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Abstract—Efficient matrix-vector multiplication with diagonal
sparse matrices is pivotal in a multitude of computational
domains, ranging from scientific simulations to machine learning
workloads. When encoded in the conventional Diagonal (DIA)
format, these matrices often induce computational overheads due
to extensive zero-padding and non-linear memory accesses, which
can hamper the computational throughput, and elevate the usage
of precious compute and memory resources beyond necessity. The
’DIA-Adaptive’ approach, a methodological enhancement introduced
in this paper, confronts these challenges head-on by leveraging
the advanced parallel instruction sets embedded within Machine
Learning Units (MLUs). This research presents a thorough analysis
of the DIA-Adaptive scheme’s efficacy in optimizing Sparse
Matrix-Vector Multiplication (SpMV) operations. The scope of the
evaluation extends to a variety of hardware architectures, examining
the repercussions of distinct thread allocation strategies and
cluster configurations across multiple storage formats. A dedicated
computational kernel, intrinsic to the DIA-Adaptive approach, has
been meticulously developed to synchronize with the nuanced
performance characteristics of MLUs. Empirical results, derived from
rigorous experimentation, reveal that the DIA-Adaptive methodology
not only diminishes the performance bottlenecks associated with the
DIA format but also exhibits pronounced enhancements in execution
speed and resource utilization. The analysis delineates a marked
improvement in parallelism, showcasing the DIA-Adaptive scheme’s
ability to adeptly manage the interplay between storage formats,
hardware capabilities, and algorithmic design. The findings suggest
that this approach could set a precedent for accelerating SpMV
tasks, thereby contributing significantly to the broader domain of
high-performance computing and data-intensive applications.

Keywords—Adaptive method, DIA, diagonal sparse matrices, 
MLU, sparse matrix-vector multiplication.

I. INTRODUCTION

A critical challenge in scientific computing and deep

learning is the efficient execution of diagonal sparse

matrix-vector multiplication (SpMV), and optimizing this

process has become a focal point for researchers. With the

advent of heterogeneous computing architectures, there is an

increasing capability for high-powered computation. Presently,

the majority of SpMV algorithms are optimized specifically for

the architecture of Graphics Processing Units (GPUs), which

have gained prominence as data volumes expand, particularly

in deep learning. The field has seen a dramatic rise in

demand for computational power due to the rapid advancement

of artificial neural networks, and GPUs offer substantial
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advantages in parallel processing capabilities compared

to traditional CPU architectures. However, despite their

versatility, GPUs are inherently general-purpose processors,

leading to the adoption of specialized multicore processors

for certain computations where GPUs may not be the

most efficient choice. The challenge with these multicore

processors is the potential for load imbalance due to their

extensive number of cores, which can lead to performance

being bottlenecked by memory bandwidth rather than raw

computational power [4].

To mitigate these performance limitations and bottlenecks,

a plethora of strategies have been explored by the research

community. These include minimizing memory access latency

[2], crafting efficient parallel algorithms [12], [14], [19], and

integrating high-performance multicore processors [7], [22]

to augment SpMV efficiency. The study capitalizes on the

advanced capabilities of a state-of-the-art multicore processor,

developing a parallel algorithm meticulously optimized for

the processor’s distinctive hardware architecture and memory

hierarchy. The objective is to augment the computation of

diagonal sparse matrix-vector multiplication, leveraging the

inherent parallelism of the processor to expedite processing

and elevate throughput.

Sparse matrix-vector multiplication (SpMV) for diagonal

sparse matrices is mathematically represented as:

y = Ax (1)

where A ∈ R
m×n denotes the diagonal sparse matrix, x ∈ R

n

is the input vector, and y ∈ R
m is the resultant output

vector. In contrast to general sparse matrices, the non-zero

elements of a diagonal sparse matrix are confined to the

principal diagonal and its immediate sub- and super-diagonals.

This distinctive structure allows for the potential optimization

of SpMV computations on hardware specifically designed to

exploit such patterns.

The Cambrian MLU is a domain-specific processor 
specifically designed for artificial intelligence (AI) 
applications. It has undergone meticulous optimization 
for AI-centric operations, including convolution, pooling, and 
activation functions, resulting in enhanced performance and 
energy efficiency compared to general-purpose computing 
devices such as GPUs [6], [8].

Designed with specialized data pathways and computational

components, the MLU caters to the distinct nature of AI

data streams, ensuring their effective access and isolation.

This architectural choice, coupled with the software’s flexible
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on-chip storage accessibility, facilitates enhanced performance

outcomes. The cornerstone of the MLU’s architecture

is its core—a versatile processing unit equipped with

comprehensive computational, I/O, and control functionalities.

These cores are capable of operating autonomously or in

synergy with fellow MLU cores.

A cluster within the MLU is composed of four such MLU

cores, alongside an ancillary memory core and a segment

of shared RAM accessible to both the memory core and

its quartet of MLU cores. The memory core is tasked with

handling data transfers between the Shared RAM and DDR

(Double Data Rate) SDRAM but is not designed to execute

vector or tensor computations. In this research, the chosen

hardware platform is the MLU270 model, the architecture of

which is illustrated in Fig. 1.

