
Design of Gain Scheduled Fuzzy PID Controller 

Leehter Yao and Chin-Chin Lin 

Abstract—An adaptive fuzzy PID controller with gain
scheduling is proposed in this paper. The structure of the
proposed gain scheduled fuzzy PID (GS_FPID) controller
consists of both fuzzy PI-like controller and fuzzy PD-like
controller. Both of fuzzy PI-like and PD-like controllers are 
weighted through adaptive gain scheduling, which are also
determined by fuzzy logic inference. A modified genetic
algorithm called accumulated genetic algorithm is designed to
learn the parameters of fuzzy inference system.  In order to 
learn the number of fuzzy rules required for the TSK model, the
fuzzy rules are learned in an accumulated way.  In other words, 
the parameters learned in the previous rules are accumulated
and updated along with the parameters in the current rule.  It
will be shown that the proposed GS_FPID controllers learned 
by the accumulated GA perform well for not only the regular
linear systems but also the higher order and time-delayed
systems.

Keywords—gain scheduling, fuzzy PID controller, adaptive
control, genetic algorithm.

I. INTRODUCTION

ID controllers have been widely used in the industry due to
the facts that they have simple structures and they assure 

acceptable performance for the majority of industrial processes. 
Because of their simple structures, PID controllers are easy to 
design, operate and maintain. Consequently, PID controllers
earn their popularity among practitioners in the industry.
Beginning with Ziegler and Nichols’s works[1], various
parameter tuning methods for conventional PID controllers
have been proposed[2].  Ever since fuzzy theories are proposed 
in [3], fuzzy logic has gradually adopted as one of major
approaches for controller design.  One of the prominent and
efficient ways is applying fuzzy logic to the design of PID
controllers. The well-known pioneered and successful 
example in early stage was the design of a fuzzy PI controller
and its practical engineering applications [4-5].  There have 
been numerous articles investigating different schemes of 
applying fuzzy logic to the design of PID controllers, which are 
generally termed as fuzzy PID controllers. Fuzzy PID
controllers can be further classified into two types: the gain

scheduling type and the direct action type [6-7].
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For the gain scheduling type of fuzzy PID controllers, the
PID gains are tuned based on a fuzzy inference system rather 
than the conventional Ziegler and Nichols’s approach.  In [8-9],
three PID gains Kp, Ki and Kd were respectively calculated 
through fuzzy logic based on error and error rate.  In [10], the
PID gains were still calculated based on Ziegler and Nichols’s
formula, yet the formula was parameterized by a single
parameter.  A fuzzy inference system was then designed to
calculate this single parameter.  In order to preserve good load
disturbance attenuation, [11] calculated the set-point weight by
a fuzzy inference system but calculate three PID gains by 
conventional Ziegler and Nichols’s approach.  For the direct
action type of fuzzy PID controllers, the control actions are 
determined directly by means of a fuzzy inference system. This
type of fuzzy controllers is in essence like the conventional
gain-tuning PID controller. Therefore, they are also called the 
PID-like controllers.  The majority of fuzzy controllers such as
[12-18] belong to this class of controllers. Different fuzzy PID
structures have been proposed based on all possible contexts of
knowledge representations.  The performance evaluations and 
comparison between gain-scheduling type and direct action
type fuzzy PID controllers were investigated in [19].

In spite of the significant performance of fuzzy PID 
controllers over their conventional counterparts, the parameters
of fuzzy inference systems for either gain scheduling or direct
action type of controllers are generally tuned manually.  In 
order to achieve optimal performance, genetic algorithm (GA) 
is one of common approaches applied to learn fuzzy PID 
controller’s parameters of fuzzy inference systems.  A simple
GA and a multi-objective GA are respectively applied in [20]
and [21] to find the optimal tuning of parameters in a hybrid
fuzzy PI+D controller’s fuzzy inference.  Similarly, a 
multi-objective GA is also applied to learn the parameters of
fuzzy inference system of a hybrid PD+I controller[22].  In [23],
a fuzzy PID controller consisting of one input fuzzy inference
system with three rules and six tuning parameters is proposed. 
A GA-based optimization scheme is applied to learn these
parameters.

