Search results for: vehicle simulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3881

Search results for: vehicle simulation

3731 A Convolutional Neural Network-Based Vehicle Theft Detection, Location, and Reporting System

Authors: Michael Moeti, Khuliso Sigama, Thapelo Samuel Matlala

Abstract:

One of the principal challenges that the world is confronted with is insecurity. The crime rate is increasing exponentially, and protecting our physical assets, especially in the motorist sector, is becoming impossible when applying our own strength. The need to develop technological solutions that detect and report theft without any human interference is inevitable. This is critical, especially for vehicle owners, to ensure theft detection and speedy identification towards recovery efforts in cases where a vehicle is missing or attempted theft is taking place. The vehicle theft detection system uses Convolutional Neural Network (CNN) to recognize the driver's face captured using an installed mobile phone device. The location identification function uses a Global Positioning System (GPS) to determine the real-time location of the vehicle. Upon identification of the location, Global System for Mobile Communications (GSM) technology is used to report or notify the vehicle owner about the whereabouts of the vehicle. The installed mobile app was implemented by making use of Python as it is undoubtedly the best choice in machine learning. It allows easy access to machine learning algorithms through its widely developed library ecosystem. The graphical user interface was developed by making use of JAVA as it is better suited for mobile development. Google's online database (Firebase) was used as a means of storage for the application. The system integration test was performed using a simple percentage analysis. 60 vehicle owners participated in this study as a sample, and questionnaires were used in order to establish the acceptability of the system developed. The result indicates the efficiency of the proposed system, and consequently, the paper proposes that the use of the system can effectively monitor the vehicle at any given place, even if it is driven outside its normal jurisdiction. More so, the system can be used as a database to detect, locate and report missing vehicles to different security agencies.

Keywords: Convolutional Neural Network, CNN, location identification, tracking, GPS, GSM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 354
3730 Lubrication Performance of Multi-Level Gear Oil in a Gasoline Engine

Authors: Feng-Tsai Weng, Dong- Syuan Cai, Tsochu-Lin

Abstract:

A vehicle gasoline engine converts gasoline into power so that the car can move, and lubricants are important for engines and also gear boxes. Manufacturers have produced numbers of engine oils, and gear oils for engines and gear boxes to SAE International Standards. Some products not only can improve the lubrication of both the engine and gear box but also can raise power of vehicle this can be easily seen in the advertisement declared by the manufacturers. To observe the lubrication performance, a multi-leveled (heavy duty) gear oil was added to a gasoline engine as the oil in the vehicle. The oil was checked at about every 10,000 kilometers. The engine was detailed disassembled, cleaned, and parts were measured. The wear of components of the engine parts were checked and recorded finally. Based on the experiment results, some gear oil seems possible to be used as engine oil in particular vehicles. Vehicle owners should change oil periodically in about every 6,000 miles (or 10,000 kilometers). Used car owners may change engine oil in even longer distance.

Keywords: Multi-level gear oil, engine oil, viscosity, abrasion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1035
3729 Changes in Fine PM Pollution Levels with Tightening of Regulations on Vehicle Emissions

Authors: Akihiro Iijima, Kimiyo Kumagai

Abstract:

A long-term campaign for monitoring the concentration of atmospheric Particulate Matter (PM) was conducted at multiple sites located in the center and suburbs of the Tokyo Metropolitan Area in Japan. The concentration of fine PM has shown a declining trend over the last two decades. A positive matrix factorization model elucidated that the contribution of combustion sources was drastically reduced. In Japan, the regulations on vehicle exhaust emissions were phased in and gradually tightened over the last two decades, which has triggered a notable reduction in PM emissions from automobiles and has contributed to the mitigation of the problem of fine PM pollution.

Keywords: Air pollution, Diesel-powered vehicle, Positive matrix factorization, Receptor modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
3728 Moving Vehicles Detection Using Automatic Background Extraction

Authors: Saad M. Al-Garni, Adel A. Abdennour

Abstract:

Vehicle detection is the critical step for highway monitoring. In this paper we propose background subtraction and edge detection technique for vehicle detection. This technique uses the advantages of both approaches. The practical applications approved the effectiveness of this method. This method consists of two procedures: First, automatic background extraction procedure, in which the background is extracted automatically from the successive frames; Second vehicles detection procedure, which depend on edge detection and background subtraction. Experimental results show the effective application of this algorithm. Vehicles detection rate was higher than 91%.