The abstract model of the system is stratified into five

hierarchical levels: server, board, chip, cluster, and MLU

core. Each level is architecturally composed of three principal

components: an abstract control unit, a computation unit, and

a storage unit.

• Level 0, the server level, incorporates a control unit

with multiple CPUs, a local DDR storage unit, and a

computation unit consisting of several MLU board cards.

• Level 1, the board level, features each MLU board with

a local control unit, a DDR memory unit, and an MLU

chip that constitutes the computation unit.

• Level 2, the chip level, includes each chip with a local

control unit, an L2 Cache as the local storage unit, and

a computation unit comprised of one or more clusters.

• Level 3, the cluster level, consists of each cluster with

a local control unit, shared storage, and multiple MLU

core computation units.

• Level 4, the MLU core level, is where each MLU core

contains a local control unit, a private storage unit, and

a computation unit capable of both instruction-level and

data-level parallelism.

This delineation ensures that at each tier of the model,

there is a dedicated balance between control, computation,

and storage functionalities, tailored to optimize the overall

performance of the machine learning tasks at hand.

The remainder of this paper is structured as follows: Section

II reviews the related literature. Section III describes the

storage formats and the MLU architecture. The algorithms

and their implementation on the MLU are detailed in Section

IV. Section V assesses the performance of the kernel. Finally,

Section VI provides concluding remarks and outlines future

directions for this research.

II. RELATED WORK

Sparse matrix-vector multiplication (SpMV) stands as

a fundamental operation in scientific computing, drawing

significant attention for its optimization potential. Researchers

have introduced numerous algorithms to accelerate SpMV,

recognizing its importance in large-scale computational tasks.

Typically, large sparse matrices undergo compression using

specific schemes before operations are carried out. Established

methods such as the coordinate (COO) format and the

compressed sparse column/row (CSC/CSR) formats are widely

used for their efficiency in reducing the computational and

storage overhead of sparse matrices [24]. However, certain

types of sparse matrices, like diagonal sparse matrices, benefit

from specialized storage formats. The diagonal (DIA) format,

which stores non-zero elements along the diagonals, is one

such example [20]. Another is the Ellpack (ELL) format,

optimal for matrices with a relatively uniform distribution

of non-zero elements across rows [13]. Tailoring storage

structures to align with specific hardware architectures can

significantly enhance SpMV performance [1].

Bell and Garland were trailblazers in leveraging the

computational prowess of CUDA-based GPUs for SpMV,

devising algorithms that seamlessly integrate with diverse

memory configurations and capitalize on the inherent

architecture of GPUs[5]. They established that the optimal

storage format could be matched to the type of sparse matrix

in question to extract peak GPU performance. Since their

work, a multitude of storage structures and their corresponding

kernels have emerged, such as the hybrid ELL/COO (HYB)

[5], sliced Ellpack (SELL-C-sigmoid) [18], compressed sparse

row 5 (CSR5) [16], and the block format combining CSR and

ELL (BCE) [26]. These developments leverage the parallelism

inherent in GPU and x86 CPU SIMD architectures to great

effect, as extensively discussed in the literature [10].

The Diagonal (DIA) format is adept at storing diagonally

sparse matrices by aligning elements along the same diagonal

within the same column, which streamlines processing [5],

[15], [12]. Nonetheless, the DIA structure can sometimes lead

to inefficient space utilization. This inefficiency is particularly

evident when diagonals with sparse non-zero elements result

in a surplus of zeros in the dense matrix representation. To

mitigate this space wastage issue, improved DIA-based storage

structures have been developed [3], [23], effectively optimizing

space compared to the conventional DIA format.

Xia et al. [11] introduced the DIA-adaptive strategy,

enhancing the original DIA kernel by devising two novel

storage structures and corresponding kernel functions. These

advancements cater to the variegated characteristics of

diagonal sparse matrices and are specifically optimized for

GPU execution. Their approach demonstrates the dynamic

adaptability of sparse matrix storage formats to hardware

capabilities, paving the way for more efficient computations.

III. DIAGONAL SPARSE MATRIX COMPRESSION AND MLU

ARCHITECTURE

In this section, the authors present the DIA-Adaptive model,

which is the foundation of the proposed approach. The model

incorporates specific optimizations that exploit the distinctive

hardware attributes of the MLU to improve computational

performance.
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Fig. 1 A MLU architecture

A. DIA-Adaptive
To illustrate the DIA-adaptive and its kernel function, the

study assumes two diagonal sparse matrices as follows:

A =

⎛
⎜⎜⎜⎜⎜⎝

1 2 0 0 3 0
0 4 5 0 0 6
7 0 8 9 0 0
0 10 0 11 12 0
0 0 13 0 14 15
0 0 0 16 0 17

⎞
⎟⎟⎟⎟⎟⎠

B =

⎛
⎜⎜⎜⎜⎜⎝

1 0 2 0 0 0
3 4 0 5 0 0
0 0 6 7 0 0
0 0 0 8 0 0
0 0 0 0 9 10
0 0 0 0 0 11

⎞
⎟⎟⎟⎟⎟⎠

1) DIA Format: For any given matrix A, its representation

in the DIA storage format is composed of two distinct

components: a matrix data and a vector offset. The matrix

data contains the non-zero elements of the original matrix

organized by their respective diagonals, while the vector offset
records the relative position of each diagonal within data in

relation to the main diagonal.

data =

⎛
⎜⎜⎜⎜⎜⎝

0 1 2 3
0 4 5 6
7 8 9 0
10 11 12 0
13 14 15 0
16 17 0 0

⎞
⎟⎟⎟⎟⎟⎠

, offset =
(−2 0 1 4

)

2) BRCSD Format: When non-zero matrix elements are

located far from the main diagonal, the DIA storage format

tends to introduce excessive zero padding in the data array.