In this paper, a gain scheduled fuzzy PID (GS_PID) 
controller, which consists of both PI-like and PD-like fuzzy
controllers, is proposed.  Both PI-like and PD-like fuzzy
controllers are weighted through gain scheduling, which is
determined by another fuzzy inference system. The fuzzy
inference model employed in this paper is the
Takagi-Sugeno-Kang (TSK) model.  A modified GA called
accumulated GA is proposed to learn both the parameters of
membership functions in the antecedent parts and the 
coefficients of the linear functions in the consequent parts.  The 
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basic idea of the accumulated GA is to learn the fuzzy inference 
system rule by rule until the learning error is reduced to a range
of tolerance.  The parameters learned in the previous rules are 
accumulated and updated along with the parameters in the 
current rule.

II. GAIN SCHEDULED FUZZY PID CONTROLLER

The structure of proposed GS_FPID controller consists of 
both fuzzy PI controller and fuzzy PD controller. Both of fuzzy
controllers are weighted through scheduled gains, which are 
also determined by fuzzy logic inference.  At each sampling
instance k, the model of proposed GS_FPID controller is
defined as

 u(k) = (k) u(k) + (k)u(k-1)  (1) 
where (k), (k) and u(k) are defined by fuzzy logic inference.
As shown in Fig. 1, given that the reference input is denoted by
r(k), the error is defined as e(k) = r(k) – c(k) and the error rate 

e(k) = e(k) – e(k-1).  The gains (k), (k) and the increments of 
controller output u(k) can be respectively determined by the 
following fuzzy rules: 
R1:  if e(k) is Ai1 and e(k) is Ai2

then (k) = ai1e(k)+ai2 e(k); (2)
R2:  if e(k) is Ai3 and e(k) is Ai4

then (k) = ai3e(k)+ai4 e(k); (3)
R3:  if e(k) is Ai5 and e(k) is Ai6

 then u(k) = ai5e(k)+ai6 e(k); (4)
i = 1…m.  The Takagi-Sugeno-Kang (TSK) models are used in
the fuzzy rules (2)-(4).  In the rule sets R1, R2 and R3, the sets Aij,

j = 1…6, are fuzzy sets for e(k) and e(k), respectively.  For a 
fuzzy PD controller, the controller output is defined as

u(k) = upd(k) (5)
where upd(k) is inferred by fuzzy logic as in (4) based on e(k)

and e(k).  The output of a fuzzy PI controller can be defined as 
u(k) = u(k-1) + upi(k) (6)

where upi(k) is inferred by fuzzy logic as in (4) based on e(k)

and e(k). In addition to improving system’s relative stability,
fuzzy PD controller is utilized for increasing the speed of
response while fuzzy PI controller aims to reduce steady state
error.  Therefore, if the GS_FPID controller is designed to be a
composite of both fuzzy PD and PI controllers, it has both
functionalities of these two fuzzy controllers. The proposed
fuzzy PID controller is essentially the weighting adjusted fuzzy
PD and PI controller.  Therefore,
u(k) = 1(k) upd(k) +  (k)(u(k-1) + upi(k))

= ( 1(k) upd(k) +  (k) upi(k)) +  (k)(u(k-1)) (7)
where 1(k) and (k) are respectively the weightings of PD and
PI controllers.  Since upd(k) and upi(k) are determined based 
on e(k) and e(k) by fuzzy logic inference as in (4), they can be
simplified as one variable.  Therefore, the first part in (7) is 
simplified as

1(k) upd(k) +  (k) upi(k) =  (k) u (k) (8)
where (k) = 1(k) +  (k).  With the simplification in (8), the
composite of fuzzy PD and PI controllers in (7) is thus given as
in (1). 

Within GS_FPID controller, the weightings of fuzzy PD 
and PI controller, i.e., (k) and (k), are continuously changed 

based on the error e(k) and the error rate e(k). GS_FPID
controller can thus be considered as an adaptive controller with 
gain scheduling.  It continuously adjusts the gains of fuzzy PD
and PI controller based on error and error rate.  The gain 
scheduling mechanism is designed to be the one with fuzzy
inference scheme.