Keywords: Image processing, Automatic background extraction, Moving vehicle detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2379
3727 Experimental Analysis of Control in Electric Vehicle Charging Station Based Grid Tied Photovoltaic-Battery System

Authors: A. Hassoune, M. Khafallah, A. Mesbahi, T. Bouragba

Abstract:

This work presents an improved strategy of control for charging a lithium-ion battery in an electric vehicle charging station using two charger topologies i.e. single ended primary inductor converter (SEPIC) and forward converter. In terms of rapidity and accuracy, the power system consists of a topology/control diagram that would overcome the performance constraints, for instance the power instability, the battery overloading and how the energy conversion blocks would react efficiently to any kind of perturbations. Simulation results show the effectiveness of the proposed topologies operated with a power management algorithm based on voltage/peak current mode controls. In order to provide credible findings, a low power prototype is developed to test the control strategy via experimental evaluations of the converter topology and its controls.

Keywords: Battery charger, forward converter, lithium-ion, management algorithm, SEPIC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 705
3726 Multirate Neural Control for AUV's Increased Situational Awareness during Diving Tasks Using Stochastic Model

Authors: Igor Astrov, Andrus Pedai

Abstract:

This paper focuses on a critical component of the situational awareness (SA), the neural control of depth flight of an autonomous underwater vehicle (AUV). Constant depth flight is a challenging but important task for AUVs to achieve high level of autonomy under adverse conditions. With the SA strategy, we proposed a multirate neural control of an AUV trajectory for a nontrivial mid-small size AUV “r2D4" stochastic model. This control system has been demonstrated and evaluated by simulation of diving maneuvers using software package Simulink. From the simulation results it can be seen that the chosen AUV model is stable in the presence of noises, and also can be concluded that the proposed research technique will be useful for fast SA of similar AUV systems in real-time search-and-rescue operations.

Keywords: Autonomous underwater vehicles, multirate systems, neurocontrollers, situational awareness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
3725 Depth Controls of an Autonomous Underwater Vehicle by Neurocontrollers for Enhanced Situational Awareness

Authors: Igor Astrov, Andrus Pedai

Abstract:

This paper focuses on a critical component of the situational awareness (SA), the neural control of autonomous constant depth flight of an autonomous underwater vehicle (AUV). Autonomous constant depth flight is a challenging but important task for AUVs to achieve high level of autonomy under adverse conditions. The fundamental requirement for constant depth flight is the knowledge of the depth, and a properly designed controller to govern the process. The AUV, named VORAM, is used as a model for the verification of the proposed hybrid control algorithm. Three neural network controllers, named NARMA-L2 controllers, are designed for fast and stable diving maneuvers of chosen AUV model. This hybrid control strategy for chosen AUV model has been verified by simulation of diving maneuvers using software package Simulink and demonstrated good performance for fast SA in real-time searchand- rescue operations.

Keywords: Autonomous underwater vehicles, depth control, neurocontrollers, situational awareness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
3724 Agent-Based Simulation of Simulating Anticipatory Systems – Classification

Authors: Eugene Kindler

Abstract:

The present paper is oriented to classification and application of agent technique in simulation of anticipatory systems, namely those that use simulation models for the aid of anticipation. The main ideas root in the fact that the best way for description of computer simulation models is the technique of describing the simulated system itself (and the translation into the computer code is provided as automatic), and that the anticipation itself is often nested.

Keywords: Agents, Anticipatory systems, Discrete eventsimulation, Simula, Taxonomy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518
3723 A Microscopic Simulation Model for Earthmoving Operations

Authors: Jiali Fu

Abstract:

Earthmoving operations are a major part of many construction projects. Because of the complexity and fast-changing environment of such operations, the planning and estimating are crucial on both planning and operational levels. This paper presents the framework ofa microscopic discrete-event simulation system for modeling earthmoving operations and conducting productivity estimations on an operational level.A prototype has been developed to demonstrate the applicability of the proposed framework, and this simulation system is presented via a case study based on an actual earthmoving project. The case study shows that the proposed simulation model is capable of evaluating alternative operating strategies and resource utilization at a very detailed level.