For matrices with substantial non-zero entries distant from

the main diagonal, more space-efficient storage strategies are

essential. In response to the limitations of DIA, the Diagonal

Compressed Storage based on Row-Blocks (BRCSD) has been

introduced, as discussed in [25]. Initially, the diagonal sparse

matrix is segmented into row-based blocks, each minimized

in size. For instance, matrix A might be segmented into two

such blocks. The sparse matrix is then described as:

matrix = {offset[0], offset[1], ..., offset[n]}
Here, offset[i] denotes the deviation of each diagonal from

the main diagonal within the ith block. Consequently, matrix

A can be represented in a more compact form:

A =
{(

0 1 4
)
,
(−2 0 1

)}
Finally, the sparse matrix can be represented by two arrays:

brcsd offsets = {r0|offsets [0] , ..., rn|offsets [n]} ,
brcsd data = {data [0] , data [1] , ..., data [n]}

where ri is the starting row number of the ith row piece. The

matrix A is represented as follows:

brcsd offsets =
{
0| (0 1 4

)
, 2| (−2 0 1

)}

brcsd data =

⎧⎨
⎩

(
1 4 2 5 3 6

)
,(

7 10 13 16 8 11
14 17 9 12 15 0

)
⎫⎬
⎭

3) BRCSD-II Format: Although DIA and BRCSD storage
formats can efficiently store a majority of diagonal sparse
matrices, they encounter limitations with matrices that exhibit
scattered non-zero elements or contain numerous zero entries
along the diagonals. These conditions can lead to substantial
zero padding within the storage structure. For example,
considering a diagonal sparse matrix B, its storage using DIA
and BRCSD would result in the following representations:

data =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 2
3 4 0 5
0 6 7 0
0 8 0 0
0 9 10 0
0 11 0 0

⎞
⎟⎟⎟⎟⎟⎠

, offsets =
(−1 0 1 2

)

brcsd offsets =
{
0| (−1 0 1 2

)
4| (0 1

)}

brcsd data =

⎧⎨
⎩

(
0 3 0 0 1 4 6 8
0 0 7 0 2 5 0 0

)
(
9 11 10 0

)
⎫⎬
⎭
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Despite the utilization of either DIA or BRCSD storage

strategies, matrices such as B, which contain numerous

scattered non-zero elements and extended sequences of zeros,

will inevitably result in substantial zero padding. To counter

this inefficiency, Xia et al. proposed an enhanced version

of BRCSD, termed BRCSD-II. This method initiates with

the segregation of the matrix into data and offsets as

prescribed by BRCSD. Subsequently, it aligns nrows with

the GPU’s thread block count. The sparse matrix is then

partitioned into row sections, reflective of the sparse matrix’s

total row count, denoted by m. The concluding step involves

the consolidation of the offset array. Consequently, the sparse

matrix’s structure is encapsulated by the subsequent pair of

arrays:

brcsdII offsets = {p0|offsets [0] , ..., ps|offsets [s]}
brcsdII data = {data [0] , data [1] , ..., data [p− 1]}

where p is the number of row pieces, s is the size of offsets
after accumulating row pieces. The matrix B is represented as

follows:

brcsdII offsets =
{
1| (−1 0 2

)
, 2| (0 1

)}

brcsdII data =

⎧⎪⎨
⎪⎩

(
0 3 1 4 2 5

)
,(

6 8 7 0
)
,(

9 11 10 0
)

⎫⎪⎬
⎪⎭

It can be observed that the number of zeros in BRCSD-II

decreases from 13 to 3 and from 11 to 3 compared to DIA

and BRCSD, respectively.

B. MLU Architecture

A MLU device is architecturally composed of several

subsystems, including a memory subsystem, a Multi-Tensor

Processor (MTP) subsystem, and a media subsystem. At

the heart of the Cambrian MLU architecture lies the MTP

subsystem, which is integral to the device’s operation. An

MLU chip is typically equipped with an assemblage of

hardware including one or more MTP clusters, a PCIe

interface, a memory controller, an L2 cache, a media

processing unit, and an MLU-Link interconnect.

Each MTP cluster contains multiple Intelligence Processing

Unit (IPU) cores and a block of Shared RAM, which

collectively form the fundamental execution unit within

the MTP architecture. The MTP configuration allows for

programmatic compatibility with the Tensor Processor (TP)

architecture; when the architectures are aligned, the MTP is

capable of executing programs that have been developed for

the TP, ensuring binary compatibility.

