

Abstract—The vehicle fleet of public transportation companies is

often equipped with intelligent on-board passenger information
systems. A frequently used but time and labor-intensive way for
keeping the on-board controllers up-to-date is the manual update
using different memory cards (e.g. flash cards) or portable
computers. This paper describes a compression algorithm that
enables data transmission using low bandwidth wireless radio
networks (e.g. GPRS) by minimizing the amount of data traffic. In
typical cases it reaches a compression rate of an order of magnitude
better than that of the general purpose compressors. Compressed data
can be easily expanded by the low-performance controllers, too.

Keywords—Data analysis, data compression, differential
encoding, run-length encoding, vehicle control.

I. INTRODUCTION
O operate a public transportation network successfully, it
is essential to provide the passengers with the appropriate

traveling information. There is a wide variety of equipments
supporting these functions including graphical signs, voice
announciators, positioning and communication devices [1].
An important component of on-board systems is the controller
that coordinates the work of all the other devices (Fig. 1).

R ad io tow er

Controller flash Sound flash

DATA TRANSFER BUS

On-board
controller

Sound
controller

Signs
GPS

receiver
Test and

monitoring
tools

Modem
(GSM,
GPRS)

Amplifier

Computer

Fig. 1 Structure of on-board systems

The on-board controllers should always hold the most
current data for their optimal operation. A simple and
frequently used way for providing this is the manual update

Manuscript received July 15, 2005.
The authors are with the Department of Automation and Applied

Informatics, Budapest University of Technology and Economics, 1117
Budapest, Magyar tudósok körútja 2., Hungary (e-mail: awinkler@t-email.hu,
sanyo@aut.bme.hu, benedek.zoltan@aut.bme.hu).

using different memory cards (e.g. flash cards) or portable
computers, however this method takes a lot of time and
requires human contribution. It would be much more
comfortable to transmit the new database to the controllers
using wireless radio networks. Unfortunately many
transportation companies cannot afford the operation of high
bandwidth radio networks (e.g. WLAN). In addition, it is an
obvious expectation that older controllers should be used as
well, which may not be able to be connected to such a
network. Typical controller data files are however too large to
be transmitted over a low bandwidth connection as most of the
vehicles leave the garage and arrive back at the same time,
leaving only a short period of time for updating almost every
controller. Different vehicles may require different databases
so broadcast techniques cannot be used.

A solution for this problem is the compression of the
databases which is promising for more reasons. Firstly, data
files have a regular structure, they contain many repetitions.
Furthermore, in typical cases only a few modifications are
made in the database so only small segments of the files are
affected. This means that differential encoding can be applied
successfully if the controller has enough storage capacity. In
the examined cases the latter condition was fulfilled.

It must be noticed that most on-board controllers have a
relatively simple processor. This implies that the decoding
algorithm should be as simple as it is possible so that
controllers can expand the files in real time. On the contrary,
encoding might be more resource-intensive as it is executed
by a computer with a powerful processor and having a less
strict time limit for this operation.

This paper describes a compression algorithm specialized
for this problem. It summarizes the basic techniques of data
compression, then demonstrates how the logical and physical
properties of the data files were examined and how the
suitable compression techniques and their parameters were
chosen, in order to reach a better result than general purpose
compressors do. Finally it presents the steps of the encoding
process and reports the achieved results.

II. RELATED WORKS

A. Terminology
Data compression requires two procedures: compression

(encoding) transforms the original data into compressed data,
whereas decompression (decoding) restores it (Fig. 2).

Database Compression for Intelligent On-board
Vehicle Controllers

Ágoston Winkler, Sándor Juhász, and Zoltán Benedek

T

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:7, 2007

2160International Scholarly and Scientific Research & Innovation 1(7) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

7,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

29
12

.p
df

Compression

Decompression

Original
data

Compressed
data

Fig. 2 Basic scheme of data compression

The efficiency of the compression can be measured by the
compression rate which is defined as (1). The higher value of
the compression rate indicates a better compression [2].

B. Classification
There are two basic types of compression techniques: lossy

and lossless methods. Lossy compression can be much more
effective for certain data types than lossless but the original
data cannot be restored with full accuracy. In some cases it is
acceptable (e.g. picture and sound compression), however the
particular problem does not allow any losses: the contents of
controller data files must be restored absolutely precisely.