For TSK model, the output of FLC in (2)-(4) is calculated 
as:

m
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The degrees of firing (DOF) in (12)-(14) are respectively
defined as:
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where the notation  denotes the operation of minimization.
The FLCs in (9)-(11) can be viewed as PI-like controllers 
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Substituting (18)-(20) into (1) yields 
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Fig. 1 Structure of GS_FPID controller

It is shown in (27) that the output of GS_FPID controller, u(k),

is no longer like a traditional PID controller, which is a linear 
function of e(k), e(k) and u(k-1). Instead, it is a complex
recurrent function of e2(k), e(k) e(k), ( e(k))2, e(k)u(k-1) and

e(k)u(k-1).  Referring to (21)-(26), GS_FPID thus has more
degrees of freedom adapting with these influences to the
controller output.  With the additional degrees of freedom, it
will be shown in this paper that GS_FPID performs well for
controlling the higher order systems as well as the systems with
time delays.

III. LEARNING OF GS_FPID CONTORLLER

The membership functions of antecedent fuzzy set Aij, i = 

1…m, j = 1…6, for input variables e(k) or e(k) of FLC in
(2)-(4) are defined as symmetric triangular functions

)C,L;x( ijijjAij
, of which Lij and Cij respectively denotes the 

width and center of the triangular membership function.  For 
GS_FPID controller, GA is applied to learn the parameters of
input membership functions as well as the coefficients of the
first order FIR filter in the consequent of each fuzzy rule.  The 
parameters to be learned are expressed as binary strings and 
cascaded as a chromosome.  The number of fuzzy rules in FLC
for ,  and u are assumed to be the same in GS_FPID
controller. However, the number of fuzzy rules is not known a 
priori.  In order to learn the number of fuzzy rules as well as the
parameterizations of each fuzzy rule, the fuzzy rule is
iteratively learned and accumulated.  In other words, a single
fuzzy rule for ,  and u, respectively, is first utilized.  GA is 
then applied to learn the parameterizations in both antecedent
and consequent parts of the rule.  As the learning of GA 
converges, a second rule is added based on the previously
learned fuzzy rule continuing the learning process.  The second 
learning process is not restricted to simply learn the second

fuzzy rule. In fact, the first and second fuzzy rules are both
learned by GA in the same learning process.  In order not to
waste the efforts that has been spent on learning the previous
fuzzy rule, the parameters of previously learned fuzzy rule are 
taken as the initial conditions for the GA so that the learning
process can be greatly improved.  Similarly, in the third
learning process, the parameters to be learned include the ones
in the first, second and third rules.  As the learning processes go 
on, the learning error in each learning process is a decreasing 
sequence given that the GA in each learning process converges. 

Denote the GA applied in the i-th learning process by GAi

and assume that it takes Gi generations for GAi to converge. 
Furthermore, assume that L chromosomes are employed in
every generation of GA.  Let dijg be the parameters of the i-th

fuzzy rule to be learned, which is implemented as part of the
g-th chromosome of GA’s gene pool in the j-th generation, g = 

1…L, j = 1…Gi.  That is to say, dijg is the additional set of
parameters to be learned in GAi.  If the set Dijg denotes GAi’s
whole set of parameters implemented in the g-th chromosome
of the j-th generation, then the total number of parameters to
learned is accumulated process by process, i.e.,

Dijg = [D(i-1)jg, dijg], g = 1…L, j =1…Gi. (28)

Note that for the initial learning process, D1jg = d1jg. Referring 

to (2)-(4), let  and respectively be the width and center 

of triangular membership functions of fuzzy sets , be

the p-th parameter in the consequent of fuzzy rule, which are 
implemented in the g-th chromosome of GA

p
ijgL

p
ijgC

ipA p
ijga

i’s j-th generation,
p = 1…6.  Then, dijg can be defined as

dijg = . (29)]a,...,a,C,...,C,L,...,L[ 6
ijg

1
ijg

6
ijg

1
ijg

6
ijg

1
ijg

Let be the sampled system output due to the

fuzzy PID controller associated with D

);k(y ijgD

ijg.  For GAi, the fitness
function associated with the chromosome Dijg is defined as the
integration of square error (ISE):