The TP architecture, often referred to by its codename as

a single-core entity, is essentially a hardware ensemble that

integrates an IPU core with a dedicated memory system. A

TP core is furnished with an Arithmetic Logic Unit (ALU) for

scalar computations, a Vector Function Unit (VFU) or Tensor

Function Unit (TFU) for artificial intelligence operations, and

various Direct Memory Access (DMA) units to facilitate data

movement.

To maximize the efficiency of data handling and to

exploit the available bandwidth, the TP core is also designed

with on-chip Neuron RAM (NRAM) and Weight RAM

(WRAM), which are directly coupled with the VFU/TFU. This

architecture is meticulously crafted to leverage data locality,

thereby enhancing the performance of the MLU device.

The MLU is structured with a hierarchical storage system

that spans several layers: General Purpose Registers (GPR),

Neuron RAM (NRAM), Weight RAM (WRAM), Shared

RAM, L2 Cache, Local DRAM (LDRAM), and Global

DRAM (GDRAM). GPR, WRAM, and NRAM serve as the

private storage for an individual core. It should be noted

that memory cores are not allocated their own WRAM and

NRAM resources. The L2 Cache operates as an on-chip,

globally shared memory, predominantly utilized for caching

instructions, kernel parameters, and read-only data.

LDRAM is designated as the private storage for each MLU

and memory core, boasting greater capacity than that of

WRAM and NRAM. This level is often employed to mitigate

on-chip storage limitations. Conversely, GDRAM is a globally

shared storage, facilitating data interchange both between host

and device and among computing tasks.

The MLU empowers software applications with the ability

to meticulously manage data transfers across these diverse

storage tiers. The associated compiler is responsible for

providing robust address space declarations for software

higher in the stack, in addition to a plethora of mechanisms

and interfaces designed for both explicit and implicit data

movements. Such features grant users the capability to

precisely orchestrate data transit between storage levels,

optimizing the interplay between computation and I/O to

enhance overall computational efficacy.

At the heart of MLU’s design is its support for

parallel processing across seven distinct levels: server, board,

chip, cluster, core, pipeline, and data. Server-level and

board-level parallelism are contingent upon the particular

system configuration. In contrast, chip-level, cluster-level, and

core-level parallelisms are determined by user-defined task

dimensions and classifications on the host side. Similarly,

pipeline-level and data-level parallelism within each core are

subject to user programming on the device side.

On the device, the primary unit of user programming is

termed a ’task.’ Each task is confined to execution on a single

core during any given run, with no task-switching permitted

mid-execution. Within a cluster, multiple tasks can proceed

concurrently, and the support for the number of clusters is

variable across chips. Every core operates as a processing unit,

adept at managing streaming, scalar, and vector operations.

Scalar and control flow instructions primarily facilitate control

functionalities, while vector instructions are harnessed for

parallel data processing, with the capability to handle data

of variable lengths.

MLU cores are outfitted with a quartet of instruction

pipelines that facilitate a multiplexed processing environment,

optimizing for efficiency and performance. The delineation of

these pipelines is as follows:

• IO Stream: Dedicated to orchestrating the input/output

operations involving off-chip DDR memory, the IO

stream is optimized for managing the extensive reads and

writes that span beyond the on-chip environment.
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• Move Stream: This stream is specifically allocated for

handling memory access instructions that are contained

within the on-chip boundaries, excluding those that

involve off-chip DDR transfers.

• Compute Stream: Serving as the backbone for intense

computational tasks, the compute stream is tasked with

executing tensor and vector calculations alongside scalar

instructions that cater to such operations.

• Scalar Stream: The scalar stream is responsible for the

execution of all scalar operations, which typically involve

non-vectorized calculations that are executed one at a

time.

A notable feature of these instruction pipelines is their

ability to operate in tandem. By design, the IO, move,

compute, and scalar streams execute concurrently, providing

a seamless parallel processing capability. To maintain

computational correctness and synchronization, the hardware

is architected with mechanisms to ensure register dependencies

are respected across the streams. This is exemplified in

scenarios where an instruction from the IO, move, or

compute stream modifies a universal scalar register; the

hardware automatically institutes a sequential execution order,

mandating that any dependent instruction within the scalar

stream is postponed until the register modification is finalized.

Conversely, in the event that a scalar stream instruction

modifies the state of a register, any dependent instructions

from other streams are required to pause until the completion

of the scalar write operation. This synchronization mechanism

upholds the integrity of register state and guarantees that

all subsequent instructions accessing that register receive the

updated value, thereby mitigating data hazards and ensuring

consistency in computational flow.

IV. PARALLEL ALGORITHM OF DIAGONAL SPMV AND ITS

MLU IMPLEMENTATION

In this section, the proposed methodology for optimizing

SpMV on diagonal sparse matrices utilizing the MLU

hardware is detailed. The approach is designed to capitalize

on the unique architectural features of the MLU, aiming to

surpass the efficiency and performance benchmarks set by

extant techniques. The ensuing discourse will meticulously

expound upon the methodological framework and delineate

the superiority of this innovative approach.