An other classification distinguishes logical and physical
compression techniques [2].

Logical compression uses and may modify the structure of
the files, such as normalizing databases or changing data
storage formats. Although controller files have a regular
structure, their exact format should not be exploited as even
small changes brought by future versions would make the
algorithm unusable so both the encoding and the decoding
program would have to be modified and reloaded into the
controllers. This implies that some properties of the files
derived from their structure should be utilized, however the
meaning of each bit should not be exploited, in order to create
a robust algorithm that is not sensitive to smaller changes in
the format.

Physical compression uses general statistics so it can be
applied for all file formats. The efficiency of physical methods
can be increased by examining which of them can be used
with the best results when compressing files of a specific
format, and optimizing the encoding scheme based on the
results.

According to the considerations above, physical lossless
techniques should be used particularly. The next part of this
chapter summarizes the most general methods of this type [2].

C. Physical Lossless Techniques
Differential encoding is a very effective way of data

compression if the previous version of the file is available
during the decompression and there are relatively few
changes.

Run-length encoding (RLE) is worth using when identical
characters appear together in long series [3]. In this case it is
enough to identify the specified character and store the length
of the series.

An other method may be considered as an enhanced version
of RLE: it encodes character strings by specifying their length

just as RLE does but characters do not have to be identical.
Instead of a character, a distance is specified: the characters
can be taken from a preceding part of the file (that has been
already decompressed) starting from the actual position minus
the given distance. This is the same technique as the one used
by differential encoding but repetitions are searched for within
the file so it can be used even when the previous version of
the file is inaccessible. However, in general only shorter
matches are found with this method.

Bit-mapping can be used if a certain character is very
frequent but does not form long series. In this case a “map”
identifies the positions of the frequent character (e.g. one byte
describes the following block of 8 characters) and only the
other characters have to be specified [2].

Pattern substitution is a technique that takes advantage of
character strings having a special function in certain file types.
Depending on the length of these strings a good compression
rate can be achieved by replacing them with a shorter code
(e.g. one simple character) [4].

Half-byte packing tries to put two characters in one single
byte. If data files (or some parts of them) contain only a few
character values (e.g. numbers and operators in business data
files) 4 bits may be enough [2].

Diatomic encoding does not encode single characters but
character pairs [2].

Statistical encoding uses different code lengths for
characters with different probabilities of occurrence.
Statistical methods are very efficient (the Huffman code is
optimal) but their decoding requires too many bit operations
causing that the decompression may get too complex for the
low-performance on-board controllers [5].

Dictionary-based techniques (e.g. the Lempel–Ziv–Welch
method) reach very good compression rates as well and they
are extremely fast. However they use typically 12-15 bit long
words causing the same performance problem with the
decompression [6].

III. ANALYSIS OF THE DATA FILES

A. Logical Structure
The database contains all the information required for

informing the passengers about the route of the vehicle. The
logical structure of data files used by different on-board
systems is quite similar, the data is usually stored in a tree.
Fig. 3 shows the structure of Vultron controller data files. As
it was mentioned earlier, this structure may help to determine
the parameters of some physical compression methods so it is
worth examining.

A typical controller data file contains the name, the author
and the creation date of the file, the type of the equipments the
database relates to (controller, LCD sign, GPS, odometer,
keyboard etc.) and the text of the messages for the operator. It
may also contain a table of the character sets and
configurations stored in the file and the sounds stored in a
separate sound flash. A configuration keeps information about
a specific vehicle or vehicle type, including the type of the

Compression rate = (1)
Original data size

Compressed data size

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:7, 2007

2161International Scholarly and Scientific Research & Innovation 1(7) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

7,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

29
12

.p
df

components of the on-board system (e.g. stop and route
related signs, odometer’s impulse density etc.) and the
description of the routes the vehicle runs on. A route is a
series of stops with some own properties, e.g. public and
internal route codes, type, picture id of the route related signs,
in addition to the stop specific information. Stops have
properties like name, GPS coordinates, picture id of the stop
related signs, sound id of the announcements.

