Search results for: Adaptive momentum
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 923

Search results for: Adaptive momentum

743 The Application of Adaptive Tabu Search Algorithm and Averaging Model to the Optimal Controller Design of Buck Converters

Authors: T. Sopapirm, K-N. Areerak, K-L. Areerak, A. Srikaew

Abstract:

The paper presents the applications of artificial intelligence technique called adaptive tabu search to design the controller of a buck converter. The averaging model derived from the DQ and generalized state-space averaging methods is applied to simulate the system during a searching process. The simulations using such averaging model require the faster computational time compared with that of the full topology model from the software packages. The reported model is suitable for the work in the paper in which the repeating calculation is needed for searching the best solution. The results will show that the proposed design technique can provide the better output waveforms compared with those designed from the classical method.

Keywords: Buck converter, adaptive tabu search, DQ method, generalized state-space averaging method, modeling and simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
742 Adaptive Kalman Filter for Noise Estimation and Identification with Bayesian Approach

Authors: Farhad Asadi, S. Hossein Sadati

Abstract:

Bayesian approach can be used for parameter identification and extraction in state space models and its ability for analyzing sequence of data in dynamical system is proved in different literatures. In this paper, adaptive Kalman filter with Bayesian approach for identification of variances in measurement parameter noise is developed. Next, it is applied for estimation of the dynamical state and measurement data in discrete linear dynamical system. This algorithm at each step time estimates noise variance in measurement noise and state of system with Kalman filter. Next, approximation is designed at each step separately and consequently sufficient statistics of the state and noise variances are computed with a fixed-point iteration of an adaptive Kalman filter. Different simulations are applied for showing the influence of noise variance in measurement data on algorithm. Firstly, the effect of noise variance and its distribution on detection and identification performance is simulated in Kalman filter without Bayesian formulation. Then, simulation is applied to adaptive Kalman filter with the ability of noise variance tracking in measurement data. In these simulations, the influence of noise distribution of measurement data in each step is estimated, and true variance of data is obtained by algorithm and is compared in different scenarios. Afterwards, one typical modeling of nonlinear state space model with inducing noise measurement is simulated by this approach. Finally, the performance and the important limitations of this algorithm in these simulations are explained. 

Keywords: adaptive filtering, Bayesian approach Kalman filtering approach, variance tracking

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 618
741 Optimal Based Damping Controllers of Unified Power Flow Controller Using Adaptive Tabu Search

Authors: Rungnapa Taithai, Anant Oonsivilai

Abstract:

This paper presents optimal based damping controllers of Unified Power Flow Controller (UPFC) for improving the damping power system oscillations. The design problem of UPFC damping controller and system configurations is formulated as an optimization with time domain-based objective function by means of Adaptive Tabu Search (ATS) technique. The UPFC is installed in Single Machine Infinite Bus (SMIB) for the performance analysis of the power system and simulated using MATLAB-s simulink. The simulation results of these studies showed that designed controller has an tremendous capability in damping power system oscillations.

Keywords: Adaptive Tabu Search (ATS), damping controller, Single Machine Infinite Bus (SMIB), Unified Power Flow Controller (UPFC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2482
740 Modeling and Control Design of a Centralized Adaptive Cruise Control System

Authors: Markus Mazzola, Gunther Schaaf

Abstract:

A vehicle driving with an Adaptive Cruise Control System (ACC) is usually controlled decentrally, based on the information of radar systems and in some publications based on C2X-Communication (CACC) to guarantee stable platoons. In this paper we present a Model Predictive Control (MPC) design of a centralized, server-based ACC-System, whereby the vehicular platoon is modeled and controlled as a whole. It is then proven that the proposed MPC design guarantees asymptotic stability and hence string stability of the platoon. The Networked MPC design is chosen to be able to integrate system constraints optimally as well as to reduce the effects of communication delay and packet loss. The performance of the proposed controller is then simulated and analyzed in an LTE communication scenario using the LTE/EPC Network Simulator LENA, which is based on the ns-3 network simulator.