A. DIA Kernel

Parallelization of Sparse Matrix-Vector Multiplication

(SpMV) on the Machine Learning Unit (MLU) for diagonal

matrices employing the DIA format follows a straightforward

approach: each task is assigned to process an individual row.

Algorithm 1 delineates the core steps of the DIA kernel

operation. Preliminary data movement operations transfer x,

data, and offsets from the DDR to NRAM, which is

posited to hasten each memory access during computation.

Furthermore, the contiguous nature of memory accesses to

data and x contributes to the optimization of performance

for the DIA kernel.

Algorithm 1: The kernel function of DIA for SpMV

Data: The known vector x, the number of rows

num rows, cols num cols, and diagonals

num diags of the matrix and the arrays in DIA

format(data, offsets)

Result: The output vector y
1 row = taskId;

2 if row ≤ num rows then
3 sum = 0.0;

4 NRAM int offset n[num diags];
5 NRAM float data n[num diags];
6 NRAM float x n[num cols];
7 memory copy from offsets to offset n;

8 memory copy from data to data n with stride

num rows;

9 memcpy copy from x to x n;

10 for i = 0 to num diags with i = i+ 1 do
11 uint32 t col = row + offset n[i];
12 float val = data n[num rows ∗ i+ row];
13 if col ≥ 0 and col ≤ num cols then
14 sum + = val ∗ x n[col];
15 end
16 end
17 y[row] = sum;

18 end

B. BRCSD Kernel

The parallel execution strategy for SpMV utilizing the

Block Row Compressed Sparse Diagonal (BRCSD) format on

MLUs is straightforward, wherein each computational task is

dedicated to processing a discrete row piece. Nevertheless,

given that the row piece sizes can vary, this approach

inherently leads to an imbalance in the distribution of

computational workloads across tasks. Such imbalance is

particularly notable when handling matrices like B, where the

quantity of rows within the row pieces may differ substantially.

To mitigate workload disparities, the proposed algorithm

specifies a maximum value, n, representing the upper limit of

rows a single task is designated to process. If the size of a

row piece, t, exceeds n, the row piece is subdivided into
⌈
t
n

⌉
smaller row pieces, thereby standardizing the row count for

each task to a maximum of n. For instance, if the authors set

n to 2 in the context of matrix B, the algorithm divides the

matrix into two initial row pieces, with the second row piece

subsequently being partitioned into smaller segments. As a

result, each task is aligned to process three rows, as depicted

in Algorithm 2.

Within this kernel implementation, two specialized

instructions are employed: bang_mul and

bang_reduce_sum. The bang_mul instruction

executes element-wise multiplication across vector pairs,

recording the output in a designated result vector, while the

bang_reduce_sum instruction aggregates the elements

within a vector, with the sum being assigned to a temporary

variable, tmp. The count of elements subjected to each

operation is predetermined by the last parameter in both
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Algorithm 2: The kernel function of BRCSD for

SpMV

Data: The known vector x, the number of rows

num rows, cols num cols, and diagonals

n diags of the matrix and the arrays in BRCSD

format(brcsd data, brcsd offsets)

Result: The output vector y
1 local id = taskId;

2 offset id = taskId < 1 ? 0 : 1;

3 NRAM float tmp = 0.0;

4 NRAM float data n[n diags];
5 NRAM float x n[n diags];
6 NRAM float result[n diags];
7 switch offset id do
8 case 0 do
9 memory copy from brcsd data starting from

local id+ 2 to data n in strides of 2;

10 memory copy from x starting from local id to

x n in strides of 3;

11 bang mul(result, data n, x n, 3);
12 bang reduce sum(&tmp, result, 3);
13 y[local id] = tmp;

14 end
15 case 1 do
16 memory copy from brcsd data starting from

local id+ 4 to data n in strides of 4;

17 memory copy from x starting from localid− 2
to x n in strides of 3;

18 bang mul(result, data n, x n, 3);
19 bang reduce sum(&tmp, result, 3);
20 y[local id+ coreId] = tmp;

21 end
22 end

instructions.

C. BRCSD-II Kernel

In the context of SpMV on MLUs, employing the

BRCSD-II format facilitates intuitive parallelization. Each core

is assigned to handle a distinct row piece, and within that

core, individual tasks are mapped to specific rows. Algorithm

3 delineates this approach.

To commence the process, the absolute core identifier,

coreid, is computed. Considering the MLU’s architecture

consists of four clusters, each with four cores, the calculation

of coreid is achieved by the expression clusterId × 4 +
coreId. Subsequently, the localid is derived from taskId,

representing the absolute thread ID within a core. Here, coreid
determines the row piece index for matrix processing, and

localid pinpoints the precise row within that row piece.