Keywords: Earthmoving operation, microscopic simulation, discrete-event simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947
3722 Investigation on the Bogie Pseudo-Hunting Motion of a Reduced-Scale Model Railway Vehicle Running on Double-Curved Rails

Authors: Barenten Suciu, Ryoichi Kinoshita

Abstract:

In this paper, an experimental and theoretical study on the bogie pseudo-hunting motion of a reduced-scale model railway vehicle, running on double-curved rails, is presented. Since the actual bogie hunting motion, occurring for real railway vehicles running on straight rails at high travelling speeds, cannot be obtained in laboratory conditions, due to the speed and wavelength limitations, a pseudo- hunting motion was induced by employing double-curved rails. Firstly, the test rig and the experimental procedure are described. Then, a geometrical model of the double-curved rails is presented. Based on such model, the variation of the carriage rotation angle relative to the bogies and the working conditions of the yaw damper are clarified. Vibration spectra recorded during vehicle travelling, on straight and double-curved rails, are presented and interpreted based on a simple vibration model of the railway vehicle. Ride comfort of the vehicle is evaluated according to the ISO 2631 standard, and also by using some particular frequency weightings, which account for the discomfort perceived during the reading and writing activities. Results obtained in this work are useful for the adequate design of the yaw dampers, which are used to attenuate the lateral vibration of the train car bodies.

Keywords: Double-curved rail, octave analysis, lateral vibration, ride comfort, yaw damper, railway vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417
3721 Database Compression for Intelligent On-board Vehicle Controllers

Authors: Ágoston Winkler, Sándor Juhász, Zoltán Benedek

Abstract:

The vehicle fleet of public transportation companies is often equipped with intelligent on-board passenger information systems. A frequently used but time and labor-intensive way for keeping the on-board controllers up-to-date is the manual update using different memory cards (e.g. flash cards) or portable computers. This paper describes a compression algorithm that enables data transmission using low bandwidth wireless radio networks (e.g. GPRS) by minimizing the amount of data traffic. In typical cases it reaches a compression rate of an order of magnitude better than that of the general purpose compressors. Compressed data can be easily expanded by the low-performance controllers, too.

Keywords: Data analysis, data compression, differentialencoding, run-length encoding, vehicle control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539
3720 Design of an Experimental Setup to Study the Drives of Battery Electric Vehicles

Authors: Valery Vodovozov, Zoja Raud, Tõnu Lehtla

Abstract:

This paper describes the design considerations of an experimental setup for research and exploring the drives of batteryfed electric vehicles. Effective setup composition and its components are discussed. With experimental setup described in this paper, durability and functional tests can be procured to the customers. Multiple experiments are performed in the form of steady-state system exploring, acceleration programs, multi-step tests (speed control, torque control), load collectives or close-to-reality driving tests (driving simulation). Main focus of the functional testing is on the measurements of power and energy efficiency and investigations in driving simulation mode, which are used for application purposes. In order to enable the examination of the drive trains beyond standard modes of operation, different other parameters can be studied also.

Keywords: Electric drive, electric vehicle, propulsion, test bench.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2893
3719 Real Time Control Learning Game - Speed Race by Learning at the Wheel - Development of Data Acquisition System

Authors: Κonstantinos Kalovrektis, Chryssanthi Palazi

Abstract:

Schools today face ever-increasing demands in their attempts to ensure that students are well equipped to enter the workforce and navigate a complex world. Research indicates that computer technology can help support learning, implementation of various experiments or learning games, and that it is especially useful in developing the higher-order skills of critical thinking, observation, comprehension, implementation, comparison, analysis and active attention to activities such as research, field work, simulations and scientific inquiry. The ICT in education supports the learning procedure by enabling it to be more flexible and effective, create a rich and attractive training environment and equip the students with knowledge and potential useful for the competitive social environment in which they live. This paper presents the design, the development, and the results of the evaluation analysis of an interactive educational game which using real electric vehicles - toys (material) on a toy race track. When the game starts each student selects a specific vehicle toy. Then students are answering questionnaires in the computer. The vehicles' speed is related to the percentage of right answers in a multiple choice questionnaire (software). Every question has its own significant value depending of the different level of questionnaire. Via the developed software, each right or wrong answers in questionnaire increase or decrease the real time speed of their vehicle toys. Moreover the rate of vehicle's speed increase or decrease depends on the difficulty level of each question. The aim of the work is to attract the student’s interest in a learning process and also to improve their scores. The developed real time game was tested using independent populations of students of age groups: 8-10, 11-14, 15-18 years. Standard educational and statistical analysis tools were used for the evaluation analysis of the game. Results reveal that students using the developed real time control game scored much higher (60%) than students using a traditional simulation game on the same questionnaire. Results further indicate that student's interest in repeating the developed real time control gaming was far higher (70%) than the interest of students using a traditional simulation game.

