Search results for: state equation.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3071

Search results for: state equation.

2921 Human Intraocular Thermal Field in Action with Different Boundary Conditions Considering Aqueous Humor and Vitreous Humor Fluid Flow

Authors: Dara Singh, Keikhosrow Firouzbakhsh, Mohammad Taghi Ahmadian

Abstract:

In this study, a validated 3D finite volume model of human eye is developed to study the fluid flow and heat transfer in the human eye at steady state conditions. For this purpose, discretized bio-heat transfer equation coupled with Boussinesq equation is analyzed with different anatomical, environmental, and physiological conditions. It is demonstrated that the fluid circulation is formed as a result of thermal gradients in various regions of eye. It is also shown that posterior region of the human eye is less affected by the ambient conditions compared to the anterior segment which is sensitive to the ambient conditions and also to the way the gravitational field is defined compared to the geometry of the eye making the circulations and the thermal field complicated in transient states. The effect of variation in material and boundary conditions guides us to the conclusion that thermal field of a healthy and non-healthy eye can be distinguished via computer simulations.

Keywords: Bio-heat, Boussinesq, conduction, convection, eye.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 869
2920 Cubic B-spline Collocation Method for Numerical Solution of the Benjamin-Bona-Mahony-Burgers Equation

Authors: M. Zarebnia, R. Parvaz

Abstract:

In this paper, numerical solutions of the nonlinear Benjamin-Bona-Mahony-Burgers (BBMB) equation are obtained by a method based on collocation of cubic B-splines. Applying the Von-Neumann stability analysis, the proposed method is shown to be unconditionally stable. The method is applied on some test examples, and the numerical results have been compared with the exact solutions. The L∞ and L2 in the solutions show the efficiency of the method computationally.

Keywords: Benjamin-Bona-Mahony-Burgers equation, Cubic Bspline, Collocation method, Finite difference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3692
2919 Transonic Flutter Analysis Using Euler Equation and Reduced Order Modeling Technique

Authors: D. H. Kim, Y. H. Kim, T. Kim

Abstract:

A new method identifies coupled fluid-structure system with a reduced set of state variables is presented. Assuming that the structural model is known a priori either from an analysis or a test and using linear transformations between structural and aeroelastic states, it is possible to deduce aerodynamic information from sampled time histories of the aeroelastic system. More specifically given a finite set of structural modes the method extracts generalized aerodynamic force matrix corresponding to these mode shapes. Once the aerodynamic forces are known, an aeroelastic reduced-order model can be constructed in discrete-time, state-space format by coupling the structural model and the aerodynamic system. The resulting reduced-order model is suitable for constant Mach, varying density analysis.

Keywords: ROM (Reduced-Order Model), aero elasticity, AGARD 445.6 wing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2589
2918 Super Harmonic Nonlinear Lateral Vibration of an Axially Moving Beam with Rotating Prismatic Joint

Authors: M. Najafi, S. Bab, F. Rahimi Dehgolan

Abstract:

The motion of an axially moving beam with rotating prismatic joint with a tip mass on the end is analyzed to investigate the nonlinear vibration and dynamic stability of the beam. The beam is moving with a harmonic axially and rotating velocity about a constant mean velocity. A time-dependent partial differential equation and boundary conditions with the aid of the Hamilton principle are derived to describe the beam lateral deflection. After the partial differential equation is discretized by the Galerkin method, the method of multiple scales is applied to obtain analytical solutions. Frequency response curves are plotted for the super harmonic resonances of the first and the second modes. The effects of non-linear term and mean velocity are investigated on the steady state response of the axially moving beam. The results are validated with numerical simulations.

Keywords: Axially moving beam, Galerkin method, non-linear vibration, super harmonic resonances.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1003
2917 The Existence and Uniqueness of Positive Solution for Nonlinear Fractional Differential Equation Boundary Value Problem

Authors: Chuanyun Gu, Shouming Zhong

Abstract:

In this paper, the existence and uniqueness of positive solutions for nonlinear fractional differential equation boundary value problem is concerned by a fixed point theorem of a sum operator. Our results can not only guarantee the existence and uniqueness of positive solution, but also be applied to construct an iterative scheme for approximating it. Finally, the example is given to illustrate the main result.