Configuration
E.g. low-floor 12 m long bus

 <FLSH>

 <CFG0>

Display configuration
E.g.
“Console”: 40x2 LCD text sign (stop related) <SSN0>
“Front”: 140x19 matrix sign (route related) <RSN0>
“Side”: 120x16 matrix sign (route related) <RSN1>
“Internal”: 80x7 matrix sign (stop related) <SSN1>
“TRN”: 28x16 matrix sign (route related) <RSN2>

Routes
 E.g.

 1 Destination Nobel Institute <RT00>
 Contents of route related signs:
 “Front” sign picture id <RSN0>
 “Side” sign picture id <RSN1>
 “TRN” sign picture id <RSN2>

 Stop 1 <ST00>
 Physical stop <PRMS>
 Stop id: Baker North
 Stop name: Baker Street
 GPS coordinates

 Sounds
 E.g. “Doors are closing.” <SSND>
 “Next stop is Nelson Road.” <NSND>

 Stop related contents:
 “Console” sign picture id <SSN0>
 “Internal” sign picture id <SSN1>

 Stop 2 <ST01>
 …
 …

Fig. 3 Structure of Vultron controller data files

B. Physical Properties
To determine which compression techniques are worth

using, physical properties of the data files must be analyzed.
As on-board systems are used by different companies for
more or less different purposes, more test files have been
examined. The test file “BKV” is used by the local
transportation company of Budapest whereas “Volán” comes
from a regional bus company of Hungary. The main
difference between the two files is that “Volán” contains only
route related sign pictures whereas “BKV” stores stops with
their sign pictures and sound references as well. Two files
from Riga (“Imanta” and “Talava”) used by the local
transportation companies have been tested, too.

In the first test the frequency of the characters were
examined. (Test files use 8 bit encoding.) Table I contains the

8 most frequent characters in each test file. As it can be seen
the distribution of the frequencies is not uniform: the first and
the second most frequent characters are much more frequent
than any others.

The distribution of the relatively rare characters is not uniform
either. These results suggest that characters should not be
encoded by using 8 bits by all means. Fig. 4 shows that a less
number of bits would be enough for the major part of them.

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8

Number of bits

P
er

ce
nt

ag
e

of
 c

ha
ra

ct
er

s

Talava
Imanta
BKV
Volán

Fig. 4 Percentage of the characters that can be encoded by using the
given number of bits, in different test files

To check if RLE can be employed, the length of
homogeneous character series should be examined. As the
aim is to encode them binary, it was examined how many
percent of them can be described by using a given number of
bits. Fig. 5 shows the results.

60%

65%

70%

75%

80%

85%

90%

95%

100%

1 2 3 4 5 6 7 8
Number of bits

Pe
rc

en
ta

ge
 o

f t
he

 c
ha

ra
ct

er
 s

er
ie

s

Talava
Imanta
BKV
Volán

Fig. 5 Percentage of the homogeneous character series that can be
encoded by using the given number of bits, in different test files

It can be seen that there are quite long series as well so this

TABLE I
THE EIGHT MOST FREQUENT CHARACTERS IN THE TEST FILES

 BKV Volán Imanta Talava
1 Null 34.6% Null 32.9% Null 44.3% Null 46.6%
2 Space 12.1% Space 9.3% Space 7.9% Space 6.6%
3 S 3.3% R 2.3% S 4.0% S 4.6%
4 <1> 2.5% 1 2.1% <1> 2.9% <1> 3.0%
5 N 2.0% S 2.0% <2> 1.9% N 2.0%
6 <2> 1.7% N 1.9% N 1.8% <2> 2.0%
7 0 1.6% c 1.9% 0 1.4% a 1.4%
8 <12> 1.4% <1> 1.6% a 1.2% 0 1.1%
<N> means the character of the value n.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:7, 2007

2162International Scholarly and Scientific Research & Innovation 1(7) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

7,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

29
12

.p
df

technique is worth using. The longest series are formed by the
most frequent characters: more than 99% of the homogeneous
series longer than five characters contain nulls or spaces.

In order to examine the efficiency of pattern substitution,
the test files were searched for such strings and it was found
that the most frequent ones are the starting segments of the
structure headers. As these strings characterize the file format
itself, the compression algorithm may use a fixed code for
them. There were some other frequent strings found, however
different ones in different test files. These location and
company dependant strings should not be built into the
algorithm because it has to be effective in all environments.
Nevertheless enhanced RLE makes it possible to utilize them
in the compression, too.