Keywords: Adaptive Cruise Control, Centralized Server, Networked Model Predictive Control, String Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2833
739 Optimization of a Three-Term Backpropagation Algorithm Used for Neural Network Learning

Authors: Yahya H. Zweiri

Abstract:

The back-propagation algorithm calculates the weight changes of an artificial neural network, and a two-term algorithm with a dynamically optimal learning rate and a momentum factor is commonly used. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third term increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and optimization approaches for evaluating the learning parameters are required to facilitate the application of the three terms BP algorithm. This paper considers the optimization of the new back-propagation algorithm by using derivative information. A family of approaches exploiting the derivatives with respect to the learning rate, momentum factor and proportional factor is presented. These autonomously compute the derivatives in the weight space, by using information gathered from the forward and backward procedures. The three-term BP algorithm and the optimization approaches are evaluated using the benchmark XOR problem.

Keywords: Neural Networks, Backpropagation, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
738 A Conservative Multi-block Algorithm for Two-dimensional Numerical Model

Authors: Yaoxin Zhang, Yafei Jia, Sam S.Y. Wang

Abstract:

A multi-block algorithm and its implementation in two-dimensional finite element numerical model CCHE2D are presented. In addition to a conventional Lagrangian Interpolation Method (LIM), a novel interpolation method, called Consistent Interpolation Method (CIM), is proposed for more accurate information transfer across the interfaces. The consistent interpolation solves the governing equations over the auxiliary elements constructed around the interpolation nodes using the same numerical scheme used for the internal computational nodes. With the CIM, the momentum conservation can be maintained as well as the mass conservation. An imbalance correction scheme is used to enforce the conservation laws (mass and momentum) across the interfaces. Comparisons of the LIM and the CIM are made using several flow simulation examples. It is shown that the proposed CIM is physically more accurate and produces satisfactory results efficiently.

Keywords: Multi-block algorithm, conservation, interpolation, numerical model, flow simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792
737 An Impulse-Momentum Approach to Swing-Up Control of Double Inverted Pendulum on a Cart

Authors: Thamer Ali Albahkali

Abstract:

The challenge in the swing-up problem of double inverted pendulum on a cart (DIPC) is to design a controller that bring all DIPC's states, especially the joint angles of the two links, into the region of attraction of the desired equilibrium. This paper proposes a new method to swing-up DIPC based on a series of restto- rest maneuvers of the first link about its vertically upright configuration while holding the cart fixed at the origin. The rest-torest maneuvers are designed such that each one results in a net gain in energy of the second link. This results in swing-up of DIPC-s configuration to the region of attraction of the desired equilibrium. A three-step algorithm is provided for swing-up control followed by the stabilization step. Simulation results with a comparison to an experimental work done in the literature are presented to demonstrate the efficacy of the approach.

Keywords: Double Inverted pendulum, Impulse, momentum, underactuated

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
736 Issues in Deploying Smart Antennas in Mobile Radio Networks

Authors: Rameshwar Kawitkar

Abstract:

With the exponentially increasing demand for wireless communications the capacity of current cellular systems will soon become incapable of handling the growing traffic. Since radio frequencies are diminishing natural resources, there seems to be a fundamental barrier to further capacity increase. The solution can be found in smart antenna systems. Smart or adaptive antenna arrays consist of an array of antenna elements with signal processing capability, that optimize the radiation and reception of a desired signal, dynamically. Smart antennas can place nulls in the direction of interferers via adaptive updating of weights linked to each antenna element. They thus cancel out most of the co-channel interference resulting in better quality of reception and lower dropped calls. Smart antennas can also track the user within a cell via direction of arrival algorithms. This implies that they are more advantageous than other antenna systems. This paper focuses on few issues about the smart antennas in mobile radio networks.

Keywords: Smart/Adaptive Antenna, Multipath fading, Beamforming, Radio propagation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2666
735 Pilot Induced Oscillations Adaptive Suppression in Fly-By-Wire Systems

Authors: Herlandson C. Moura, Jorge H. Bidinotto, Eduardo M. Belo

Abstract:

The present work proposes the development of an adaptive control system which enables the suppression of Pilot Induced Oscillations (PIO) in Digital Fly-By-Wire (DFBW) aircrafts. The proposed system consists of a Modified Model Reference Adaptive Control (M-MRAC) integrated with the Gain Scheduling technique. The PIO oscillations are detected using a Real Time Oscillation Verifier (ROVER) algorithm, which then enables the system to switch between two reference models; one in PIO condition, with low proneness to the phenomenon and another one in normal condition, with high (or medium) proneness. The reference models are defined in a closed loop condition using the Linear Quadratic Regulator (LQR) control methodology for Multiple-Input-Multiple-Output (MIMO) systems. The implemented algorithms are simulated in software implementations with state space models and commercial flight simulators as the controlled elements and with pilot dynamics models. A sequence of pitch angles is considered as the reference signal, named as Synthetic Task (Syntask), which must be tracked by the pilot models. The initial outcomes show that the proposed system can detect and suppress (or mitigate) the PIO oscillations in real time before it reaches high amplitudes.