Keywords: Real time game, sensor, learning games, LabVIEW

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698
3718 An Enhanced Situational Awareness of AUV's Mission by Multirate Neural Control

Authors: Igor Astrov, Mikhail Pikkov

Abstract:

This paper focuses on a critical component of the situational awareness (SA), the neural control of depth flight of an autonomous underwater vehicle (AUV). Constant depth flight is a challenging but important task for AUVs to achieve high level of autonomy under adverse conditions. With the SA strategy, we proposed a multirate neural control of an AUV trajectory using neural network model reference controller for a nontrivial mid-small size AUV "r2D4" stochastic model. This control system has been demonstrated and evaluated by simulation of diving maneuvers using software package Simulink. From the simulation results it can be seen that the chosen AUV model is stable in the presence of high noise, and also can be concluded that the fast SA of similar AUV systems with economy in energy of batteries can be asserted during the underwater missions in search-and-rescue operations.

Keywords: Autonomous underwater vehicles, multirate systems, neurocontrollers, situational awareness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
3717 Hybrid Control of Networked Multi-Vehicle System Considering Limitation of Communication Range

Authors: Toru Murayama, Akinori Nagano, Zhi-Wei Luo

Abstract:

In this research, we study a control method of a multivehicle system while considering the limitation of communication range for each vehicles. When we control networked vehicles with limitation of communication range, it is important to control the communication network structure of a multi-vehicle system in order to keep the network-s connectivity. From this, we especially aim to control the network structure to the target structure. We formulate the networked multi-vehicle system with some disturbance and the communication constraints as a hybrid dynamical system, and then we study the optimal control problems of the system. It is shown that the system converge to the objective network structure in finite time when the system is controlled by the receding horizon method. Additionally, the optimal control probrems are convertible into the mixed integer problems and these problems are solvable by some branch and bound algorithm.

Keywords: Hybrid system, multi-vehicle system, receding horizon control, topology control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
3716 Driver Readiness in Autonomous Vehicle Take-Overs

Authors: Abdurrahman Arslanyilmaz, Salman Al Matouq, Durmus V. Doner

Abstract:

Level 3 autonomous vehicles are able to take full responsibility over the control of the vehicle unless a system boundary is reached or a system failure occurs, in which case, the driver is expected to take-over the control of the vehicle. While this happens, the driver is often not aware of the traffic situation or is engaged in a secondary task. Factors affecting the duration and quality of take-overs in these situations have included secondary task type and nature, traffic density, take-over request (TOR) time, and TOR warning type and modality. However, to the best of the authors’ knowledge, no prior study examined time buffer for TORs when a system failure occurs immediately before intersections. The first objective of this study is to investigate the effect of time buffer (3 and 7 seconds) on the duration and quality of take-overs when a system failure occurs just prior to intersections. In addition, eye-tracking has become one of the most popular methods to report what individuals view, in what order, for how long, and how often, and it has been utilized in driving simulations with various objectives. However, to the extent of authors’ knowledge, none has compared drivers’ eye gaze behavior in the two different time buffers in order to examine drivers’ attention and comprehension of salient information. The second objective is to understand the driver’s attentional focus on comprehension of salient traffic-related information presented on different parts of the dashboard and on the roads.

Keywords: Autonomous vehicles, driving simulation, eye gaze, attention, comprehension, take-over duration, take-over quality, time buffer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 808
3715 Development of 25A-Size Three-Layer Metal Gasket by Using FEM Simulation

Authors: Shigeyuki Haruyama, I Made Gatot Karohika, Akinori Sato, Didik Nurhadiyanto, Ken Kaminishi

Abstract:

Contact width and contact stress are important design parameters for optimizing corrugated metal gasket performance based on elastic and plastic contact stress. In this study, we used a three-layer metal gasket with Al, Cu, Ni as the outer layer, respectively. A finite element method was employed to develop simulation solution. The gasket model was simulated by using two simulation stages which are forming and tightening simulation. The simulation result shows that aluminum with tangent modulus, Ehal = Eal/150 has the highest slope for contact width. The slope of contact width for plastic mode gasket was higher than the elastic mode gasket.