Keywords: Fractional differential equation, Boundary value problem, Positive solution, Existence and uniqueness, Fixed point theorem of a sum operator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
2916 Evolutionary Computation Technique for Solving Riccati Differential Equation of Arbitrary Order

Authors: Raja Muhammad Asif Zahoor, Junaid Ali Khan, I. M. Qureshi

Abstract:

In this article an evolutionary technique has been used for the solution of nonlinear Riccati differential equations of fractional order. In this method, genetic algorithm is used as a tool for the competent global search method hybridized with active-set algorithm for efficient local search. The proposed method has been successfully applied to solve the different forms of Riccati differential equations. The strength of proposed method has in its equal applicability for the integer order case, as well as, fractional order case. Comparison of the method has been made with standard numerical techniques as well as the analytic solutions. It is found that the designed method can provide the solution to the equation with better accuracy than its counterpart deterministic approaches. Another advantage of the given approach is to provide results on entire finite continuous domain unlike other numerical methods which provide solutions only on discrete grid of points.

Keywords: Riccati Equation, Non linear ODE, Fractional differential equation, Genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941
2915 Stability Analysis in a Fractional Order Delayed Predator-Prey Model

Authors: Changjin Xu, Peiluan Li

Abstract:

In this paper, we study the stability of a fractional order delayed predator-prey model. By using the Laplace transform, we introduce a characteristic equation for the above system. It is shown that if all roots of the characteristic equation have negative parts, then the equilibrium of the above fractional order predator-prey system is Lyapunov globally asymptotical stable. An example is given to show the effectiveness of the approach presented in this paper.

Keywords: Fractional predator-prey model, laplace transform, characteristic equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2497
2914 Tracking Control of a Linear Parabolic PDE with In-domain Point Actuators

Authors: Amir Badkoubeh, Guchuan Zhu

Abstract:

This paper addresses the problem of asymptotic tracking control of a linear parabolic partial differential equation with indomain point actuation. As the considered model is a non-standard partial differential equation, we firstly developed a map that allows transforming this problem into a standard boundary control problem to which existing infinite-dimensional system control methods can be applied. Then, a combination of energy multiplier and differential flatness methods is used to design an asymptotic tracking controller. This control scheme consists of stabilizing state-feedback derived from the energy multiplier method and feed-forward control based on the flatness property of the system. This approach represents a systematic procedure to design tracking control laws for a class of partial differential equations with in-domain point actuation. The applicability and system performance are assessed by simulation studies.

Keywords: Tracking Control, In-domain point actuation, PartialDifferential Equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058
2913 Bifurcation Method for Solving Positive Solutions to a Class of Semilinear Elliptic Equations and Stability Analysis of Solutions

Authors: Hailong Zhu, Zhaoxiang Li

Abstract:

Semilinear elliptic equations are ubiquitous in natural sciences. They give rise to a variety of important phenomena in quantum mechanics, nonlinear optics, astrophysics, etc because they have rich multiple solutions. But the nontrivial solutions of semilinear equations are hard to be solved for the lack of stabilities, such as Lane-Emden equation, Henon equation and Chandrasekhar equation. In this paper, bifurcation method is applied to solving semilinear elliptic equations which are with homogeneous Dirichlet boundary conditions in 2D. Using this method, nontrivial numerical solutions will be computed and visualized in many different domains (such as square, disk, annulus, dumbbell, etc).