Keywords: Adaptive control, digital fly-by-wire, oscillations suppression, PIO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 743
734 Improved Fuzzy Neural Modeling for Underwater Vehicles

Authors: O. Hassanein, Sreenatha G. Anavatti, Tapabrata Ray

Abstract:

The dynamics of the Autonomous Underwater Vehicles (AUVs) are highly nonlinear and time varying and the hydrodynamic coefficients of vehicles are difficult to estimate accurately because of the variations of these coefficients with different navigation conditions and external disturbances. This study presents the on-line system identification of AUV dynamics to obtain the coupled nonlinear dynamic model of AUV as a black box. This black box has an input-output relationship based upon on-line adaptive fuzzy model and adaptive neural fuzzy network (ANFN) model techniques to overcome the uncertain external disturbance and the difficulties of modelling the hydrodynamic forces of the AUVs instead of using the mathematical model with hydrodynamic parameters estimation. The models- parameters are adapted according to the back propagation algorithm based upon the error between the identified model and the actual output of the plant. The proposed ANFN model adopts a functional link neural network (FLNN) as the consequent part of the fuzzy rules. Thus, the consequent part of the ANFN model is a nonlinear combination of input variables. Fuzzy control system is applied to guide and control the AUV using both adaptive models and mathematical model. Simulation results show the superiority of the proposed adaptive neural fuzzy network (ANFN) model in tracking of the behavior of the AUV accurately even in the presence of noise and disturbance.

Keywords: AUV, AUV dynamic model, fuzzy control, fuzzy modelling, adaptive fuzzy control, back propagation, system identification, neural fuzzy model, FLNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152
733 The Optimized Cascade PI Controllers of the Generator Control Unit in the Aircraft Power System

Authors: W. Chayinthu, K-N. Areerak, K-L. Areerak, A. Srikaew

Abstract:

This paper presents the optimal controller design of the generator control unit in the aircraft power system. The adaptive tabu search technique is applied to tune the controller parameters until the best terminal output voltage of generator is achieved. The output response from the system with the controllers designed by the proposed technique is compared with those from the conventional method. The transient simulations using the commercial software package show that the controllers designed from the adaptive tabu search algorithm can provide the better output performance compared with the result from the classical method. The proposed design technique is very flexible and useful for electrical aircraft engineers.

Keywords: Cascade PI controllers, DQ method, Adaptive tabusearch, Generator control unit, Aircraft power system, Modeling, Simulation, Artificial Intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2650
732 The Performance Analysis of Error Saturation Nonlinearity LMS in Impulsive Noise based on Weighted-Energy Conservation

Authors: T Panigrahi, G Panda, Mulgrew

Abstract:

This paper introduces a new approach for the performance analysis of adaptive filter with error saturation nonlinearity in the presence of impulsive noise. The performance analysis of adaptive filters includes both transient analysis which shows that how fast a filter learns and the steady-state analysis gives how well a filter learns. The recursive expressions for mean-square deviation(MSD) and excess mean-square error(EMSE) are derived based on weighted energy conservation arguments which provide the transient behavior of the adaptive algorithm. The steady-state analysis for co-related input regressor data is analyzed, so this approach leads to a new performance results without restricting the input regression data to be white.

