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Abstract—In this paper we present a general formalism for the
establishment of the family of selective regressor affine projection
algorithms (SR-APA). The SR-APA, the SR regularized APA (SR-R-
APA), the SR partial rank algorithm (SR-PRA), the SR binormalized
data reusing least mean squares (SR-BNDR-LMS), and the SR nor-
malized LMS with orthogonal correction factors (SR-NLMS-OCF)
algorithms are established by this general formalism. We demonstrate
the performance of the presented algorithms through simulations in
acoustic echo cancellation scenario.
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I. INTRODUCTION

ADAPTIVE filtering is an important subfield of digital sig-
nal processing having been actively researched for more

than four decades and having important applications such as
noise cancellation, system identification, telecommunications
channel equalization, and telephony acoustic and network echo
cancellation [1], [2], [3]. In some of these applications, a large
number of filter coefficients are needed to achieve an accept-
able performance. Therefore the computational complexity is
the main problem in these applications.

Several adaptive filter algorithms such as the adaptive filter
algorithms with selective partial updates (SPU) have been
proposed to solve this problem. The Max-NLMS [4], the
MMax-NLMS [5], [6], the variants of the selective partial
update normalized least mean square algorithms (SPU-NLMS)
[7], [8], [9], and the SPU affine projection algorithm (SPU-
APA) [8] are important examples of this family of adaptive
filter algorithms.

Recently, an affine projection adaptive filtering algorithm
with selective regressors (SR) was proposed in [10]. This paper
presents a novel affine projection algorithm which reduces
computational complexity by optimally selecting a subset of
input regressors at every iteration.

In this paper we extend the approach in [10] to present
the family of SR-AP algorithms. The SR regularized APA
(SR-R-APA), the SR partial rank algorithm (SR-PRA), the SR
binormalized data reusing LMS (SR-BNDR-LMS), and the SR
NLMS with orthogonal correction factors (SR-NLMS-OCF)
are established through the general formalism.

What we propose in this paper can be summarized as
follows:
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• The establishment of the family AP algorithms.
• Extension of the selective regressor approach, and the

establishment of the family of SR-AP algorithms.
• Demonstrating of the presented algorithms in acoustic

echo cancellation scenario.
This paper is organized as follows. In Section II, we presents

the data model and general update equation for the family of
AP algorithms. In the next section, the family of SR-AP al-
gorithms is introduced. Section VI presents the computational
complexity of the SR-AP algorithm. We conclude the paper by
showing a comprehensive set of simulation results in system
identification and acoustic echo cancellation scenarios.

Throughout the paper, the following notations are used:

‖.‖ Euclidean norm of a vector.
Tr(.) Trace of a matrix.
(.)T Transpose of a vector or a matrix.

II. BACKGROUND ON NLMS ALGORITHM

Figure 1 shows a typical adaptive filter setup, where x(n),
d(n) and e(n) are the input, the desired and output error
signals, respectively. Here, h(n) is the M × 1 column vector
of filter coefficients at iteration n. The desired signal assumed
to conform to the following linear data model

d(n) = xT (n)ht + v(n), (1)

where x(n) = [x(n), x(n−1), . . . , x(n−M+1)]T is the input
signal regressors, v(n) is the measurement noise, assumed to
be zero mean, white, Gaussian, and independent of x(n), and
ht is the unknown filter vector.

h(n) � + ��

�
x(n) y(n) e(n)�

d(n)

Fig. 1. A typical adaptive filter setup.

It is well known that the NLMS algorithm can be derived
from the solution of the following optimization problem:

min
h(n+1)

‖h(n + 1) − h(n)‖2 (2)

subject to
d(n) = xT (n)h(n + 1). (3)
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Using the method of Lagrange multipliers to solve this opti-
mization problem leads to the following recursion

h(n + 1) = h(n) +
μ

‖x(n)‖2
x(n)e(n), (4)

where e(n) = d(n) − xT (n)h(n), and μ is the step-size that
determines the convergence speed and excess MSE (EMSE).

III. FAMILY OF AFFINE PROJECTION ALGORITHMS (APA)

Now define the M × K matrix of the input signal as

X(n) = [x(n),x(n − D), . . . ,x(n − (K − 1)D)], (5)

and the K × 1 vector of desired signal as

d(n) = [d(n), d(n − D), . . . , d(n − (K − 1)D)]T , (6)

where K is positive integer (usually, but not necessarily K ≤
M ), and D is the positive integer parameter (D ≥ 1) that can
increase the separation and consequently reduce the correlation
among the regressors in X(n).

