Search results for: Multiple Classifier Systems
5699 Review and Comparison of Associative Classification Data Mining Approaches
Authors: Suzan Wedyan
Abstract:
Associative classification (AC) is a data mining approach that combines association rule and classification to build classification models (classifiers). AC has attracted a significant attention from several researchers mainly because it derives accurate classifiers that contain simple yet effective rules. In the last decade, a number of associative classification algorithms have been proposed such as Classification based Association (CBA), Classification based on Multiple Association Rules (CMAR), Class based Associative Classification (CACA), and Classification based on Predicted Association Rule (CPAR). This paper surveys major AC algorithms and compares the steps and methods performed in each algorithm including: rule learning, rule sorting, rule pruning, classifier building, and class prediction.
Keywords: Associative Classification, Classification, Data Mining, Learning, Rule Ranking, Rule Pruning, Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66315698 Novel Process Formulation of Multiple Unit Tablet of Pantoprazole
Authors: Vipin Saini, Sunil Kamboj, Suman Bala, A. Pandurangan
Abstract:
The present invention relates to multiple-unit tablet dosage forms, which is composed of several subunits (multiparticulates/pellets). Each small multiparticulate further composed of many layers. Some layer contains drug substance; others are rate controlling polymer. The resulting multiple-unit tablet dosage forms of pantoprazole were satisfactory fabricated. Pelletization technique has some advantages over coated tablet formulation. In coated tablet the coating may be damaged and a pinhole possibly formed that would result in increased release of drug in stomach and may be deactivated in stomach juices. If the coat of some pellets may be damaged that would not affect the release properties of the multiple-unit tablet. Hence they are beneficial in this aspect. The results confirmed the successful preparation of stable and bioequivalent once daily controlled release multiple-unit tablets of pantoprazole.
Keywords: Controlled release, multiple unit tablets, pantoprazole, pelletization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32565697 Margin-Based Feed-Forward Neural Network Classifiers
Authors: Han Xiao, Xiaoyan Zhu
Abstract:
Margin-Based Principle has been proposed for a long time, it has been proved that this principle could reduce the structural risk and improve the performance in both theoretical and practical aspects. Meanwhile, feed-forward neural network is a traditional classifier, which is very hot at present with a deeper architecture. However, the training algorithm of feed-forward neural network is developed and generated from Widrow-Hoff Principle that means to minimize the squared error. In this paper, we propose a new training algorithm for feed-forward neural networks based on Margin-Based Principle, which could effectively promote the accuracy and generalization ability of neural network classifiers with less labelled samples and flexible network. We have conducted experiments on four UCI open datasets and achieved good results as expected. In conclusion, our model could handle more sparse labelled and more high-dimension dataset in a high accuracy while modification from old ANN method to our method is easy and almost free of work.Keywords: Max-Margin Principle, Feed-Forward Neural Network, Classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17245696 Multiple Criteria Decision Making Analysis for Selecting and Evaluating Fighter Aircraft
Authors: C. Ardil, A. M. Pashaev, R.A. Sadiqov, P. Abdullayev
Abstract:
In this paper, multiple criteria decision making analysis technique, is presented for ranking and selection of a set of determined alternatives - fighter aircraft - which are associated with a set of decision factors. In fighter aircraft design, conflicting decision criteria, disciplines, and technologies are always involved in the design process. Multiple criteria decision making analysis techniques can be helpful to effectively deal with such situations and make wise design decisions. Multiple criteria decision making analysis theory is a systematic mathematical approach for dealing with problems which contain uncertainties in decision making. The feasibility and contributions of applying the multiple criteria decision making analysis technique in fighter aircraft selection analysis is explored. In this study, an integrated framework incorporating multiple criteria decision making analysis technique in fighter aircraft analysis is established using entropy objective weighting method. An improved integrated multiple criteria decision making analysis method is utilized to aggregate the multiple decision criteria into one composite figure of merit, which serves as an objective function in the decision process. Therefore, it is demonstrated that the suitable multiple criteria decision making analysis method with decision solution provides an effective objective function for the decision making analysis. Considering that the inherent uncertainties and the weighting factors have crucial decision impacts on the fighter aircraft evaluation, seven fighter aircraft models for the multiple design criteria in terms of the weighting factors are constructed. The proposed multiple criteria decision making analysis model is based on integrated entropy index procedure, and additive multiple criteria decision making analysis theory. Hence, the applicability of proposed technique for fighter aircraft selection problem is considered. The constructed multiple criteria decision making analysis model can provide efficient decision analysis approach for uncertainty assessment of the decision problem. Consequently, the fighter aircraft alternatives are ranked based their final evaluation scores, and sensitivity analysis is conducted.