Keywords: Error saturation nonlinearity, transient analysis, impulsive noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
731 Trimmed Mean as an Adaptive Robust Estimator of a Location Parameter for Weibull Distribution

Authors: Carolina B. Baguio

Abstract:

One of the purposes of the robust method of estimation is to reduce the influence of outliers in the data, on the estimates. The outliers arise from gross errors or contamination from distributions with long tails. The trimmed mean is a robust estimate. This means that it is not sensitive to violation of distributional assumptions of the data. It is called an adaptive estimate when the trimming proportion is determined from the data rather than being fixed a “priori-. The main objective of this study is to find out the robustness properties of the adaptive trimmed means in terms of efficiency, high breakdown point and influence function. Specifically, it seeks to find out the magnitude of the trimming proportion of the adaptive trimmed mean which will yield efficient and robust estimates of the parameter for data which follow a modified Weibull distribution with parameter λ = 1/2 , where the trimming proportion is determined by a ratio of two trimmed means defined as the tail length. Secondly, the asymptotic properties of the tail length and the trimmed means are also investigated. Finally, a comparison is made on the efficiency of the adaptive trimmed means in terms of the standard deviation for the trimming proportions and when these were fixed a “priori". The asymptotic tail lengths defined as the ratio of two trimmed means and the asymptotic variances were computed by using the formulas derived. While the values of the standard deviations for the derived tail lengths for data of size 40 simulated from a Weibull distribution were computed for 100 iterations using a computer program written in Pascal language. The findings of the study revealed that the tail lengths of the Weibull distribution increase in magnitudes as the trimming proportions increase, the measure of the tail length and the adaptive trimmed mean are asymptotically independent as the number of observations n becomes very large or approaching infinity, the tail length is asymptotically distributed as the ratio of two independent normal random variables, and the asymptotic variances decrease as the trimming proportions increase. The simulation study revealed empirically that the standard error of the adaptive trimmed mean using the ratio of tail lengths is relatively smaller for different values of trimming proportions than its counterpart when the trimming proportions were fixed a 'priori'.

Keywords: Adaptive robust estimate, asymptotic efficiency, breakdown point, influence function, L-estimates, location parameter, tail length, Weibull distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2072
730 Construction of a Low Carbon Eco-City Index System Based on CAS Theory: A Case of Hexi Newtown in Nanjing, China

Authors: Xu Tao, Yilun Xu, Dingwei Xiang, Yaofei Sun

Abstract:

The practice of urban planning and construction based on the concept of the “low carbon eco-city” has been universally accepted by the academic community in response to urban issues such as population, resources, environment, and social development. Based on this, the current article first analyzes the concepts of low carbon eco-city, then builds a complex adaptive system (CAS) theory based on Chinese traditional philosophical thinking, and analyzes the adaptive relationship between material and non-material elements. A three-dimensional evaluation model of natural ecology, economic low carbon, and social harmony was constructed. Finally, the construction of a low carbon eco-city index system in Hexi Newtown of Nanjing was used as an example to verify the effectiveness of the research results; this paradigm provides a new way to achieve a low carbon eco-city system.

Keywords: Complex adaptive system, low carbon ecology, index system, model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 995
729 An Efficient Separation for Convolutive Mixtures

Authors: Salah Al-Din I. Badran, Samad Ahmadi, Dylan Menzies, Ismail Shahin

Abstract:

This paper describes a new efficient blind source separation method; in this method we uses a non-uniform filter bank and a new structure with different sub-bands. This method provides a reduced permutation and increased convergence speed comparing to the full-band algorithm. Recently, some structures have been suggested to deal with two problems: reducing permutation and increasing the speed of convergence of the adaptive algorithm for correlated input signals. The permutation problem is avoided with the use of adaptive filters of orders less than the full-band adaptive filter, which operate at a sampling rate lower than the sampling rate of the input signal. The decomposed signals by analysis bank filter are less correlated in each sub-band than the input signal at full-band, and can promote better rates of convergence.

Keywords: Blind source separation (BSS), estimates, full-band, mixtures, Sub-band.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
728 A Weighted Sum Technique for the Joint Optimization of Performance and Power Consumption in Data Centers

Authors: Samee Ullah Khan, C.Ardil

Abstract:

With data centers, end-users can realize the pervasiveness of services that will be one day the cornerstone of our lives. However, data centers are often classified as computing systems that consume the most amounts of power. To circumvent such a problem, we propose a self-adaptive weighted sum methodology that jointly optimizes the performance and power consumption of any given data center. Compared to traditional methodologies for multi-objective optimization problems, the proposed self-adaptive weighted sum technique does not rely on a systematical change of weights during the optimization procedure. The proposed technique is compared with the greedy and LR heuristics for large-scale problems, and the optimal solution for small-scale problems implemented in LINDO. the experimental results revealed that the proposed selfadaptive weighted sum technique outperforms both of the heuristics and projects a competitive performance compared to the optimal solution.