The family of APA can be established by minimizing (2)
but subject to d(n) = XT (n)h(n). Again by using the method
of Lagrange multipliers, the filter vector update equation for
the family of APA is given by

h(n + 1) = h(n) + μX(n)W(n)e(n), (7)

where e(n) is the output error vector which is defined as

e(n) = d(n) − XT (n)h(n), (8)

and the matrix W(n) is obtained from Table I1. The NLMS,
ε-NLMS, standard version of the APA, the binormalized data-
reusing LMS (BNDR-LMS) [11], the regularized APA (R-
APA) [12], the NLMS with orthogonal correction factors
(NLMS-OCF) [13] are established form (11). From (11), the
partial rank algorithm (PRA) [14] can also be established when
the adaptation of the filter coefficients is performed only once
every K iterations.

TABLE I
FAMILY OF AFFINE PROJECTION ADAPTIVE FILTER ALGORITHMS

Algorithm K D W(n)

NLMS K = 1 D = 1 1
‖x(n)‖2

ε-NLMS K = 1 D = 1 1
ε+‖x(n)‖2

APA K ≤ M D = 1 (XT (n)X(n))−1

BNDR-LMS K = 2 D = 1 (XT (n)X(n))−1

R-APA K ≤ M D = 1 (εI + XT (n)X(n))−1

NLMS-OCF K ≤ M D ≥ 1 (XT (n)X(n))−1

1In Table I, ε is the regularization parameter, and I is the identity matrix.

IV. THE FAMILY OF SELECTIVE REGRESSOR APA
(SR-APA)

In [10], another novel affine projection algorithm with
selective regressors (SR) which was called (SR-APA) was
presented. In this section we extend this approach to present
the family of SR-APA. The SR-APA, minimizes (4) subject to

dG(n) = XT
G(n)h(n), (9)

where G = {i1, i2, . . . , iP } denote the P subset (subset with
P member) of the set {0, 1, . . . , K − 1},

XG(n) = [x(n − i1D),x(n − i2D), . . . ,x(n − iP D)], (10)

is the M × P matrix of the input signal and

dG(n) = [d(n− i1D), d(n− i2D), . . . , d(n− iP D)]T , (11)

is the P × 1 vector of the desired signal. Using the method of
Lagrange multipliers to solve this optimization problem leads
to the following update equation

h(n + 1) = h(n) + μXG(n)(XT
G(n)XG(n))−1eG(n), (12)

where
eG(n) = dG(n) − XT

G(n)h(n). (13)

The indices of G are obtained by the following procedure:
1) Compute the following values for 0 ≤ i ≤ K − 1

e2(n − iD)
‖x(n − iD)‖2

, (14)

where e(n) = [e(n), e(n−D), . . . , e(n− (K −1)D)]T .
2) The indices of G are correspond to P largest values of

(12).
Setting D = 1 leads to SR-APA presented in [10]. Further-
more, from (10), the family of SR-APA such as SR-BNDR-
LMS, SR-NLMS-OCF adaptive algorithms will be established.

Equation (12) can also be represented as

h(n + 1) = h(n) + μX(n)B(n)

×(BT (n)XT (n)X(n)B(n))−1BT (n)e(n), (15)

where B(n) = [1i1 ,1i2 , . . . ,1iP
] is the K × P matrix and

1ip
= [0, . . . , 0, 1, 0, . . . , 0]T is the K × 1 vector with the

element 1 in the position ip.
Based on (15), the general filter update equation for the

family of AP with SR is introduces as

h(n + 1) = h(n) + μX(n)Z(n)e(n). (16)

where Z(n) matrix is obtained from Table II.

V. COMPUTATIONAL COMPLEXITY

The computational complexity of the APA, and SR-APA has
been presented in Table III. The computational complexity of
the APA is from [15]. The computational complexity of the
SR-APA is from [10]. Also, the computational complexity of
SR-PRA is reduced by the factor of K, because the adaptation
of the filter coefficients is performed only once every K
iterations.