To find out how far it is worth seeking for enhanced RLE,
an other test was made. Fig. 6 shows the average length of the
longest repetitions found by using a specified maximal
seeking distance, starting from different positions. As all test
files gave similar results, only the graph based on the
examination of “Volán” is presented.

0

5

10

15

20

25

30

35

1 3001 6001 9001 12001 15001 18001 21001 24001 27001

Maximal seeking distance

A
ve

ra
ge

 le
ng

th
 o

f t
he

 lo
ng

es
t r

ep
et

iti
on

s

Fig. 6 The average length of the longest repetitions found by using
the specified maximal seeking distance in the test file “Volán”, with

the trend line

The graph is similar to the trace of the logarithm function: it
raises steeply until the distance of about 2000 characters, then
it flattens significantly. This is the point where the maximal
seeking distance should be determined: it is not worth
searching from further positions because the benefit would be
much smaller than the time required by the wider search.

IV. ALGORITHM AND PARAMETERS
Based on the results of the physical analysis of the data files

it was decided to use RLE for null and space characters,
pattern substitution for the most frequent structure headers,
moreover enhanced RLE and differential encoding. If more of
these techniques can be used at a specified position of the file,
the compression algorithm always chooses the one that
assures the greatest compression benefit. This behaviour is
greedy but it is acceptable as the following example shows. If
there is a long series that could be described in one step using
e.g. RLE, it is possible that some characters at the beginning
of the series are encoded together with the characters

preceding them, using an other compression technique.
However the algorithm will apply RLE for the rest of the
series so if there is a waste at all, it will be only a few bytes.
On the other hand, this simplification results a great
improvement in compression time.

The next step is to determine the searching parameters for
enhanced RLE and differential encoding: the maximal seeking
distance and the maximal length of the repetitions. The greater
these values are the better compression rate one can reach
(using a suitable representation) but also the more time the
encoding process will take. So a compromise must be made
between these two factors. As compression time is not so
important in this case, it was decided to use the following
factor of quality (2).

The higher priority of the compression rate is emphasized

by the second power. To determine the searched values, an
iterative technique was applied. Firstly, an initial encoding
scheme was created based on the earlier results, then the
compression algorithm was tested by using each combination
of the maximal length and the seeking distance. Both
parameters were chosen between 1 and 15 as the power of 2:
this meant 225 test cases. The final encoding scheme was
determined based on the new results.

During the test, the compression rate, the compression time
and the factor of quality were measured. In order to test
differential encoding as well, modified versions of the test
files “BKV” and “Volán” were created: some new stops and
lines were added to “BKV” but nothing was erased from this
file. On the contrary, some records from “Volán” were
removed: this proved to be a significant change as the id of all
the elements following the deleted records changed. These
records are however referenced in other parts of the file so
long blocks cannot be taken from the old version after this
modification.

Differential encoding arose an other problem: keeping the
old and the new file synchronized. If too many records are
added or removed from the database, the seeking distance may
get too low. However it would be enough if the starting
position were adapted to the changes detected in the file.
Unfortunately this causes an other problem: the string at the
actual position can be found in the old version accidentally,
too, particularly shorter ones. It is quite difficult to decide if
such a match gives reason for the synchronization or not. If
the wrong decision is made frequently, the result will be
similar to the one experienced when using no synchronization
at all: synchronicity may get lost. To solve this problem, two
starting positions were used, a standard and an adapted one.
The standard position equals always the actual position of the
new file whereas the adapted one is updated every time when
differential encoding is used: it is set to the character
following the encoded string in the old file. The searching
process is always done from both positions: if their intervals
have a common part, the concerned positions are examined

Factor of quality = (2)
Compression rate2 · Original size

Compression time

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:7, 2007

2163International Scholarly and Scientific Research & Innovation 1(7) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

7,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

29
12

.p
df

only once. If the adapted position goes wrong it may be
restored by using the standard position. Tests showed that this
occurs rarely but sometimes it is really necessary to make the
algorithm work properly.