Keywords: Meta-heuristics, distributed systems, adaptive methods, resource allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
727 Neural Adaptive Switching Control of Robotic Systems

Authors: A. Denker, U. Akıncıoğlu

Abstract:

In this paper a neural adaptive control method has been developed and applied to robot control. Simulation results are presented to verify the effectiveness of the controller. These results show that the performance by using this controller is better than those which just use either direct inverse control or predictive control. In addition, they show that the resulting is a useful method which combines the advantages of both direct inverse control and predictive control.

Keywords: Neural networks, robotics, direct inverse control, predictive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2182
726 A Novel Stator Resistance Estimation Method and Control Design of Speed-Sensorless Induction Motor Drives

Authors: N. Ben Si Ali, N. Benalia, N. Zarzouri

Abstract:

Speed sensorless systems are intensively studied during recent years; this is mainly due to their economical benefit and fragility of mechanical sensors and also the difficulty of installing this type of sensor in many applications. These systems suffer from instability problems and sensitivity to parameter mismatch at low speed operation. In this paper an analysis of adaptive observer stability with stator resistance estimation is given.

Keywords: Motor drive, sensorless control, adaptive observer, stator resistance estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2213
725 Finite Time Symplectic Synchronization between Two Different Chaotic Systems

Authors: Chunming Xu

Abstract:

In this paper, the finite-time symplectic synchronization between two different chaotic systems is investigated. Based on the finite-time stability theory, a simple adaptive feedback scheme is proposed to realize finite-time symplectic synchronization for the Lorenz and L¨u systems. Numerical examples are provided to show the effectiveness of the proposed method.

Keywords: Chaotic systems, symplectic synchronization, finite-time synchronization, adaptive controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 960
724 Digital Predistorter with Pipelined Architecture Using CORDIC Processors

Authors: Kyunghoon Kim, Sungjoon Shim, Jun Tae Kim, Jong Tae Kim

Abstract:

In a wireless communication system, a predistorter(PD) is often employed to alleviate nonlinear distortions due to operating a power amplifier near saturation, thereby improving the system performance and reducing the interference to adjacent channels. This paper presents a new adaptive polynomial digital predistorter(DPD). The proposed DPD uses Coordinate Rotation Digital Computing(CORDIC) processors and PD process by pipelined architecture. It is simpler and faster than conventional adaptive polynomial DPD. The performance of the proposed DPD is proved by MATLAB simulation.

Keywords: DPD, CORDIC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
723 Statistical Genetic Algorithm

Authors: Mohammad Ali Tabarzad, Caro Lucas, Ali Hamzeh

Abstract:

Adaptive Genetic Algorithms extend the Standard Gas to use dynamic procedures to apply evolutionary operators such as crossover, mutation and selection. In this paper, we try to propose a new adaptive genetic algorithm, which is based on the statistical information of the population as a guideline to tune its crossover, selection and mutation operators. This algorithms is called Statistical Genetic Algorithm and is compared with traditional GA in some benchmark problems.

Keywords: Genetic Algorithms, Statistical Information ofthe Population, PAUX, SSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753
722 Implementing an Adaptive Behavior for Spread Spectrum Watermarking Procedures

Authors: Franco Frattolillo

Abstract:

The advances in multimedia and networking technologies have created opportunities for Internet pirates, who can easily copy multimedia contents and illegally distribute them on the Internet, thus violating the legal rights of content owners. This paper describes how a simple and well-known watermarking procedure based on a spread spectrum method and a watermark recovery by correlation can be improved to effectively and adaptively protect MPEG-2 videos distributed on the Internet. In fact, the procedure, in its simplest form, is vulnerable to a variety of attacks. However, its security and robustness have been increased, and its behavior has been made adaptive with respect to the video terminals used to open the videos and the network transactions carried out to deliver them to buyers. In fact, such an adaptive behavior enables the proposed procedure to efficiently embed watermarks, and this characteristic makes the procedure well suited to be exploited in web contexts, where watermarks usually generated from fingerprinting codes have to be inserted into the distributed videos “on the fly", i.e. during the purchase web transactions.

