
 

 

  
Abstract—This paper presents a Neural Network (NN) 

identification of icing parameters in an A340 aircraft and a 
reconfiguration technique to keep the A/C performance close to the 
performance prior to icing. Five aircraft parameters are assumed to 
be considerably affected by icing. The off-line training for 
identifying the clear and iced dynamics is based on the Levenberg-
Marquard Backpropagation algorithm. The icing parameters are 
located in the system matrix. The physical locations of the icing are 
assumed at the right and left wings. The reconfiguration is based on 
the technique known as the control mixer approach or pseudo inverse 
technique. This technique generates the new control input vector 
such that the A/C dynamics is not much affected by icing. In the 
simulations, the longitudinal and lateral dynamics of an Airbus A340 
aircraft model are considered, and the stability derivatives affected 
by icing are identified. The simulation results show the successful 
NN identification of the icing parameters and the reconfigured flight 
dynamics having the similar performance before the icing. In other 
words, the destabilizing icing affect is compensated. 

 

Keywords—Aircraft Icing, Stability Derivatives, Neural Network 
Identification, Reconfiguration. 

I. INTRODUCTION 
HE on-going research regarding ice in flight is still actual 
for engineers and researchers for it destroys the smooth 

flow of air by increasing drag while decreasing the ability of 
the airfoil to create lift. The actual weight of the ice on the 
airplane is insignificant when compared to the airflow 
disruption it causes. As power is added to compensate for the 
additional drag and the nose is lifted to maintain altitude, the 
angle of attack is increased, allowing the underside of the 
wings and fuselage to accumulate additional ice. Ice 
accumulates on every exposed frontal surface of the 
airplane—not just on the wings, propeller, and windshield, but 
also on the antennas, vents, intakes, and cowlings. It builds in 
flight where no heat or boots can reach it. It can cause 
antennas to vibrate so severely that they break. In moderate to 
severe conditions, a light aircraft can become so iced up that 
continued flight is impossible. The airplane may stall at much 
higher speeds and lower angles of attack than normal. It can 
roll or pitch uncontrollably, and recovery may be impossible. 

 
  

F. Caliskan is with the Electrical Engineering, Istanbul Technical 
University 34436, Istanbul, Turkey (phone: 90-212-2853683; fax: 90-212-
2856700; e-mail: caliskan@elk.itu.edu.tr). 

Ice can also cause engine stoppage by either icing up the 
carburettor or, in the case of a fuel-injected engine, blocking 
the engine's air source. This paper only considers the wing 
icing occurrences.  

NASA has performed several flight tests for in-flight icing 
of the aircraft DHC-6 Twin Otter since 1986. Ratvasky and 
Ranauda [1] obtained very useful data regarding the effects of 
aircraft icing to aircraft stability and control in early 1990. As 
soon as aircraft icing was announced as a prior issue in 1997, 
NASA established a team called Icing Research Group. 
Bragg, Perkins, Sarter, Başar, Voulgaris, Gurbacki, Melody, 
Selig and McCray [2], [3] from Illinois University investigated 
aircraft icing from several different viewpoints and proposed a 
Smart Icing System. Miller and Ribben [4] tried to detect tail 
icing by evaluating the decrease of elevator effectiveness via a 
failure detection filter. In another application, these 
researchers used a state estimator as a type of Luenberger 
Observer. These studies showed that icing detection via 
statistical error analysis of states was more effective than 
online parameter estimation. With NASA support, Ratvasky 
and Zante [5] examined experimentally and analytically the 
effects of tail icing. Bragg et al. [6] proposed a method for 
flight envelope protection by identifying icing 
characterization. Melody, et al. [7], [8] applied H-infinity 
algorithm to icing identification problem. They claimed that 
the proposed method is better than least square estimation and 
Extended Kalman Filter methods. Schuchard et al. [9] worked 
on tail icing detection and classification by estimating icing 
affected parameters and sensor information via neural 
networks. Johnson and Rokhsaz [10] proposed a method 
detecting icing via neural networks and Kohonen Self 
Organizing Maps (SOMs). By observing neural network 
connection weights’ changes, they tried to find iced and clean 
aircraft model via SOMs. They presented the effects of 
atmospheric turbulences and elevator input signal to icing 
identification. 

With respect to identification of degradation in 
aerodynamic parameters and characteristics of flight dynamics 
due to aircraft icing, Dynamic Icing Detection System (DIDS) 
was proposed by Myers et al. [11]. Bragg et al. [2], [6], [3] 

used hinge moment sensors in order to detect icing on control 
surfaces. They developed a neural network model to estimate 
stability and control derivatives.  