Prior to executing SpMV, it is crucial to transfer the

offset array into NRAM, streamlining direct access during

the computation phase. The next step involves discerning the

specific segment of offset needed to retrieve corresponding

values of vector x for the given coreid. The multiplication and

addition operations are then performed using MLU’s vector

Algorithm 3: The kernel function of BRCSD-II for

SpMV

Data: The known vector x, the number of rows

num rows, cols num cols, and diagonals

n diags of the matrix and the arrays in BRCSD

format(brcsd data, brcsdII offsets)

Result: The output vector y
1 core id = coreId;

2 local id = taskId;

3 offset id = taskId < 1 ? 1 : 2;

4 NRAM float tmp = 0.0;

5 NRAM float data n[n diags];
6 NRAM float x n[n diags];
7 NRAM float result[n diags];
8 SRAM float y n[n diags];
9 NRAM uint32 t offset n[n diags][n diags];

10 memory copy from brcsdII offsets to offset n;

11 switch offset id do
12 case 1 do
13 memory copy from brcsdII data starting from

core id ∗ 3 + local id to data n in strides of

2;

14 memory copy from x starting from

offset n[offset id] to x n;

15 bang mul(result, data n, x n, 3);
16 bang reduce sum(&tmp, result, 3);
17 y n[local id+ core id ∗ 2] = tmp;

18 end
19 case 2 do
20 memory copy from brcsdII data starting from

(core id− 1) ∗ 2 ∗ 2 + local id+ 3 ∗ 2 ∗ 1 to

data n in strides of 2;

21 memory copy from x starting from

offset n[offset id] to x n;

22 bang mul(result, data n, x n, 2);
23 bang reduce sum(&tmp, result, 2);
24 y n[local id+ coreId ∗ 2] = tmp;

25 end
26 end
27 synchronize all cores;

28 memory copy from y n to y;

processing capabilities, with interim results stored in Shared

RAM (SRAM) instead of directly in the result vector y, which

resides in DDR memory. This intermediate storage strategy

in SRAM—accessible by all cores—minimizes memory

bandwidth wastage, as SRAM offers significantly faster access

speeds than DDR.

Upon completion of these computations and ensuring

synchronization across all cores, the data stored in SRAM

are collectively written to DDR. This final step can be

executed efficiently with a single vector operation instruction,

showcasing an optimization that leverages the shared nature

of SRAM for enhanced performance of the kernel.
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D. MLU Implementation

In this subsection, the implementation of the algorithm

on MLUs is elucidated, given that their architecture and

programming paradigms diverge from those associated with

general-purpose Graphics Processing Units (GPUs). The

hardware platform for the conducted experiments is the

MLU270, detailed in Fig. 1.

During experimentation, the default configuration for the

MLU is employed, comprising four clusters, each housing four

cores. These clusters share a singular main memory, which

typically houses data transferred from the Central Processing

Unit (CPU). Each cluster contains a Shared Random Access

Memory (RAM) utilized by its cores, along with private Near

RAM (NRAM) and Wide RAM (WRAM) for each core.

Similar to a CPU, each core possesses its own register set;

however, these are not programmable. Direct programming

is feasible only for memory structures above the NRAM

and WRAM levels. The execution of a kernel necessitates

initial data and basic MLU configuration transfer to the MLU,

followed by a startup function invocation from the CPU to

activate the MLU operations. For efficiency, data that are

frequently accessed are first relocated from Double Data

Rate (DDR) memory to the NRAM within each core, with

operational results being temporarily stored in the Shared

RAM accessible to all four cores, thereby hastening data

retrieval and enhancing performance.

Conventional practice entails the MLU assigning default

data to each thread’s stack, where access is expedient, yet

limitations emerge due to non-shared data across threads

and the stack’s limited capacity. This proves inadequate for

high-performance SpMV tasks. Hence, commonly used data

are stored in NRAM while operational outcomes are placed

in Shared RAM, facilitating data sharing within core threads

and ensuring results from the same cluster are collectively

stored. This strategy circumvents excessive delays during data

reads and writes. Subsequent to cluster computation, core

synchronization is imperative before collective result writing

to the DDR, further diminishing the time penalties associated

with MLU bus transfers. Concurrent cluster operations amplify

the kernel’s parallelism. Additional optimization techniques,

such as loop unrolling, are applied during kernel compilation

and execution to enhance performance.

V. EVALUATION AND ANALYSIS

The experimental evaluation pursues dual objectives: firstly,

to benchmark the performance of the proposed algorithm

against a suite of contemporary SpMV kernels executed on

GPUs; and secondly, to assess the performance enhancement

derived from memory-level optimizations on MLUs in

comparison with their non-optimized counterparts.

Table I delineates the specifications of the MLU270 utilized

in the study. The performance metric is the kernel runtime,

gauged from the moment the program invokes the functions on

the MLU side to the point when control is relinquished back

to the CPU. Since the data are pre-loaded onto the MLU’s

DDR memory prior to computation, the runtime excludes any

write-back duration for the results, thus equating the MLU’s

TABLE I
EXPERIMENT ENVIRONMENT

Processor MLU270-S4

Architecture MLUv02
INT16 peak/TOPS 64
Precision Support INT16, INT8, FP32, FP16

Memory 16GB DDR4, ECC
Bandwidth 102GB/s
Interface x16 PCIe Gen.3
Bitwidth 256-bit

computation time with the total runtime. The sparse diagonal

matrices for this study originate from the University of Florida

Sparse Matrix Collection [9]. Table II compiles details of the

diagonal sparse matrices evaluated, encompassing dimensions,

the count of diagonals with nonzero entities, and the aggregate

of nonzero elements.