Keywords: Copyright protection, digital watermarking, intellectualproperty protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
721 Improvement of Synchronous Machine Dynamic Characteristics via Neural Network Based Controllers

Authors: S. A. Gawish, F. A. Khalifa, R. M. Mostafa

Abstract:

This paper presents Simulation and experimental study aimed at investigating the effectiveness of an adaptive artificial neural network stabilizer on enhancing the damping torque of a synchronous generator. For this purpose, a power system comprising a synchronous generator feeding a large power system through a short tie line is considered. The proposed adaptive neuro-control system consists of two multi-layered feed forward neural networks, which work as a plant model identifier and a controller. It generates supplementary control signals to be utilized by conventional controllers. The details of the interfacing circuits, sensors and transducers, which have been designed and built for use in tests, are presented. The synchronous generator is tested to investigate the effect of tuning a Power System Stabilizer (PSS) on its dynamic stability. The obtained simulation and experimental results verify the basic theoretical concepts.

Keywords: Adaptive artificial neural network, power system stabilizer, synchronous generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
720 Hybrid Feature and Adaptive Particle Filter for Robust Object Tracking

Authors: Xinyue Zhao, Yutaka Satoh, Hidenori Takauji, Shun'ichi Kaneko

Abstract:

A hybrid feature based adaptive particle filter algorithm is presented for object tracking in real scenarios with static camera. The hybrid feature is combined by two effective features: the Grayscale Arranging Pairs (GAP) feature and the color histogram feature. The GAP feature has high discriminative ability even under conditions of severe illumination variation and dynamic background elements, while the color histogram feature has high reliability to identify the detected objects. The combination of two features covers the shortage of single feature. Furthermore, we adopt an updating target model so that some external problems such as visual angles can be overcame well. An automatic initialization algorithm is introduced which provides precise initial positions of objects. The experimental results show the good performance of the proposed method.

Keywords: Hybrid feature, adaptive Particle Filter, robust Object Tracking, Grayscale Arranging Pairs (GAP) feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
719 Performance Analysis and Optimization for Diagonal Sparse Matrix-Vector Multiplication on Machine Learning Unit

Authors: Qiuyu Dai, Haochong Zhang, Xiangrong Liu

Abstract:

Efficient matrix-vector multiplication with diagonal sparse matrices is pivotal in a multitude of computational domains, ranging from scientific simulations to machine learning workloads. When encoded in the conventional Diagonal (DIA) format, these matrices often induce computational overheads due to extensive zero-padding and non-linear memory accesses, which can hamper the computational throughput, and elevate the usage of precious compute and memory resources beyond necessity. The ’DIA-Adaptive’ approach, a methodological enhancement introduced in this paper, confronts these challenges head-on by leveraging the advanced parallel instruction sets embedded within Machine Learning Units (MLUs). This research presents a thorough analysis of the DIA-Adaptive scheme’s efficacy in optimizing Sparse Matrix-Vector Multiplication (SpMV) operations. The scope of the evaluation extends to a variety of hardware architectures, examining the repercussions of distinct thread allocation strategies and cluster configurations across multiple storage formats. A dedicated computational kernel, intrinsic to the DIA-Adaptive approach, has been meticulously developed to synchronize with the nuanced performance characteristics of MLUs. Empirical results, derived from rigorous experimentation, reveal that the DIA-Adaptive methodology not only diminishes the performance bottlenecks associated with the DIA format but also exhibits pronounced enhancements in execution speed and resource utilization. The analysis delineates a marked improvement in parallelism, showcasing the DIA-Adaptive scheme’s ability to adeptly manage the interplay between storage formats, hardware capabilities, and algorithmic design. The findings suggest that this approach could set a precedent for accelerating SpMV tasks, thereby contributing significantly to the broader domain of high-performance computing and data-intensive applications.

Keywords: Adaptive method, DIA, diagonal sparse matrices, MLU, sparse matrix-vector multiplication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 233
718 Design of Gain Scheduled Fuzzy PID Controller

Authors: Leehter Yao, Chin-Chin Lin

Abstract:

An adaptive fuzzy PID controller with gain scheduling is proposed in this paper. The structure of the proposed gain scheduled fuzzy PID (GS_FPID) controller consists of both fuzzy PI-like controller and fuzzy PD-like controller. Both of fuzzy PI-like and PD-like controllers are weighted through adaptive gain scheduling, which are also determined by fuzzy logic inference. A modified genetic algorithm called accumulated genetic algorithm is designed to learn the parameters of fuzzy inference system. In order to learn the number of fuzzy rules required for the TSK model, the fuzzy rules are learned in an accumulated way. In other words, the parameters learned in the previous rules are accumulated and updated along with the parameters in the current rule. It will be shown that the proposed GS_FPID controllers learned by the accumulated GA perform well for not only the regular linear systems but also the higher order and time-delayed systems.