This study handles icing identification and reconfiguration 
together. Reconfiguration based on control mixer approach 
has been interest of several researchers (Rattan [12], Hajiyev 
and Caliskan [13]). The new gain matrix is obtained to 
determine the reconfigured control law such that the dynamics 

Neural Network Based Icing Identification and 
Fault Tolerant Control of a 340 Aircraft 

F. Caliskan 

T 

World Academy of Science, Engineering and Technology
International Journal of Aerospace and Mechanical Engineering

 Vol:1, No:4, 2007 

153International Scholarly and Scientific Research & Innovation 1(4) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 A
er

os
pa

ce
 a

nd
 M

ec
ha

ni
ca

l E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
4,

 2
00

7 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
41

75
.p

df



 

 

of the reconfigured system is as close to the unimpaired 
system dynamics as possible. 

II. A340 AIRCRAFT MODEL 
An in-flight icing identification and reconfiguration 

procedure is designed and applied to an unstable multi-input 
multi-output model of an Airbus 340. The aircraft is stabilized 
by means of a standard linear quadratic optimal controller. 
The flight of aircraft TC-JDM in Turkish Airlines, flying at 
30000 feet height over South Asia on 30 March 2003, is 
chosen as the model. From take-off to landing, all flight data 
of 2.5-hour flight are downloaded from Flight Data Recorder 
(FDR) (Aykan [14]). By using these flight data, stability and 
control derivatives are calculated according to the procedures 
described as in Roskam [15] and Advanced Aircraft Analysis 
[16], and the state-space model of the aircraft is obtained as 
follows: 

)()()()1( kkkk GwBuAxx ++=+                (1) 

where A is the system matrix, B is the control distribution 
matrix, u is the control input vector, and w is the system noise 
vector with the following statistical characteristics; 

E[w(k)] = 0;    E[w(k) wT(j)] = Q(k)δ(kj)     (2) 

G is the transition matrix of system noise, and δ(kj) is the 
Kronecker symbol. The aircraft state variables are: 

[ ]Trpβθqαv Ψ= φx           (3) 

where, v is the forward velocity, α is the angle of attack, q is 
the pitch rate, θ is the pitch angle, β is the side-slip angle, p is 
the roll rate, r is the yaw rate, φ is the roll angle, and ψ is the 
yaw angle. The aircraft model has four control surfaces and 
four control inputs are: 

       ][ RAEH δδδδ=u                 (4) 

where δh , δe , δa and δr are the deflections of stabilizer, 
elevator, aileron and rudder, respectively. The system and 
control distribution matrices are as in [14]. 

The measurement vector can be written as:  

                         y(k) = C x(k) + v(k)                           (5) 

where C is the measurement matrix, which is a 9x9 unit 
matrix, v(k) is the measurement disturbance, and its mean and 
correlation matrix respectively are: 

E[v(k)] = 0;    E[v(k) vT(j)] = R(k)δ(kj)             (6) 

III. PARAMETERS AFFECTED BY ICING 
Icing results in decreasing aircraft aerodynamic 

performance which are affected by changes in lift, drag and 
pitch moment, and their effectiveness with regard to aircraft 
position angles and velocities. This effect may be reflected in 
stability and control derivatives in the aircraft linearized 
dynamic equations. The researches in NASA Icing Research 
Group and Icing Institute of Illinois University (Melody et al. 

[17]) showed that the most affected parameters from in-flight 
wing icing are:  
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where
αDC , 

αLC , 
qLC , 

αMC , and 
qMC are stability 

derivatives; CD, CL, CM are drag, lift and pitch moment 
coefficients, respectively. The derivative of lift coefficient 
with respect to angle of attack, 

αLC , includes the components 

due to the wing, the fuselage, and the tail for the total 
airframe.  

When aircraft linearized equations are examined, it is easily 
found that all these derivatives are in the matrix A. 
Considerably affected parameters are included in the elements 
A(1,2), A(2,2), A(2,3), A(3,2), A(3,3), and can be written as;                  

)-()2,1( 1 LD CCk
α

=A , )()2,2( 2 DL CCk +=
α

A , 
qLCk3)3,2( =A , 

αMCk4)2,3( =A , 
qMCk5)3,3( =A where ik , i=1,2,3,4,5,  consists 

of all other flight parameters which are considered constant 
for a certain time interval. These constants may be calculated 
from certain flight conditions such as take off, climb, cruise, 
and landing. 

In the simulations in Section 6, A(1,2), A(2,2), A(2,3), 
A(3,2), and A(3,3) are expressed as a12, a22, a23, a32, and a33, 
respectively. In this study, duration of two minutes, four ice-
affected parameters are assumed to decrease their halves, and 
one parameter to increase fifty percent more in parallel to 
studies in the literature (Brag et al. [6], McLean [18]). 