Keywords: Contact width, contact stress, layer, metal gasket, corrugated, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
3714 Application of CPN Tools for Simulation and Analysis of Bandwidth Allocation

Authors: Julija Asmuss, Gunars Lauks, Viktors Zagorskis

Abstract:

We consider the problem of bandwidth allocation in a substrate network as an optimization problem for the aggregate utility of multiple applications with diverse requirements and describe a simulation scheme for dynamically adaptive bandwidth allocation protocols. The proposed simulation model based on Coloured Petri Nets (CPN) is realized using CPN Tools.

Keywords: Bandwidth Allocation Problem, Coloured Petri Nets, CPN Tools, Simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
3713 A Basic Study on Ubiquitous Overloaded Vehicles Regulation System

Authors: Byung-Wan Jo, Kwang-Won Yoon, Ji-Sun Choi

Abstract:

Load managing method on road became necessary since overloaded vehicles occur damage on road facilities and existing systems for preventing this damage still show many problems.Accordingly, efficient managing system for preventing overloaded vehicles could be organized by using the road itself as a scale by applying genetic algorithm to analyze the load and the drive information of vehicles.Therefore, this paper organized Ubiquitous sensor network system for development of intelligent overload vehicle regulation system, also in this study, to use the behavior of road, the transformation was measured by installing underground box type indoor model and indoor experiment was held using genetic algorithm. And we examined wireless possibility of overloaded vehicle regulation system through experiment of the transmission and reception distance.If this system will apply to road and bridge, might be effective for economy and convenience through establishment of U-IT system..

Keywords: Overload Vehicle. Genetic Algorithm, EmbeddedSystem, Wim Sensor, overload vehicle regulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530
3712 Development of a Thrust Measurement System

Authors: S. Jeon, J. Kim, H. Choi

Abstract:

KSLV-I(Korea Space Launch Vehicle-I) is designed as a launch vehicle to enter a 100 kg-class satellite to the LEO(Low Earth Orbit). Attitude angles of the upper-stage, including roll, pitch and yaw are controlled by the cold gas thruster system using nitrogen gas. The cold gas thruster is an actuator in the RCS(Reaction Control System). To design an attitude controller for the upper-stage, thrust measurement in vacuum condition is required. In this paper, the new thrust measurement system and calibration mechanism are developed and measurement errors and signal processing method are presented.

Keywords: cold gas thruster, launch vehicle, thrust measurement, calibration mechanism, signal processing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2719
3711 Fuzzy Control of a Quarter-Car Suspension System

Authors: M. M. M. Salem, Ayman A. Aly

Abstract:

An active suspension system has been proposed to improve the ride comfort. A quarter-car 2 degree-of-freedom (DOF) system is designed and constructed on the basis of the concept of a four-wheel independent suspension to simulate the actions of an active vehicle suspension system. The purpose of a suspension system is to support the vehicle body and increase ride comfort. The aim of the work described in the paper was to illustrate the application of fuzzy logic technique to the control of a continuously damping automotive suspension system. The ride comfort is improved by means of the reduction of the body acceleration caused by the car body when road disturbances from smooth road and real road roughness. The paper describes also the model and controller used in the study and discusses the vehicle response results obtained from a range of road input simulations. In the conclusion, a comparison of active suspension fuzzy control and Proportional Integration derivative (PID) control is shown using MATLAB simulations.

Keywords: Fuzzy logic control, ride comfort, vehicle dynamics, active suspension system, quarter-car model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4162
3710 Trial Development the Evaluation Method of Quantification the Feeling of Preventing Visibility by Front A Pillar

Authors: T. Arakawa, H. Sato

Abstract:

There are many drivers who feel right A pillar of Japanese right-hand-drive car preventing visibility on turning right or left at intersection. On the other hand, there is a report that almost pedestrian accident is caused by the delay of finding pedestrian by drivers and this is found by drivers’ eye movement. Thus, we developed the evaluation method of quantification using drivers’ eye movement data by least squares estimation and we applied this method to commercial vehicle and evaluation the visibility. It is suggested that visibility of vehicle can be quantified and estimated by linear model obtained from experimental eye fixation data and information of vehicle dimensions.