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:3, No:9, 2009 

1755International Scholarly and Scientific Research & Innovation 3(9) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n 

E
ng

in
ee

ri
ng

 V
ol

:3
, N

o:
9,

 2
00

9 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/8
32

.p
df



TABLE II
FAMILY OF SR AFFINE PROJECTION ALGORITHMS

Algorithm K D Z(n)

SR-APA K ≤ M D = 1 B(n)(BT (n)XT (n)X(n)B(n))−1BT (n)

SR-BNDR-LMS K = 2 D = 1 B(n)(BT (n)XT (n)X(n)B(n))−1BT (n)

SR-R-APA K ≤ M D = 1 B(n)(εI + BT (n)XT (n)X(n)B(n))−1BT (n)

SR-NLMS-OCF K ≤ M D ≥ 1 B(n)(BT (n)XT (n)X(n)B(n))−1BT (n)

TABLE III
THE COMPUTATIONAL COMPLEXITY OF THE APA, AND SR-APA

Algorithm Multiplications Divisions Additional Multiplications Comparisons

APA (K2 + 2K)M + K3 + K2 − - -

SR-APA (P 2 + 2P )M + P 3 + P 2 K (K − P )M + K + 1 Klog2P + O(K)

VI. SIMULATION RESULTS

We demonstrate the performance of the proposed algorithms
by several computer simulations in an acoustic echo cancel-
lation scenario. The unknown system is from the exact exact
impulse responses of the car echo path with 256 taps2. The
input signal x(n) is a first order autoregressive (AR) signal
generated by

x(n) = ρx(n − 1) + w(n) (17)

where w(n) is either a zero mean white Gaussian signal. The
value of ρ is set to 0.9, generating a highly colored Gaussian
signal. The measurement noise v(n) with σ2

v = 10−3 is added
to the noise-free desired signal d(n) = hT

t x(n), where hT
t is

the unknown filter vector. The adaptive filter and the unknown
channel are assumed to have the same number of taps. In
all simulations, the simulated learning curves are obtained by
ensemble averaging over 200 independent trials.

To make the comparison fair, the step-sizes of the family of
SR-APA were chosen to get approximately the same steady-
state MSE. Fig. 7 shows the impulse responses of the car echo
path that should be identified. The input signal is the same as in
previous simulations and the order of the system shown in Fig.
7 was 256. Fig. 8 shows the simulated learning curves of SR-
APA with K = 4 and different values for P = 2, 3, 4. As we
can see, by increasing the parameter P , the convergence speed
increases. Fig. 9 shows the results for SR-PRA. The same
performance as Fig. 8 with lower computational complexity
compare with SR-APA can be seen. The learning curves of
SR-NLMS-OCF with K = 4, D = 4, and different values
for P have been presented in Fig. 10. Fig. 11 compares the
performance of the SR-APA and SR-PRA. As we can see the
convergence speed of SR-PRA will be close to SR-APA with
P = 3. Furthermore, the computational complexity of SR-
PRA is less than SR-APA, especially in this application.

VII. SUMMARY AND CONCLUSIONS

In this paper we presented the family of SR affine projection
algorithms. The SR-APA, the SR regularized APA (SR-R-

2The impulse response of the car echo path is from [8].
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Fig. 2. Impulse response of the car echo path
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Fig. 3. Simulated learning Curves of SR-APA with K = 4, and P = 2, 3, 4
(input: Gaussian AR(1), ρ = 0.9).
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Fig. 4. Simulated learning Curves of SR-PRA with K = 4, and P = 2, 3, 4
(input: Gaussian AR(1), ρ = 0.9).
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Fig. 5. Simulated learning Curves of SR-NLMS-OCF with K = 4, D = 4,
and P = 1, 2, 3, 4 (input: Gaussian AR(1), ρ = 0.9).
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Fig. 6. Simulated learning Curves of SR-APA and SR-PRA with K = 4,
and P = 2, 3, 4 (input: Gaussian AR(1), ρ = 0.9).

APA), the SR partial rank algorithm (SR-PRA), the SR bi-
normalized data reusing least mean squares (SR-BNDR-LMS),
and the SR normalized LMS with orthogonal correction factors
(SR-NLMS-OCF) algorithms were established. We demon-
strated the performance of the presented algorithms through
several simulations in acoustic echo cancellation application.
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