IV. DESIGN OF NEURAL NETWORK MODEL TO ESTIMATE 
ICING AFFECTED PARAMETERS 

Schuchard et al. [9] introduced a neural network system that 
detects and classifies aircraft ice accretion in order to improve 
flight performance and safety. Neural networks are developed 
for use within an ice management system that monitors icing 
and its effects upon performance, stability and control. 

Neural networks have increasingly been shown as viable 
tools for mapping nonlinear systems and for the purpose of 
parameter identification. It is very efficient method in the 
analysis of nonlinear and complex models if enough data are 
available for its training phase. Unfortunately, there is no 
enough training data available regarding stability and control 
derivatives. There are little data only for a few research 
aircraft obtained from tunnel tests or flight tests. After enough 
data are picked up from other methods, neural networks may 
be used effectively for control. This study aims to generate 
reconfigured control vector followed by identifying the 
stability derivatives of iced configuration.  

A quick response in a certain time frame is especially 
critical for icing determination since ice accretion during 
flight at low altitude requires immediate action. NNs also have 
the capability to be trained on-line using real data or off-line 
with recorded or simulated data (Campa et al. [19]). 

In this study, since there are nine states measured and five 
parameters to be estimated, a neural network structure having 
nine inputs from the Kalman filter and five outputs is 
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presented as shown in Fig. 1. Input and output layers have 
sigmoid and linear activation functions, respectively.  

The data to train the NN are generated by simulation as 
follows: first icing parameters are assumed fixed and the states 
are observed. Then the observed states are used as inputs to 
the NN to estimate the weights to give the icing parameters. 

For training method the Levenberg-Marquardt 
Backpropagation algorithm is used to maintain second-order 
training speed without having to compute the Hessian matrix, 
H. When the performance function has the form of a sum of 
squares (as is typical in training feedforward networks), then 
the Hessian matrix can be approximated as 

     JJH T=                             (8) 

and the gradient, g, can be computed as   

                        eJg T=                         (9) 

where J is the Jacobian matrix that contains first derivatives of 
the network errors with respect to the weights and biases, and 
e is a vector of network errors. The Jacobian matrix can be 
computed through a standard backpropagation technique that 
is much less complex than computing the Hessian matrix.  

 
Fig. 1 Structure of neural network for icing identification 

The Levenberg-Marquardt Algorithm (LMA) uses this 
approximation to the Hessian matrix in the following Newton-
like update:   

   [ ] eJIJJNWNW TT 1
1

−

+ +−= μkk
             (10) 

where NWk is a vector of current weights and biases, and μ  
is the parameter of LMA to make the network faster and more 
accurate every step forward since μ  can be assigned to allow 
that the above matrix has an inverse. If  μ  is zero, the method 
becomes the basic Newton’s optimization method. When  μ  
is large, this becomes gradient descent with a small step size. 
Newton’s method is quicker and more accurate near an error 

minimum. Therefore, the aim in LMA is to shift towards 
Newton’s method as quickly as possible. 
 

V. CONTROL MIXER APPROACH FOR RECONFIGURATION 
Reconfiguration of the control law after control surface 

faults has been applied by several researchers (Rattan [12], 
Yang and Blanke [20], and Hajiyev and Caliskan [13]). In 
other words, the changes in the control distribution matrix B 
are considered. The new control vector is obtained by using 
the control mixer approach to determine the new gain matrix 
such that the dynamics of the reconfigured system is as close 
to the unimpaired system dynamics as possible.  

If the changes only occur in the matrix A and the changes 
in the matrix B are negligible the technique is applied as 
follows: 
 

     ox = (Ao - BKo)xo                       (11) 

After icing that affects the matrix A, the dynamics turns out to 
be, 

ix = (Ai - BKi) xi                        (12) 

To keep the dynamics the same as before, the following 
condition must be held, 

        Ao - BKo = Ai - BKi                  (13) 

The gain matrix for the iced system is obtained as, 
 

Ki = B# (Ai - Ao + BKi)          (14) 

where Ao : nominal (non-iced) system matrix, Ai : iced system 
matrix, Ki : gain matrix for impaired system, Ko : gain matrix 
for unimpaired system, B#: pseudo-inverse of the matrix B that 
can be computed as, 

B# = (BT B)-1 BT              (15) 

The simulations in this paper prove that this novel modified 
control mixer approach can also be used when the system 
faults have occurred. 