  (30) 
2

N

1

2

2
N

1k

1ijg

))k(y)k(r(

))k(y)k(r(f
1

ijg

Nk

ijg

D;

D;

1

where N denotes the total number of samples to be evaluated.
In order to make the designed GS_FPID controller hold good
transient response, (30) allows the flexibility of assigning the 
first N1 samples different weightings from the rest of the
samples.  Within N samples in total, N1 samples are given the
weighting 1 while the rest of them are given the weighting 2.

The accumulated GA tends to adjust the parameters of 
GS_FPID controller minimizing the ISE. The best
chromosome learned by GA is determined by searching all
possible chromosomes minimizing fijg.  The elitist method is 
utilized to choose parent chromosomes to mate and generate 
children chromosomes.  In order to increase GA’s searching 
efficiency, the parameters learned in the previous learning

process are given as the initial conditions.  If denotes the*
1iD
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best chromosome learned by GAi-1, then the best chromosome
in the j-th generation of GAi can be determined as 

*
1i

)f(
L..1g,

minArg
ijg

ijg

*
ij DD

D (31)

In order to guarantee the fitness function can be reduced
generation by generation, the best chromosome in the current
generation is passed to the next generation.  With the elitist 
method for choosing parent chromosomes, the variations of
fitness values for GAi is a non-increasing sequence.  If 

denotes the fitness function associated with , the best 

chromosome determined by GA

*
ijf *

ijD

i can thus be determined as

(32))f(
G..1j,

minArg
*
ij

i
*
ij

*
i D

D

Since the sequence of is a nonincreasing sequence,  is 

the best chromosome learned in the final generation,

i.e., .  In (31), although 6 i parameters are to be 

learned in the i-th learning process, 6 (i-1) best parameters

learned in the previous learning process, denoted by , can 

be taken as the initial values in the initial generation of GA

*
ijf

*
iD

*
iG

*
i i

DD

*
1iD

i.  In 
addition, 6 (i-1) parameters in each of the other (L-1)

chromosomes in the initial generation of GAi can also be 

obtained by mating with the other randomly generated

chromosomes.

*
1iD

In order to determine the appropriate number of fuzzy rules
for ,  and u, GAs with increasing size of chromosomes are
iteratively applied to learn the parameters in each fuzzy rule. 
For each learning process, a new fuzzy rule is added associated 
with the previously learned fuzzy rules.  Since the sequence 

, j = 1…G*
ijf i, is a non-increasing sequence, if the set of 

parameters cannot further reduce the fitness function, the

convergence of fitness values will stagnate.  Within each GA, 
the convergence of fitness values is monitored.  If the fitness
values do not change for certain number of generations, and the
fitness value is still larger than a threshold, a new GA is
applied.

*
ijD

IV. ROBUSTNESS OF GS_FPID CONTROLLER

In some applications, it is known a priori how the
dynamics of a controlled system change with the operating
conditions of the system.  The controller can thus be designed
to change the parameters accommodating the variations of
system dynamics based on the measurements of system
operating conditions.  This type of feedback control scheme is
called gain scheduling.[8]  The proposed GS_FPID controller
can also be applied to solving the gain scheduling problems.  In 
order to design suitable scheduling parameters based on system
operating conditions, traditional controller with gain
scheduling requires system dynamics. However, GS_FPID
requires no information of system dynamics. The operating
conditions for the GS_FPID controller simply come from the
measurements of error e(·) and error rate e(·).  On the basis of 

e(·) and e(·), GS_FPID controller adjusts controller 
parameters by fuzzy inference.