Keywords: Semilinear elliptic equations, positive solutions, bifurcation method, isotropy subgroups.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
2912 About the Instability Modes of Current Sheet in Wide Range of Frequencies

Authors: V. V. Lyahov, V. M. Neshchadim

Abstract:

We offer a new technique for research of stability of current sheaths in space plasma taking into account the effect of polarization. At the beginning, the found perturbation of the distribution function is used for calculation of the dielectric permeability tensor, which simulates inhomogeneous medium of a current sheath. Further, we in the usual manner solve the system of Maxwell's equations closed with the material equation. The amplitudes of Fourier perturbations are considered to be exponentially decaying through the current sheath thickness. The dispersion equation follows from the nontrivial solution requirement for perturbations of the electromagnetic field. The resulting dispersion equation allows one to study the temporal and spatial characteristics of instability modes of the current sheath (within the limits of the proposed model) over a wide frequency range, including low frequencies.

Keywords: Current sheath, distribution function, effect of polarization, instability modes, low frequencies, perturbation of electromagnetic field dispersion equation, space plasma, tensor of dielectric permeability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
2911 Multiple Soliton Solutions of (2+1)-dimensional Potential Kadomtsev-Petviashvili Equation

Authors: Mohammad Najafi, Ali Jamshidi

Abstract:

We employ the idea of Hirota-s bilinear method, to obtain some new exact soliton solutions for high nonlinear form of (2+1)-dimensional potential Kadomtsev-Petviashvili equation. Multiple singular soliton solutions were obtained by this method. Moreover, multiple singular soliton solutions were also derived.

Keywords: Hirota bilinear method, potential Kadomtsev-Petviashvili equation, multiple soliton solutions, multiple singular soliton solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1373
2910 On the Approximate Solution of a Nonlinear Singular Integral Equation

Authors: Nizami Mustafa, C. Ardil

Abstract:

In this study, the existence and uniqueness of the solution of a nonlinear singular integral equation that is defined on a region in the complex plane is proven and a method is given for finding the solution.

Keywords: Approximate solution, Fixed-point principle, Nonlinear singular integral equations, Vekua integral operator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
2909 A Comparison of Recent Methods for Solving a Model 1D Convection Diffusion Equation

Authors: Ashvin Gopaul, Jayrani Cheeneebash, Kamleshsing Baurhoo

Abstract:

In this paper we study some numerical methods to solve a model one-dimensional convection–diffusion equation. The semi-discretisation of the space variable results into a system of ordinary differential equations and the solution of the latter involves the evaluation of a matrix exponent. Since the calculation of this term is computationally expensive, we study some methods based on Krylov subspace and on Restrictive Taylor series approximation respectively. We also consider the Chebyshev Pseudospectral collocation method to do the spatial discretisation and we present the numerical solution obtained by these methods.

Keywords: Chebyshev Pseudospectral collocation method, convection-diffusion equation, restrictive Taylor approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
2908 A Numerical Approach for Static and Dynamic Analysis of Deformable Journal Bearings

Authors: D. Benasciutti, M. Gallina, M. Gh. Munteanu, F. Flumian

Abstract:

This paper presents a numerical approach for the static and dynamic analysis of hydrodynamic radial journal bearings. In the first part, the effect of shaft and housing deformability on pressure distribution within oil film is investigated. An iterative algorithm that couples Reynolds equation with a plane finite elements (FE) structural model is solved. Viscosity-to-pressure dependency (Vogel- Barus equation) is also included. The deformed lubrication gap and the overall stress state are obtained. Numerical results are presented with reference to a typical journal bearing configuration at two different inlet oil temperatures. Obtained results show the great influence of bearing components structural deformation on oil pressure distribution, compared with results for ideally rigid components. In the second part, a numerical approach based on perturbation method is used to compute stiffness and damping matrices, which characterize the journal bearing dynamic behavior.

Keywords: Journal bearing, finite elements, deformation, dynamic analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037
2907 Existence and Uniqueness of Positive Solution for Nonlinear Fractional Differential Equation with Integral Boundary Conditions

Authors: Chuanyun Gu

Abstract:

By using fixed point theorems for a class of generalized concave and convex operators, the positive solution of nonlinear fractional differential equation with integral boundary conditions is studied, where n ≥ 3 is an integer, μ is a parameter and 0 ≤ μ < α. Its existence and uniqueness is proved, and an iterative scheme is constructed to approximate it. Finally, two examples are given to illustrate our results.