VI. SIMULATIONS 

A)  Simulation Results of NN Identification 

The NN identification is applied to A340 A/C model. To 
compensate measurement noise levels during the system 
identification stage, all states are filtered through a Kalman 
Filter. Fig. 2 shows the 5 parameters of A340 in nominal and 
simulated ice conditions. As noticed from the graphs, the 
parameters A(2,2) and A(3,3) are most affected by icing. 
Furthermore, they affect most the dynamics of the system. 
Therefore, in the simulations, these parameter effects are 
observed more. Fig. 3 shows the training error and the goal. 
The training continues until the training error becomes less 
than the goal. In Fig. 4 through 6 neural network outputs at 
training stage for the ice affected parameters are shown. 
Dotted lines and solid lines represent neural network outputs 
and targets, respectively. Initially, the errors between the NN 
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outputs and targets are big. However, the errors become small 
after training. 
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Fig. 2 Parameters of A340 in nominal and simulated ice conditions 
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Fig. 3 Training performance 
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B)  Simulation Results of Control Mixer Reconfiguration 

After identifying the icing parameters of the system matrix, 
the control mixer approach is applied to A340 model with the 
iced system matrix Ai. Although the aircraft with nominal 
linear quadratic control has become unstable due to icing, the 
reconfiguration stabilizes the system and keeps the 
performance very close to the one prior to icing. The control 
mixer approach is also compared with the new linear quadratic 
control and it is observed to be good enough or even better for 
some states. The first line in Fig. 7 shows the nominal 
response ( ____ ) and icing response with the nominal linear 
quadratic control law for A0 ( ._._._._ ), and the error between 
them. The second line in Fig. 7 shows the nominal response ( 
____ ) and icing response with the new linear quadratic 
control law for Ai ( _ _ _ ), and the error between them. The 
third line in Fig. 7 shows the nominal response ( ____ ) and 
icing response with the control mixer reconfiguration for Ai ( . 
. . . ), and the error between them.  

The first lines in Figs. 8-11 show the nominal response ( 
____ ) and icing response with the nominal linear quadratic 
control law for A0 ( ._._._._ ). The second lines in Figs. 8-11 
show the nominal response ( ____ ) and icing response with 
the new linear quadratic control law for Ai ( _ _ _ ). The third 
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lines in Figs. 8-11 show the nominal response ( ____ ) and 
icing response with the control mixer reconfiguration for Ai ( . 
. . . ).  

Although the states have become unstable after icing, the 
control mixer gain does not only stabilize them but also keeps 
the performance close to one prior to icing. The 
reconfiguration based on control mixer approach exhibits a 
similar performance to the linear quadratic control or even 
better than that. 

 
t (min) 

Fig. 7 Responses and errors of forward velocity for three different 
control laws 

 
v0: nominal forward velocity ____ 
vi0: icing forward velocity with the nominal linear quadratic 
control ._._._ 
vin: icing forward velocity with the new linear quadratic 
control _ _ _ _ 
vi: icing forward velocity with the control mixer gain . . . . . 

 

t (min) 

Fig. 8 Responses of angle of attack for three different control laws 

alpha0 : nominal angle of attack _____ 
alphai0 : icing angle of attack with the nominal linear 
quadratic control ._._._._ 
alphain : icing angle of attack with the new linear quadratic 
control _ _ _ _ _ 
alphai  : icing angle of attack with the control mixer gain . . . .. 
 

 
t (min) 

Fig. 9 Responses of pitch rate for three different control laws 

 
q0 : nominal pitch rate ______ 
qi0 : icing pitch rate with the nominal linear quadratic 
control ._._._._._ 
qin : icing pitch rate with the new linear quadratic control _ 
_ _ _ _ 
qi : icing pitch rate with the control mixer gain . . . . . . 
 

 
t (min) 

Fig. 10 Responses of side-slip angle for three different control laws 
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beta0 : nominal side-slip angle ______ 
betai0 : icing side-slip angle with the nominal linear quadratic 
control _._._._._ 
betain : icing side-slip angle with the new linear quadratic 
control _ _ _ _ _ _ 

betai : icing side-slip angle with the control mixer gain . . . . . . 

 

 
t (min) 

Fig. 11 Responses of roll rate for three different control laws 

 
p0 : nominal roll rate ________ 
pi0 : icing roll rate with the nominal linear quadratic control 
_. _._._._. 
pin : icing roll rate with the new linear quadratic control _ _ 
_ _ _ _ 
pi : icing roll rate with the control mixer gain . . . . . . . 
 

VII. CONCLUSION 
In this paper, the NN identification and reconfiguration of 

A340 aircraft subject to icing has been presented. Five 
parameters primarily affected by icing have been taken in 
accordance with the previous study results. The Levenberg 
Marquard Backpropogation algorithm has been used as the 
identification technique. The technique has been developed to 
estimate the aircraft stability derivatives subject to change due 
to icing. In the simulations, the longitudinal and lateral 
dynamics of an A-340 aircraft dynamic model have been 
considered, and the estimation of the stability derivatives 
affected by icing has been performed. The obtained results 
give an insight about that different types of icing detection are 
possible via the proposed method. The simulations have also 
shown that the modified control mixer approach could be 
applied to compensate for instability and performance 
degradation due to icing. 
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