Assume that the variations of system dynamics with
operating conditions are known.  If q samples of variations are 
taken, then, with n = 1…q, the system outputs can be 
represented as 

),t),t(u,(d)t),t(u,(d)t(y nn x(t)x(t) (33)

where x(·) is the vector of state variables, u(·) is the input, )(d

is a fixed system function and )(d n is due to the n-th

variation of system dynamics.  With self tuning of fuzzy gains
(k) and (k), robustness is embedded in the GS_FPID

controller.  As the dynamics of controlled system varies,
GS_FPID controller is able to accommodate the variations of
system dynamics with self tuning of fuzzy gains (k) and (k).
In order to learn the GS_FPID controller for gain scheduling,
the fitness function in (30) can be modified accommodating the 
variations of system dynamics. Let be the sampled

system output due to n-th variation of system dynamics in
association with the parameters of GS_FPID controller, D

);k(yn ijgD

ijg.
Similar to (30), the fitness function associated with the
chromosome Dijg can be modified as 

(34)

)))k(y)k(r(

))k(y)k(r((f

2
N

1Nk

n

2
N

1k

n

q

1n

1ijg

1

1

ijg2

ijg

D;

D;

where q denotes the number of known system variations. The
best chromosome minimizing (34) by GAi is obtained as in (31) 
and (32). Referring to (34), the best GS_FPID controller
learned by the accumulated GA is able to adaptively change the
gains adjusting the weightings of fuzzy PI and fuzzy PD
controllers to accommodate the variations of system dynamics.

V. COMPUTER SIMULATION

In this section, the accumulated GA are iteratively applied
to design the GS_FPID controller for the higher order, variable
structure or time delayed system. The fitness function is
designed in the form of ISE.  For each GA, 80 chromosomes
are utilized in each generation. For the fitness function in (30), 
N1 = 50, 1 = 5, 2 = 1; 

Example 1.  Assume that the system to be controlled is with
variable system dynamics as following:

1

12
)(

2 ass

s
sM , (36)

where a = 0.9, 1.2, and 1.5 is known a priori.  The sampling
interval is set to be 0.01 second and 1500 samples are taken for
evaluation in the fitness function.  The step responses due to
GS_FPID controller with 2 fuzzy rules are shown in Fig. 2.  It is
shown in Fig. 2 that the GS_FPID controller is able to
accommodate the variations of system dynamics.

Example 2.  Assume that the system to be controlled is with
high order time delay variable system dynamics as following:
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)125.0)(25.0)(5.0)(1(
)(

ssss

e
sM

Ls

(37)

where L = 1, 2, and 3 is known a priori.  The sampling interval
is set to be 0.1 second and 200 samples are taken for evaluation
in the fitness function.  The step responses due to GS_FPID 
controller with simply one fuzzy rule are respectively shown in
Fig. 3.  It is shown in Fig. 3 that the GS_FPID controller is able
to accommodate time delay variations. 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

0 0.5 1 1.5 2

Fig. 2.  Step response of Example 1. 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

0 1 2 3 4 5 6 7 8 9 10 11 12

L=1
L=2
L=3

Fig. 3.  Step response of Example 2. 

VI. CONCLUSIONS

A GS_FPID controller based on the accumulated GA is 
proposed in this paper.  The parameters as well as the required
number of fuzzy rules in the fuzzy inference system are 
simultaneously learned by the accumulated GA.  It is shown
that the proposed GS_FPID controller performs well for
variable structure or time delayed system.  In order to design
suitable scheduling parameters based on system operating
conditions, traditional controller with gain scheduling requires
system dynamics.  However, GS_FPID requires no information
of system dynamics.  The operating conditions for the
GS_FPID controller simply come from the measurements of
error e(·) and error rate e(·).

The proposed fuzzy PID controller can not only be 
considered as an adaptive fuzzy PID controller adapting with
varying system dynamics, but also can be considered as a
regular fuzzy PID controller with more flexibility. The
proposed gain scheduled fuzzy PID controller performs well
when controlling the system without varying dynamics.  In fact,

since the proposed gain scheduled fuzzy PID controller is with
more parameterization degree of freedom, it can be utilized to
control more complex systems which generally cannot be
controlled well by the regular fuzzy PID controllers.
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