Fig. 7 shows the results of the compression test of the file
“BKV”. Other test cases representing typical use cases
delivered quite similar results. The conclusion was
unambiguous: the maximal seeking distance should be 211 =
2048, whereas the maximal length of repetitions to be encoded
should be 215 = 32768.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Maximal length (2n)

Maximal
seeking
distance

(2n)

0,04-0,05
0,03-0,04
0,02-0,03
0,01-0,02
0,00-0,01

Fig. 7 Reciprocal of the factor of quality by using different
parameters (2n) in the test file “BKV”

The previous test was actually only a simulation as the
optimal encoding scheme was not known. Therefore it was
assumed that every length–distance combination could be
encoded by using an optimal division of the encoding bytes.
However only a few fixed divisions can be used during the
real encoding. An other purpose of the simulation was to
determine these divisions so that most of the compression
commands can be encoded really by using the fewest number
of bytes.

As already mentioned, the third aim of the test was to
determine the final encoding scheme. The basic principles
were the following: more frequent compression methods
should be described in a shorter way, the number of bit
operations should be minimized and there should be no
unused bits. Fig. 8 shows the final encoding scheme.

 1

 1 0 0 1
 0 0 1 1
 Differential from Enhanced RLE Series of the
the adaptive position same character

 0 1 0 1 0 1 0 1
 3 byte 4 byte 2 byte 3 byte Diff. from Other* Nulls Spaces
 code code code code same pos.

 0 1 0 1 0 1
Bwd Fwd Bwd Fwd Bwd Fwd

*Rare character(s) (11111011) or pattern substitution
Bwd = backward; Fwd = forward

Fig. 8 The final encoding scheme

As 96-98% of the characters can be described by using 7
bits (Fig. 4), the least significant bit is used to distinguish
command and character bytes. Character bytes represent
exactly one character that can be looked up in a table that is
stored at the beginning of the compressed file. Command
bytes describe compression methods and may be followed by
other bytes: the number of the following bytes depends on the
type of the compression that is stored by the less significant
bits of the command byte. “Rare” characters can be encoded
by using a special command byte, too, that is followed by the
code of the rare character(s). (The most significant bit
indicates if there are more rare characters following.) Fig. 9
shows the share of the different compressing methods in the
number of applications. Differential encoding is applied not so
often like enhanced RLE, however this method provides 97%
of the compression benefit. When the previous version of the
file is not used, enhanced RLE has the greatest share in this
respect, too.

76%

15%
6%3%

Enhanced RLE
Diff. (adaptive pos.)
RLE (space, null)
Pattern substitution

Fig. 9 Share of the different compressing methods in the number of
applications in the test file “BKV”

Differential encoding from the standard position is very rare
so it was decided that this method is used only for
synchronization. It means that only the distance is encoded,
the repetition itself (i.e. the length) is described by the next
compression command (in most cases using differential
encoding from the adaptive position).

Enhanced RLE can be represented by 2 and 3 bytes as well
so that shorter and nearer repetitions can be encoded more
compactly. Similarly, differential encoding from the adaptive
position can be described by using whether 3 or 4 bytes.

V. RESULTS
The compression and the decompression algorithms have

been implemented (later referred as VasComp) and compared
with other, general purpose compressors. Table II shows the
results of the comparison.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:7, 2007

2164International Scholarly and Scientific Research & Innovation 1(7) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

7,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

29
12

.p
df

As it can be seen, in typical use cases VasComp reached a

compression rate of at least an order of magnitude better than
that of the general purpose compressors. In the second case
PKZIP could not do any further compression on the file. On
the other hand, VasComp performed in an acceptable way in
non-typical cases as well (cases 5-10: “old version” does not
exist or is not really a previous version of the “new file”).

Table III contains the compression times of VasComp.

It must be admitted that in this respect general purpose

compressors proved to be better. However the times of
VasComp are acceptable as well and the environment where it
was intended to be used does not require extra short
compression times. On the other hand, decompression is quite
simple and can be done very quickly even by simple
processors as it is needed in the particular environment.

VI. CONCLUSION
This paper presented an algorithm that enables the

transmission of intelligent vehicle controller data files using
low bandwidth wireless radio networks by reaching a
compression rate of an order of magnitude better than that of
the general purpose compressors.