TABLE II
DESCRIPTIONS OF TEST MATRICES

Matrix Dimension Diagonals nonzeros

wang3 26,064×26,064 21 177,168
wang4 26,068×26,068 23 177,196

s3dkt3m2 90,449×90,449 655 3,686,223
s3dkq4m2 90,449×90,449 661 4,427,725

kim1 38,415×38,415 25 933,195
kim2 456,976×456,976 25 11,300,020

nemeth21 9,506×9,506 169 1,173,746
nemeth22 9,506×9,506 197 1,358,832
af 1 k101 503,625×503,625 897 17,550,675
af 2 k101 503,625×503,625 897 17,550,675
crystk02 13,965×13,965 99 968,583
crystk03 24,696×24,696 99 1,751,178
pde225 225×225 5 1,065
pde900 900×900 5 4,380

pde2961 2,961×2,961 5 14,585

For clarity and to reduce computational complexity,

subsequent experiments were conducted using single-precision

data.

A. Experimental Analysis

In this section, the deployment of the kernel on the MLU

is delineated, along with the classification methodology for

TABLE III
OPTIMAL KERNELS FOR TEST MATRICES

Matrix Optimal kernel

wang3 BRCSD-II
wang4 BRCSD-II

s3dkt3m2 BRCSD-II
s3dkq4m2 BRCSD-II

kim1 BRCSD-II
kim2 BRCSD-II

nemeth21 BRCSD-II
nemeth22 BRCSD-II
af 1 k101 BRCSD-II
af 2 k101 BRCSD-II
crystk02 BRCSD-II
crystk03 BRCSD-II
pde225 BRCSD-I
pde900 BRCSD-I

pde2961 BRCSD-I
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Fig. 2 Three types of diagonal sparse matrices

Fig. 3 Speedup of CRSD, HDI, and DIA-Adaptive on MLU versus GPU

test matrices. These matrices were sorted into three distinct

categories based on structural characteristics. Correspondingly,

discrete kernels were applied to each category, with the

most efficacious kernel for each detailed in Table III. A

comparative performance evaluation of these kernels on both

the MLU and GPUs indicates that the MLU kernels, for the

majority of cases, exhibit superior performance over both

the GPU kernels and the extant state-of-the-art alternatives

for GPUs. Conclusively, a comparative performance analysis

of four algorithms—CRSD, HDI, DIA, and the novel

DIA-Adaptive—is presented. The DIA-Adaptive algorithm

demonstrates consistent superiority over the other algorithms

when applied to identical test matrices.

In this study, the research delineated three categories of

diagonal sparse matrices, as illustrated in Fig. 2 [25]. These

categories are defined by their structural attributes and the

pattern in which their non-zero elements are distributed:

• Type I matrices are characterized by dense diagonal

elements predominantly clustered around the main

diagonal. These can be efficiently stored in the

conventional DIA format, as their non-zero elements’

proximity to the main diagonal minimizes the necessity

for zero padding.

• Type II matrices exhibit dense diagonal elements situated

on off-center diagonals with shorter spans. For such

matrices, the Block Row Compressed Sparse Diagonal

(BRCSD) format is the optimal storage solution, given

that the DIA format would lead to an excess of zero

padding, thereby increasing storage requirements without

a corresponding benefit. Alternatively, the BRCSD-II

format can also be applied to Type II matrices, despite

its higher complexity.

• Type III matrices are composed of elements from Type

II as well as zero elements along their diagonals, in

conjunction with additional isolated non-zero entries.

To store Type III matrices effectively and reduce
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Fig. 4 Structure of wang3

Fig. 5 Structure of wang3 after scaling

zero padding, the BRCSD-II format is necessary,

accommodating the sparse nature of these matrices with

enhanced storage efficiency.

By categorizing matrices based on these types and choosing

the appropriate storage formats, the research aims to optimize

the storage and subsequent computational operations on these

sparse structures.

In the conducted experiments, the selection of 16,384,

4,096, and 1,024 threads for each of the four clusters on the

MLU was made in consideration of the operational efficiency

tied to the number of threads. Fig. 7 demonstrates that kernel

performance on the MLU is enhanced with a decrease in the

number of threads per core, notably when the count is reduced

from 16,384 to 4,096. Contrary to expectations, diminishing

the thread count further to 1,024 does not yield a marked

improvement. This deviation from theoretical predictions,

where a higher number of threads is typically associated

with improved performance, stems from the distinct hardware

traits and optimization tactics of the MLU’s software stack as

opposed to traditional GPU architectures.

The optimal number of threads for kernels on the MLU is

capped due to the nature of its parallel processing, which is

predominantly core-dependent, as opposed to the thread-reliant

parallelism on GPUs. On the MLU, each core is designed to

undertake parallel tasks more autonomously, and as a result,

the cores’ computational prowess is more pronounced than

that of GPU threads. This delineates the necessity for a

tailored approach to thread allocation on MLUs, ensuring that

the inherent hardware and software configurations are aptly

leveraged for maximal efficiency.