Keywords: Fighter Aircraft, Fighter Aircraft Selection, Multiple Criteria Decision Making, Multiple Criteria Decision Making Analysis, MCDMA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6245695 Theoretical Analysis of Capacities in Dynamic Spatial Multiplexing MIMO Systems
Authors: Imen Sfaihi, Noureddine Hamdi
Abstract:
In this paper, we investigate the study of techniques for scheduling users for resource allocation in the case of multiple input and multiple output (MIMO) packet transmission systems. In these systems, transmit antennas are assigned to one user or dynamically to different users using spatial multiplexing. The allocation of all transmit antennas to one user cannot take full advantages of multi-user diversity. Therefore, we developed the case when resources are allocated dynamically. At each time slot users have to feed back their channel information on an uplink feedback channel. Channel information considered available in the schedulers is the zero forcing (ZF) post detection signal to interference plus noise ratio. Our analysis study concerns the round robin and the opportunistic schemes. In this paper, we present an overview and a complete capacity analysis of these schemes. The main results in our study are to give an analytical form of system capacity using the ZF receiver at the user terminal. Simulations have been carried out to validate all proposed analytical solutions and to compare the performance of these schemes.Keywords: MIMO, scheduling, ZF receiver, spatial multiplexing, round robin scheduling, opportunistic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13165694 An Investigation on Efficient Spreading Codes for Transmitter Based Techniques to Mitigate MAI and ISI in TDD/CDMA Downlink
Authors: Abhijit Mitra, C. Ardil
Abstract:
We investigate efficient spreading codes for transmitter based techniques of code division multiple access (CDMA) systems. The channel is considered to be known at the transmitter which is usual in a time division duplex (TDD) system where the channel is assumed to be the same on uplink and downlink. For such a TDD/CDMA system, both bitwise and blockwise multiuser transmission schemes are taken up where complexity is transferred to the transmitter side so that the receiver has minimum complexity. Different spreading codes are considered at the transmitter to spread the signal efficiently over the entire spectrum. The bit error rate (BER) curves portray the efficiency of the codes in presence of multiple access interference (MAI) as well as inter symbol interference (ISI).
Keywords: Code division multiple access, time division duplex, transmitter technique, precoding, pre-rake, rake, spreading code.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14735693 Support Vector Machines Approach for Detecting the Mean Shifts in Hotelling-s T2 Control Chart with Sensitizing Rules
Authors: Tai-Yue Wang, Hui-Min Chiang, Su-Ni Hsieh, Yu-Min Chiang
Abstract:
In many industries, control charts is one of the most frequently used tools for quality management. Hotelling-s T2 is used widely in multivariate control chart. However, it has little defect when detecting small or medium process shifts. The use of supplementary sensitizing rules can improve the performance of detection. This study applied sensitizing rules for Hotelling-s T2 control chart to improve the performance of detection. Support vector machines (SVM) classifier to identify the characteristic or group of characteristics that are responsible for the signal and to classify the magnitude of the mean shifts. The experimental results demonstrate that the support vector machines (SVM) classifier can effectively identify the characteristic or group of characteristics that caused the process mean shifts and the magnitude of the shifts.Keywords: Hotelling's T2 control chart, Neural networks, Sensitizing rules, Support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18715692 Improved FP-growth Algorithm with Multiple Minimum Supports Using Maximum Constraints
Authors: Elsayeda M. Elgaml, Dina M. Ibrahim, Elsayed A. Sallam
Abstract:
Association rule mining is one of the most important fields of data mining and knowledge discovery. In this paper, we propose an efficient multiple support frequent pattern growth algorithm which we called “MSFP-growth” that enhancing the FPgrowth algorithm by making infrequent child node pruning step with multiple minimum support using maximum constrains. The algorithm is implemented, and it is compared with other common algorithms: Apriori-multiple minimum supports using maximum constraints and FP-growth. The experimental results show that the rule mining from the proposed algorithm are interesting and our algorithm achieved better performance than other algorithms without scarifying the accuracy.
