brucella spp. and differentiation of Brucella abortus and Brucella melitensis in house mouse (Mus musculus) in west of Iran. A TaqMan analysis and single-step PCR was carried out in total 326 DNA of Mouse's spleen samples. From the total number of 326 samples, 128 (39.27%) gave positive results for Brucella spp. by conventional PCR, also 65 and 32 out of the 128 specimens were positive for B. melitensis, B. abortus, respectively. These results indicate a high presence of this pathogen in this area and that real time PCR is considerably faster than current standard methods for identification and differentiation of Brucella species. To our knowledge, this study is the first prevalence report of direct identification and differentiation of B. abortus and B. melitensis by real time PCR in mouse tissue samples in Iran.
Keywords: Differentiation, B. abortus, B. melitensis, TaqManprobe, Iran.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15691935 The Collapse of a Crane on Site: A Case Study
Authors: T. Teruzzi, S. Antonietti, C. Mosca, C. Paglia
Abstract:
This paper discusses the causes of the structural failure in a tower crane. The structural collapse occurred at the upper joints of the extension element used to increase the height of the crane. The extension element consists of a steel lattice structure made with angular profiles and plates joined to the tower element by arc welding. Macroscopic inspection of the sections showed that the break was always observed on the angular profiles at the weld bead edge. The case study shows how, using mechanical characterization, chemical analysis of the steel and macroscopic and microscopic metallographic examinations, it was possible to obtain significant evidence that identified the mechanism causing the breakage. The analyses identified the causes of the structural failure as the use of materials that were not suitable for welding and poor performance in the welding joints.
Keywords: Failure, weld, microstructure, microcracks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 509