Keywords: Gain scheduling, fuzzy PID controller, adaptive control, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4060
717 A Study of Adaptive Fault Detection Method for GNSS Applications

Authors: Je Young Lee, Hee Sung Kim, Kwang Ho Choi, Joonhoo Lim, Sebum Chun, Hyung Keun Lee

Abstract:

This study is purposed to develop an efficient fault detection method for Global Navigation Satellite Systems (GNSS) applications based on adaptive noise covariance estimation. Due to the dependence on radio frequency signals, GNSS measurements are dominated by systematic errors in receiver’s operating environment. In the proposed method, the pseudorange and carrier-phase measurement noise covariances are obtained at time propagations and measurement updates in process of Carrier-Smoothed Code (CSC) filtering, respectively. The test statistics for fault detection are generated by the estimated measurement noise covariances. To evaluate the fault detection capability, intentional faults were added to the filed-collected measurements. The experiment result shows that the proposed method is efficient in detecting unhealthy measurements and improves GNSS positioning accuracy against fault occurrences.

Keywords: Adaptive estimation, fault detection, GNSS, residual.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2553
716 Elitist Self-Adaptive Step-Size Search in Optimum Sizing of Steel Structures

Authors: Oğuzhan Hasançebi, Saeid Kazemzadeh Azad

Abstract:

This paper covers application of an elitist selfadaptive
step-size search (ESASS) to optimum design of steel
skeletal structures. In the ESASS two approaches are considered for
improving the convergence accuracy as well as the computational
efficiency of the original technique namely the so called selfadaptive
step-size search (SASS). Firstly, an additional randomness
is incorporated into the sampling step of the technique to preserve
exploration capability of the algorithm during the optimization.
Moreover, an adaptive sampling scheme is introduced to improve the
quality of final solutions. Secondly, computational efficiency of the
technique is accelerated via avoiding unnecessary analyses during the
optimization process using an upper bound strategy. The numerical
results demonstrate the usefulness of the ESASS in the sizing
optimization problems of steel truss and frame structures.

Keywords: Structural design optimization, optimal sizing, metaheuristics, self-adaptive step-size search, steel trusses, steel frames.}

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
715 Downtrend Algorithm and Hedging Strategy in Futures Market

Authors: S. Masteika, A.V. Rutkauskas, A. Tamosaitis

Abstract:

The paper investigates downtrend algorithm and trading strategy based on chart pattern recognition and technical analysis in futures market. The proposed chart formation is a pattern with the lowest low in the middle and one higher low on each side. The contribution of this paper lies in the reinforcement of statements about the profitability of momentum trend trading strategies. Practical benefit of the research is a trading algorithm in falling markets and back-test analysis in futures markets. When based on daily data, the algorithm has generated positive results, especially when the market had downtrend period. Downtrend algorithm can be applied as a hedge strategy against possible sudden market crashes. The proposed strategy can be interesting for futures traders, hedge funds or scientific researchers performing technical or algorithmic market analysis based on momentum trend trading.

Keywords: trading algorithm, chart pattern, downtrend trading, futures market, hedging

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3357
714 A Family of Affine Projection Adaptive Filtering Algorithms With Selective Regressors

Authors: Mohammad Shams Esfand Abadi, Nader Hadizadeh Kashani, Vahid Mehrdad

Abstract:

In this paper we present a general formalism for the establishment of the family of selective regressor affine projection algorithms (SR-APA). The SR-APA, the SR regularized APA (SR-RAPA), the SR partial rank algorithm (SR-PRA), the SR binormalized data reusing least mean squares (SR-BNDR-LMS), and the SR normalized LMS with orthogonal correction factors (SR-NLMS-OCF) algorithms are established by this general formalism. We demonstrate the performance of the presented algorithms through simulations in acoustic echo cancellation scenario.

Keywords: Adaptive filter, affine projection, selective regressor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573