Despite compression time is not critical in the particular
application; it would be nice to reduce compression time to
the level of the general purpose compressors. The time-

intensive part of the compression process is the search for
repetitions (enhanced RLE, differential encoding). This takes
now O(nm) time where n is the length of the file and m is the
maximal seeking distance. [7] presents a new algorithm that
does not always compress optimally but uses only O(n) time
by applying hash tables and reaches quite good results.

As Table III shows, general purpose compressors reach
better compression rates in non-typical use cases and often
they can compress the output of VasComp successfully even
in typical cases. As these compressors are based on the LZW
algorithm, it would be worth developing a special version of
LZW that can be decoded by the low-performance controllers
as well and build this into the current algorithm.

With these improvements VasComp would be excellent in
non-typical use cases as well.

ACKNOWLEDGMENT
The authors are grateful to their colleagues at the

Department of Automation and Applied Informatics, Budapest
University of Technology and Economics for their advice and
encouragement. They also thank Vultron Hungary for
providing the test files and the appropriate documents.

REFERENCES
[1] Sándor Juhász, VAS On-board Database Editor. User Description

Summary. Budapest: Vultron Software Rt., 2003. (internal document)
[2] Gilbert Held, Data compression. Techniques and applications.

Hardware and software considerations. Chichester [etc.]: Wiley, 1983.
[3] Stephen S. Ruth, Paul J. Kreutzer, “Data Compression for Large

Business Files” in Datamation, vol. 18, no. 11, pp. 617-623, 1972.
[4] J. A. Storer, T. G. Szymanski, “Data compression via textual

substitution” in Journal of the ACM, vol. 29, no. 4, pp. 928-951, 1982.
[5] David Solomon, Data compression: the complete reference. New York:

Springer-Verlag, 1997.
[6] J. Ziv, A. Lempel, “A universal algorithm for sequential data

compression” in IEEE Transactions on Information Theory, vol. 23, no.
3, pp. 337-343, 1977.

[7] Miklós Ajtai, Randal Burns, Ronald Fagin, Darrell D. E. Long, Larry
Stockmeyer, “Compactly Encoding Unstructured Inputs with
Differential Compression” in Journal of the ACM, vol. 49, no. 3, pp.
318–367, 2002.

TABLE III
FILE SIZES (BYTES) AND COMPRESSION TIMES (MILLISECONDS)

Old
version

New
version

Original
file size

Vas-
Comp

time

PKZIP
time ARJ time RAR

time

BKV BKV-M 157750 375 46 63 66
BKV-M BKV 152602 78 40 60 63
Volán Volán-M 714826 2281 120 176 400

Volán-M Volán 714412 2234 120 176 396
BKV Volán 714412 19625 120 176 396
Volán BKV 152602 9890 40 60 63

– Volán 714412 6718 120 176 396
– Talava 274114 2796 50 80 96
– Imanta 271564 2921 67 86 106
– BKV 152602 2078 40 60 63

“X-M” means the modified version of the test file “X”.
Tests were executed by a PC running Microsoft Windows XP 5.1 SP2,

with an AMD Athlon XP 1800+ 1.53 GHz processor, 512 MB RAM and an
IBM 120 GB 7200 rpm hard disk with 8 MB cache.

TABLE II
COMPRESSION RATES USING DIFFERENT COMPRESSORS

Old
version

New
version

Vas
Comp PKZIP ARJ RAR

Vas-
Comp
+ ZIP

BKV BKV-M 59.80 3.03 3.04 3.23 66.67
BKV-M BKV 263.11 3.03 3.06 3.24 261.75
Volán Volán-M 19.74 4.57 4.68 5.11 30.94

Volán-M Volán 19.85 4.58 4.69 5.12 31.28
BKV Volán 3.27 4.58 4.69 5.12 4.56
Volán BKV 2.47 3.03 3.06 3.24 3.20

– Volán 3.24 4.58 4.69 5.12 4.52
– Talava 3.07 4.44 4.45 5.00 4.33
– Imanta 2.95 4.01 4.05 4.43 3.90
– BKV 2.38 3.03 3.06 3.24 3.08

“X-M” means the modified version of the test file “X”.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:7, 2007

2165International Scholarly and Scientific Research & Innovation 1(7) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

7,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

29
12

.p
df