Keywords: Eye fixation, modeling, obstacle feeling, right A pillar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
3709 Quantification of Aerodynamic Variables Using Analytical Technique and Computational Fluid Dynamics

Authors: Adil Loya, Kamran Maqsood, Muhammad Duraid

Abstract:

Aerodynamic stability coefficients are necessary to be known before any unmanned aircraft flight is performed. This requires expertise on aerodynamics and stability control of the aircraft. To enable efficacious performance of aircraft requires that a well-defined flight path and aerodynamics should be defined beforehand. This paper presents a study on the aerodynamics of an unmanned aero vehicle (UAV) during flight conditions. Current research holds comparative studies of different parameters for flight aerodynamic, measured using two different open source analytical software programs. These software packages are DATCOM and XLRF5, which help in depicting the flight aerodynamic variables. Computational fluid dynamics (CFD) was also used to perform aerodynamic analysis for which Star CCM+ was used. Output trends of the study demonstrate high accuracies between the two software programs with that of CFD. It can be seen that the Coefficient of Lift (CL) obtained from DATCOM and XFLR is similar to CL of CFD simulation. In the similar manner, other potential aerodynamic stability parameters obtained from analytical software are in good agreement with CFD.

Keywords: XFLR5, DATCOM, computational fluid dynamic, unmanned aero vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 829
3708 Energy Benefits of Urban Platooning with Self-Driving Vehicles

Authors: Eduardo F. Mello, Peter H. Bauer

Abstract:

The primary focus of this paper is the generation of energy-optimal speed trajectories for heterogeneous electric vehicle platoons in urban driving conditions. Optimal speed trajectories are generated for individual vehicles and for an entire platoon under the assumption that they can be executed without errors, as would be the case for self-driving vehicles. It is then shown that the optimization for the “average vehicle in the platoon” generates similar transportation energy savings to optimizing speed trajectories for each vehicle individually. The introduced approach only requires the lead vehicle to run the optimization software while the remaining vehicles are only required to have adaptive cruise control capability. The achieved energy savings are typically between 30% and 50% for stop-to-stop segments in cities. The prime motivation of urban platooning comes from the fact that urban platoons efficiently utilize the available space and the minimization of transportation energy in cities is important for many reasons, i.e., for environmental, power, and range considerations.

Keywords: Electric vehicles, energy efficiency, optimization, platooning, self-driving vehicles, urban traffic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1210
3707 The Use of Simulation Programs of Leakage of Harmful Substances for Crisis Management

Authors: Jiří Barta

Abstract:

The paper deals with simulation programs of spread of harmful substances. Air pollution has a direct impact on the quality of human life and environmental protection is currently a very hot topic. Therefore, the paper focuses on the simulation of release of harmful substances. The first part of article deals with perspectives and possibilities of implementation outputs of simulations programs into the system which is education and of practical training of the management staff during emergency events in the frame of critical infrastructure. The last part shows the practical testing and evaluation of simulation programs. Of the tested simulations software been selected Symos97. The tool offers advanced features for setting leakage. Gradually allows the user to model the terrain, location, and method of escape of harmful substances.

Keywords: Computer Simulation, Symos97, spread, simulation software, harmful substances.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 912
3706 An Intelligent Controller Augmented with Variable Zero Lag Compensation for Antilock Braking System

Authors: Benjamin C. Agwah, Paulinus C. Eze

Abstract:

Antilock braking system (ABS) is one of the important contributions by the automobile industry, designed to ensure road safety in such way that vehicles are kept steerable and stable when during emergency braking. This paper presents a wheel slip-based intelligent controller with variable zero lag compensation for ABS. It is required to achieve a very fast perfect wheel slip tracking during hard braking condition and eliminate chattering with improved transient and steady state performance, while shortening the stopping distance using effective braking torque less than maximum allowable torque to bring a braking vehicle to a stop. The dynamic of a vehicle braking with a braking velocity of 30 ms⁻¹ on a straight line was determined and modelled in MATLAB/Simulink environment to represent a conventional ABS system without a controller. Simulation results indicated that system without a controller was not able to track desired wheel slip and the stopping distance was 135.2 m. Hence, an intelligent control based on fuzzy logic controller (FLC) was designed with a variable zero lag compensator (VZLC) added to enhance the performance of FLC control variable by eliminating steady state error, provide improve bandwidth to eliminate the effect of high frequency noise such as chattering during braking. The simulation results showed that FLC-VZLC provided fast tracking of desired wheel slip, eliminated chattering, and reduced stopping distance by 70.5% (39.92 m), 63.3% (49.59 m), 57.6% (57.35 m) and 50% (69.13 m) on dry, wet, cobblestone and snow road surface conditions respectively. Generally, the proposed system used effective braking torque that is less than the maximum allowable braking torque to achieve efficient wheel slip tracking and overall robust control performance on different road surfaces.