Keywords: Fractional differential equation, positive solution, existence and uniqueness, fixed point theorem, generalized concave and convex operator, integral boundary conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1120
2906 Alternating Implicit Block FDTD Method For Scalar Wave Equation

Authors: N. M. Nusi, M. Othman, M. Suleiman, F. Ismail, N. Alias

Abstract:

In this paper, an alternating implicit block method for solving two dimensional scalar wave equation is presented. The new method consist of two stages for each time step implemented in alternating directions which are very simple in computation. To increase the speed of computation, a group of adjacent points is computed simultaneously. It is shown that the presented method increase the maximum time step size and more accurate than the conventional finite difference time domain (FDTD) method and other existing method of natural ordering.

Keywords: FDTD, Scalar wave equation, alternating direction implicit (ADI), alternating group explicit (AGE), asymmetric approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904
2905 Development of State Model Theory for External Exclusive NOR Type LFSR Structures

Authors: Afaq Ahmad

Abstract:

Using state space technique and GF(2) theory, a simulation model for external exclusive NOR type LFSR structures is developed. Through this tool a systematic procedure is devised for computing pseudo-random binary sequences from such structures.

Keywords: LFSR, external exclusive NOR type, recursivebinary sequence, initial state - next state, state transition matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
2904 Numerical Solution for Elliptical Crack with Developing Cusps Subject to Shear Loading

Authors: Nik Mohd Asri Nik Long, Koo Lee Feng, Zainidin K. Eshkuvatov, A. A. Khaldjigitov

Abstract:

This paper study the behavior of the solution at the crack edges for an elliptical crack with developing cusps, Ω in the plane elasticity subjected to shear loading. The problem of finding the resulting shear stress can be formulated as a hypersingular integral equation over Ω and it is then transformed into a similar equation over a circular region, D, using conformal mapping. An appropriate collocation points are chosen on the region D to reduce the hypersingular integral equation into a system of linear equations with (2N+1)(N+1) unknown coefficients, which will later be used in the determination of shear stress intensity factors and maximum shear stress intensity. Numerical solution for the considered problem are compared with the existing asymptotic solution, and displayed graphically. Our results give a very good agreement to the existing asymptotic solutions.

Keywords: Elliptical crack, stress intensity factors, hyper singular integral equation, shear loading, conformal mapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
2903 Finite Element Approximation of the Heat Equation under Axisymmetry Assumption

Authors: Raphael Zanella

Abstract:

This works deals with the finite element approximation of axisymmetric problems. The weak formulation of the heat equation under axisymmetry assumption is established for continuous finite elements. The weak formulation is implemented in a C++ solver with implicit time marching. The code is verified by space and time convergence tests using a manufactured solution. An example problem is solved with an axisymmetric formulation and with a 3D formulation. Both formulations lead to the same result but the code based on the axisymmetric formulation is mush faster due to the lower number of degrees of freedom. This confirms the correctness of our approach and the interest of using an axisymmetric formulation when it is possible.

Keywords: Axisymmetric problem, continuous finite elements, heat equation, weak formulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 351
2902 Multivariable System Reduction Using Stability Equation Method and SRAM

Authors: D. Bala Bhaskar

Abstract:

An algorithm is proposed for the order reduction of large scale linear dynamic multi variable systems where the reduced order model denominator is obtained by using Stability equation method and numerator coefficients are obtained by using SRAM. The proposed algorithm produces a lower order model for an original stable high order multivariable system. The reduction procedure is easy to understand, efficient and computer oriented. To highlight the advantages of the approach, the algorithm is illustrated with the help of a numerical example and the results are compared with the other existing techniques in literature.