B. Performance Evaluation

1) MLU Acceleration for CRSD, HDI, and DIA-Adaptive:
Fig. 3 displays the comparative performance enhancements

of CRSD, HDI, and DIA-Adaptive formats when executed on

MLUs and GPUs. The vertical axis quantifies the performance

speedup. On the MLU, the CRSD, HDI, and DIA-Adaptive

formats report average performance speedups of 2.53-fold,

2.71-fold, and 3.05-fold, respectively.

The data underscore the pronounced impact of the MLU

on enhancing computational speed. Yet, it is noteworthy that

the speedup for the matrix labeled ’wang3’ is relatively

modest. Analysis of ’wang3’—depicted in Fig. 4—and its

scaled structure in Fig. 5, identifies it as a type III matrix.

The modest performance speedup for ’wang3’ on the MLU

may be due to the significant offsets incurred during its

conversion to the BRCSD-II format. As ’wang3’ exhibits

characteristics akin to a type I matrix, its conversion to

BRCSD-II format results in fragmentation into numerous

smaller blocks. This fragmentation potentially undermines

the efficiency of BRCSD-II kernel optimizations due to the

memory hierarchy’s structure. Consequently, this leads to an

increased frequency of data transfers from the DDR to the

NRAM, adversely affecting performance.

Subsequent experimentation has corroborated that Sparse

Matrix-Vector Multiplication (SpMV) operations utilizing

CRSD, HDI, and DIA-Adaptive formats benefit from

acceleration when deployed on an MLU.

2) Performance of DIA-Adaptive: This section of the study

focuses on the comparative analysis of the computational

times for SpMV on the MLU utilizing CRSD, HDI,

and DIA-Adaptive kernels. The findings indicate that the

DIA-Adaptive kernel outshines the others, delivering the

most efficient performance in the majority of test scenarios.

Illustrated in Fig. 6, there is a discernible performance

boost with the DIA-Adaptive approach compared to SpMV

operations using CRSD, HDI, and traditional DIA formats on

the MLU.

Further into the experiments, the researchers ascertained

that the DIA-Adaptive format for SpMV significantly

exceeds the CRSD, HDI, and DIA formats in performance

metrics. Specifically, DIA-Adaptive showcased performance

enhancements of 35.21%, 37.36%, and 69.69% over the
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Fig. 6 The performance improvement of DIA-Adaptive

Fig. 7 The performance of SpMV with different threads
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Fig. 8 The performance of SpMV with different clusters

other three formats, respectively. These statistics reinforce the

efficacy of the DIA-Adaptive format in optimizing SpMV

operations on MLUs, affirming its superiority in accelerating

computational tasks in this domain.

3) Performance of Different Threads: In preparation for

kernel execution, the MLU’s configuration must be adjusted to

define the thread allocation, similar to the process for GPUs.

The MLU270, by default, employs four clusters to carry out

parallel computations, and each cluster is comprised of four

cores, which also conduct parallel processing. Task execution

on an MLU mandates the delineation of the requisite cluster

and thread count. Within this context, the investigators set out

to scrutinize the effects of varying cluster and thread counts

on the efficacy of the DIA-Adaptive format.

The influence of the thread and cluster quantities on the

SpMV performance using the DIA-Adaptive approach is

delineated through the findings exhibited in Figs. 7 and 8. The

data from Fig. 7 indicate a correlation between the number of

threads and the DIA-Adaptive kernel’s performance within a

uniform configuration of four clusters. The trend that emerges

from the figure suggests that kernel performance is inversely

proportional to thread count across almost all evaluated sparse

matrices. A plausible explanation for this phenomenon is that

fewer threads may diminish the overhead associated with

thread switching, thereby enhancing overall performance.

Furthermore, Fig. 8 delineates the DIA-Adaptive kernel’s

performance subject to varying cluster counts, while

maintaining a consistent thread configuration. Echoing the

observations from Fig. 7, there is an apparent trend where

performance gains are more pronounced with a reduced

number of clusters. This underscores the significance of

optimal cluster and thread configuration in achieving maximal

performance from the MLU, particularly when deploying the

DIA-Adaptive kernel for SpMV computations.

VI. CONCLUSION

In the presented study, the authors unveil the DIA-Adaptive

scheme alongside its bespoke kernel tailored for MLUs,

emphasizing the employment of vector instruction sets to

refine the parallel execution efficiency of single-precision

SpMV. The investigative focus then shifts to assessing the

enhancements proffered by the DIA-Adaptive scheme and

kernel in comparison to other storage frameworks, examining

their performance across GPU and MLU architectures.

Additionally, the study delves into how the modulation of

thread and cluster numbers influences overall performance

metrics.

Looking ahead, the researchers are poised to extend their

inquiry into the dynamics of additional varieties of diagonal

sparse matrices and the ramifications of utilizing multi-MLU

environments on kernel performance. This prospective

research promises to not only broaden the understanding of

performance scaling across various hardware platforms but

also to advance the optimization of SpMV operations, which

are crucial in high-performance computing applications.
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