Keywords: Association Rules, FP-growth, Multiple minimum supports, Weka Tool
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33175691 Multiple Shoot Formation of Paphiopedilum 'Delrosi'
Authors: Aree Thongpukdee, Ekasit Nisayan, Chockpisit Thepsithar
Abstract:
Shoots, with three leaves, of Paphiopedilum 'Delrosi' were used as explants for multiple shoot induction. Modified Hyponex medium was supplemented with thidiazuron (TDZ), N6- benzyladenine (BA) or kinetin (Kn) alone and in combinations with 2,4-dichlorophenoxyacetic acid (2,4-D). All explants were cultured for 15 weeks. It was found that TDZ alone at the concentration of 0.45μM or in combination with 4.52μM 2,4-D and 8.88μM BA in combination with 13.56μM 2,4-D promoted multiple shoots. The highest shoot sprouting efficiencies (80.0, 90.0 and 80.0%) and new shoot numbers (1.5, 1.3 and 1.1) were obtained, respectively. Fresh weight, height, numbers of leaf and root of new shoots and initial explants were discussed.Keywords: Paphiopedilum, terrestrial orchids, in vitro culture, micropropagation, multiple shoot induction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24745690 Proactive Detection of DDoS Attacks Utilizing k-NN Classifier in an Anti-DDos Framework
Authors: Hoai-Vu Nguyen, Yongsun Choi
Abstract:
Distributed denial-of-service (DDoS) attacks pose a serious threat to network security. There have been a lot of methodologies and tools devised to detect DDoS attacks and reduce the damage they cause. Still, most of the methods cannot simultaneously achieve (1) efficient detection with a small number of false alarms and (2) real-time transfer of packets. Here, we introduce a method for proactive detection of DDoS attacks, by classifying the network status, to be utilized in the detection stage of the proposed anti-DDoS framework. Initially, we analyse the DDoS architecture and obtain details of its phases. Then, we investigate the procedures of DDoS attacks and select variables based on these features. Finally, we apply the k-nearest neighbour (k-NN) method to classify the network status into each phase of DDoS attack. The simulation result showed that each phase of the attack scenario is classified well and we could detect DDoS attack in the early stage.Keywords: distributed denial-of-service (DDoS), k-nearestneighbor classifier (k-NN), anti-DDoS framework, DDoS detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33425689 Optimal Location of Multi Type Facts Devices for Multiple Contingencies Using Particle Swarm Optimization
Authors: S. Sutha, N. Kamaraj
Abstract:
In deregulated operating regime power system security is an issue that needs due thoughtfulness from researchers in the horizon of unbundling of generation and transmission. Electric power systems are exposed to various contingencies. Network contingencies often contribute to overloading of branches, violation of voltages and also leading to problems of security/stability. To maintain the security of the systems, it is desirable to estimate the effect of contingencies and pertinent control measurement can be taken on to improve the system security. This paper presents the application of particle swarm optimization algorithm to find the optimal location of multi type FACTS devices in a power system in order to eliminate or alleviate the line over loads. The optimizations are performed on the parameters, namely the location of the devices, their types, their settings and installation cost of FACTS devices for single and multiple contingencies. TCSC, SVC and UPFC are considered and modeled for steady state analysis. The selection of UPFC and TCSC suitable location uses the criteria on the basis of improved system security. The effectiveness of the proposed method is tested for IEEE 6 bus and IEEE 30 bus test systems.
Keywords: Contingency Severity Index, Particle Swarm Optimization, Performance Index, Static Security Assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27635688 M2LGP: Mining Multiple Level Gradual Patterns
Authors: Yogi Satrya Aryadinata, Anne Laurent, Michel Sala
Abstract:
Gradual patterns have been studied for many years as they contain precious information. They have been integrated in many expert systems and rule-based systems, for instance to reason on knowledge such as “the greater the number of turns, the greater the number of car crashes”. In many cases, this knowledge has been considered as a rule “the greater the number of turns → the greater the number of car crashes” Historically, works have thus been focused on the representation of such rules, studying how implication could be defined, especially fuzzy implication. These rules were defined by experts who were in charge to describe the systems they were working on in order to turn them to operate automatically. More recently, approaches have been proposed in order to mine databases for automatically discovering such knowledge. Several approaches have been studied, the main scientific topics being: how to determine what is an relevant gradual pattern, and how to discover them as efficiently as possible (in terms of both memory and CPU usage). However, in some cases, end-users are not interested in raw level knowledge, and are rather interested in trends. Moreover, it may be the case that no relevant pattern can be discovered at a low level of granularity (e.g. city), whereas some can be discovered at a higher level (e.g. county). In this paper, we thus extend gradual pattern approaches in order to consider multiple level gradual patterns. For this purpose, we consider two aggregation policies, namely horizontal and vertical.Keywords: Gradual Pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14985687 A Cohesive Lagrangian Swarm and Its Application to Multiple Unicycle-like Vehicles
Authors: Jito Vanualailai, Bibhya Sharma
Abstract:
Swarm principles are increasingly being used to design controllers for the coordination of multi-robot systems or, in general, multi-agent systems. This paper proposes a two-dimensional Lagrangian swarm model that enables the planar agents, modeled as point masses, to swarm whilst effectively avoiding each other and obstacles in the environment. A novel method, based on an extended Lyapunov approach, is used to construct the model. Importantly, the Lyapunov method ensures a form of practical stability that guarantees an emergent behavior, namely, a cohesive and wellspaced swarm with a constant arrangement of individuals about the swarm centroid. Computer simulations illustrate this basic feature of collective behavior. As an application, we show how multiple planar mobile unicycle-like robots swarm to eventually form patterns in which their velocities and orientations stabilize.