Keywords: Multi variable systems, order reduction, stability equation method, SRAM, time domain characteristics, ISE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 726
2901 Solitary Wave Solutions for Burgers-Fisher type Equations with Variable Coefficients

Authors: Amit Goyal, Alka, Rama Gupta, C. Nagaraja Kumar

Abstract:

We have solved the Burgers-Fisher (BF) type equations, with time-dependent coefficients of convection and reaction terms, by using the auxiliary equation method. A class of solitary wave solutions are obtained, and some of which are derived for the first time. We have studied the effect of variable coefficients on physical parameters (amplitude and velocity) of solitary wave solutions. In some cases, the BF equations could be solved for arbitrary timedependent coefficient of convection term.

Keywords: Solitary wave solution, Variable coefficient Burgers- Fisher equation, Auxiliary equation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
2900 Solving One-dimensional Hyperbolic Telegraph Equation Using Cubic B-spline Quasi-interpolation

Authors: Marzieh Dosti, Alireza Nazemi

Abstract:

In this paper, the telegraph equation is solved numerically by cubic B-spline quasi-interpolation .We obtain the numerical scheme, by using the derivative of the quasi-interpolation to approximate the spatial derivative of the dependent variable and a low order forward difference to approximate the temporal derivative of the dependent variable. The advantage of the resulting scheme is that the algorithm is very simple so it is very easy to implement. The results of numerical experiments are presented, and are compared with analytical solutions by calculating errors L2 and L∞ norms to confirm the good accuracy of the presented scheme.

Keywords: Cubic B-spline, quasi-interpolation, collocation method, second-order hyperbolic telegraph equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2800
2899 Comparative Analysis of DTC Based Switched Reluctance Motor Drive Using Torque Equation and FEA Models

Authors: P. Srinivas, P. V. N. Prasad

Abstract:

Since torque ripple is the main cause of noise and vibrations, the performance of Switched Reluctance Motor (SRM) can be improved by minimizing its torque ripple using a novel control technique called Direct Torque Control (DTC). In DTC technique, torque is controlled directly through control of magnitude of the flux and change in speed of the stator flux vector. The flux and torque are maintained within set hysteresis bands.

The DTC of SRM is analyzed by two methods. In one method, the actual torque is computed by conducting Finite Element Analysis (FEA) on the design specifications of the motor. In the other method, the torque is computed by Simplified Torque Equation. The variation of peak current, average current, torque ripple and speed settling time with Simplified Torque Equation model is compared with FEA based model.

Keywords: Direct Toque Control, Simplified Torque Equation, Finite Element Analysis, Torque Ripple.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3502
2898 Schrödinger Equation with Position-Dependent Mass: Staggered Mass Distributions

Authors: J. J. Peña, J. Morales, J. García-Ravelo, L. Arcos-Díaz

Abstract:

The Point canonical transformation method is applied for solving the Schrödinger equation with position-dependent mass. This class of problem has been solved for continuous mass distributions. In this work, a staggered mass distribution for the case of a free particle in an infinite square well potential has been proposed. The continuity conditions as well as normalization for the wave function are also considered. The proposal can be used for dealing with other kind of staggered mass distributions in the Schrödinger equation with different quantum potentials.

Keywords: Free particle, point canonical transformation method, position-dependent mass, staggered mass distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
2897 Research on the Correlation of the Fluctuating Density Gradient of the Compressible Flows

Authors: Yasuo Obikane

Abstract:

This work is to study a roll of the fluctuating density gradient in the compressible flows for the computational fluid dynamics (CFD). A new anisotropy tensor with the fluctuating density gradient is introduced, and is used for an invariant modeling technique to model the turbulent density gradient correlation equation derived from the continuity equation. The modeling equation is decomposed into three groups: group proportional to the mean velocity, and that proportional to the mean strain rate, and that proportional to the mean density. The characteristics of the correlation in a wake are extracted from the results by the two dimensional direct simulation, and shows the strong correlation with the vorticity in the wake near the body. Thus, it can be concluded that the correlation of the density gradient is a significant parameter to describe the quick generation of the turbulent property in the compressible flows.