Keywords: ABS, Fuzzy Logic Controller, Variable Zero Lag Compensator, Wheel Slip Tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 294
3705 A Feasibility-study of a Micro- Communications Sonobuoy Deployable by UAV Robots

Authors: B. Munro, D. Lim, A. Anvar

Abstract:

This paper describes a feasibility study that is included with the research, development and testing of a micro communications sonobuoy deployable by Maritime Fixed wing Unmanned Aerial Vehicles (M-UAV) and rotor wing Quad Copters which are both currently being developed by the University of Adelaide. The micro communications sonobuoy is developed to act as a seamless communication relay between an Autonomous Underwater Vehicle (AUV) and an above water human operator some distance away. Development of such a device would eliminate the requirement of physical communication tethers attached to submersible vehicles for control and data retrieval.

Keywords: Autonomous Underwater Vehicle, AUV, Maritime, Unmanned Aerial Vehicle, UAV, Micro Sonobuoy, Communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022
3704 Microscopic Emission and Fuel Consumption Modeling for Light-duty Vehicles Using Portable Emission Measurement System Data

Authors: Wei Lei, Hui Chen, Lin Lu

Abstract:

Microscopic emission and fuel consumption models have been widely recognized as an effective method to quantify real traffic emission and energy consumption when they are applied with microscopic traffic simulation models. This paper presents a framework for developing the Microscopic Emission (HC, CO, NOx, and CO2) and Fuel consumption (MEF) models for light-duty vehicles. The variable of composite acceleration is introduced into the MEF model with the purpose of capturing the effects of historical accelerations interacting with current speed on emission and fuel consumption. The MEF model is calibrated by multivariate least-squares method for two types of light-duty vehicle using on-board data collected in Beijing, China by a Portable Emission Measurement System (PEMS). The instantaneous validation results shows the MEF model performs better with lower Mean Absolute Percentage Error (MAPE) compared to other two models. Moreover, the aggregate validation results tells the MEF model produces reasonable estimations compared to actual measurements with prediction errors within 12%, 10%, 19%, and 9% for HC, CO, NOx emissions and fuel consumption, respectively.

Keywords: Emission, Fuel consumption, Light-duty vehicle, Microscopic, Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
3703 A Traffic Simulation Package Based on Travel Demand

Authors: Tuong Huan Nguyen, Quoc Bao Vo, Hai L. Vu

Abstract:

In this paper we propose a new traffic simulation package, TDMSim, which supports both macroscopic and microscopic simulation on free-flowing and regulated traffic systems. Both simulators are based on travel demands, which specify the numbers of vehicles departing from origins to arrive at different destinations. The microscopic simulator implements the carfollowing model given the pre-defined routes of the vehicles but also supports the rerouting of vehicles. We also propose a macroscopic simulator which is built in integration with the microscopic simulator to allow the simulation to be scaled for larger networks without sacrificing the precision achievable through the microscopic simulator. The macroscopic simulator also enables the reuse of previous simulation results when simulating traffic on the same networks at later time. Validations have been conducted to show the correctness of both simulators.

Keywords: Macroscopic, Microscopic, Simulation, Traffic, Travel demand, Fundamental diagrams.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560
3702 A Matlab / Simulink Based Tool for Power Electronic Circuits

Authors: Abdulatif A. M. Shaban

Abstract:

Transient simulation of power electronic circuits is of considerable interest to the designer. The switching nature of the devices used permits development of specialized algorithms which allow a considerable reduction in simulation time compared to general purpose simulation algorithms. This paper describes a method used to simulate a power electronic circuits using the SIMULINK toolbox within MATLAB software. Theoretical results are presented provides the basis of transient analysis of a power electronic circuits.

Keywords: Modelling, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5503