Keywords: Turbulence Modeling , Density Gradient Correlation, Compressible

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
2896 Instability of Soliton Solutions to the Schamel-nonlinear Schrödinger Equation

Authors: Sarun Phibanchon, Michael A. Allen

Abstract:

A variational method is used to obtain the growth rate of a transverse long-wavelength perturbation applied to the soliton solution of a nonlinear Schr¨odinger equation with a three-half order potential. We demonstrate numerically that this unstable perturbed soliton will eventually transform into a cylindrical soliton.

Keywords: Soliton, instability, variational method, spectral method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3699
2895 Some Solitary Wave Solutions of Generalized Pochhammer-Chree Equation via Exp-function Method

Authors: Kourosh Parand, Jamal Amani Rad

Abstract:

In this paper, Exp-function method is used for some exact solitary solutions of the generalized Pochhammer-Chree equation. It has been shown that the Exp-function method, with the help of symbolic computation, provides a very effective and powerful mathematical tool for solving nonlinear partial differential equations. As a result, some exact solitary solutions are obtained. It is shown that the Exp-function method is direct, effective, succinct and can be used for many other nonlinear partial differential equations.

Keywords: Exp-function method, generalized Pochhammer- Chree equation, solitary wave solution, ODE's.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
2894 On-line and Off-line POD Assisted Projective Integral for Non-linear Problems: A Case Study with Burgers-Equation

Authors: Montri Maleewong, Sirod Sirisup

Abstract:

The POD-assisted projective integration method based on the equation-free framework is presented in this paper. The method is essentially based on the slow manifold governing of given system. We have applied two variants which are the “on-line" and “off-line" methods for solving the one-dimensional viscous Bergers- equation. For the on-line method, we have computed the slow manifold by extracting the POD modes and used them on-the-fly along the projective integration process without assuming knowledge of the underlying slow manifold. In contrast, the underlying slow manifold must be computed prior to the projective integration process for the off-line method. The projective step is performed by the forward Euler method. Numerical experiments show that for the case of nonperiodic system, the on-line method is more efficient than the off-line method. Besides, the online approach is more realistic when apply the POD-assisted projective integration method to solve any systems. The critical value of the projective time step which directly limits the efficiency of both methods is also shown.

Keywords: Projective integration, POD method, equation-free.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1354
2893 A New Approach to Solve Blasius Equation using Parameter Identification of Nonlinear Functions based on the Bees Algorithm (BA)

Authors: E. Assareh, M.A. Behrang, M. Ghalambaz, A.R. Noghrehabadi, A. Ghanbarzadeh

Abstract:

In this paper, a new approach is introduced to solve Blasius equation using parameter identification of a nonlinear function which is used as approximation function. Bees Algorithm (BA) is applied in order to find the adjustable parameters of approximation function regarding minimizing a fitness function including these parameters (i.e. adjustable parameters). These parameters are determined how the approximation function has to satisfy the boundary conditions. In order to demonstrate the presented method, the obtained results are compared with another numerical method. Present method can be easily extended to solve a wide range of problems.

Keywords: Bees Algorithm (BA); Approximate Solutions; Blasius Differential Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801
2892 Stabilization of the Bernoulli-Euler Plate Equation: Numerical Analysis

Authors: Carla E. O. de Moraes, Gladson O. Antunes, Mauro A. Rincon

Abstract:

The aim of this paper is to study the internal stabilization of the Bernoulli-Euler equation numerically. For this, we consider a square plate subjected to a feedback/damping force distributed only in a subdomain. An algorithm for obtaining an approximate solution to this problem was proposed and implemented. The numerical method used was the Finite Difference Method. Numerical simulations were performed and showed the behavior of the solution, confirming the theoretical results that have already been proved in the literature. In addition, we studied the validation of the numerical scheme proposed, followed by an analysis of the numerical error; and we conducted a study on the decay of the energy associated.

Keywords: Bernoulli-Euler Plate Equation, Numerical Simulations, Stability, Energy Decay, Finite Difference Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035