Keywords: Attractive-repulsive swarm model, individual-based swarm model, Lagrangian swarm model, Lyapunov stability, Lyapunov-like function, practical stability, unicycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15385686 The Relationship between Iranian EFL Learners' Multiple Intelligences and Their Performance on Grammar Tests
Authors: Rose Shayeghi, Pejman Hosseinioun
Abstract:
The Multiple Intelligences theory characterizes human intelligence as a multifaceted entity that exists in all human beings with varying degrees. The most important contribution of this theory to the field of English Language Teaching (ELT) is its role in identifying individual differences and designing more learnercentered programs. The present study aims at investigating the relationship between different elements of multiple intelligence and grammar scores. To this end, 63 female Iranian EFL learner selected from among intermediate students participated in the study. The instruments employed were a Nelson English language test, Michigan Grammar Test, and Teele Inventory for Multiple Intelligences (TIMI). The results of Pearson Product-Moment Correlation revealed a significant positive correlation between grammatical accuracy and linguistic as well as interpersonal intelligence. The results of Stepwise Multiple Regression indicated that linguistic intelligence contributed to the prediction of grammatical accuracy.Keywords: Multiple intelligence, grammar, ELT, EFL, TIMI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24185685 Distributed Coordination of Connected and Automated Vehicles at Multiple Interconnected Intersections
Authors: Zhiyuan Du, Baisravan Hom Chaudhuri, Pierluigi Pisu
Abstract:
In connected vehicle systems where wireless communication is available among the involved vehicles and intersection controllers, it is possible to design an intersection coordination strategy that leads the connected and automated vehicles (CAVs) travel through the road intersections without the conventional traffic light control. In this paper, we present a distributed coordination strategy for the CAVs at multiple interconnected intersections that aims at improving system fuel efficiency and system mobility. We present a distributed control solution where in the higher level, the intersection controllers calculate the road desired average velocity and optimally assign reference velocities of each vehicle. In the lower level, every vehicle is considered to use model predictive control (MPC) to track their reference velocity obtained from the higher level controller. The proposed method has been implemented on a simulation-based case with two-interconnected intersection network. Additionally, the effects of mixed vehicle types on the coordination strategy has been explored. Simulation results indicate the improvement on vehicle fuel efficiency and traffic mobility of the proposed method.
Keywords: Connected vehicles, automated vehicles, intersection coordination systems, multiple interconnected intersections, model predictive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18475684 Multiple-Level Sequential Pattern Discovery from Customer Transaction Databases
Abstract:
Mining sequential patterns from large customer transaction databases has been recognized as a key research topic in database systems. However, the previous works more focused on mining sequential patterns at a single concept level. In this study, we introduced concept hierarchies into this problem and present several algorithms for discovering multiple-level sequential patterns based on the hierarchies. An experiment was conducted to assess the performance of the proposed algorithms. The performances of the algorithms were measured by the relative time spent on completing the mining tasks on two different datasets. The experimental results showed that the performance depends on the characteristics of the datasets and the pre-defined threshold of minimal support for each level of the concept hierarchy. Based on the experimental results, some suggestions were also given for how to select appropriate algorithm for a certain datasets.Keywords: Data Mining, Multiple-Level Sequential Pattern, Concept Hierarchy, Customer Transaction Database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14535683 Towards End-To-End Disease Prediction from Raw Metagenomic Data
Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker
Abstract:
Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.Keywords: Metagenomics, phenotype prediction, deep learning, embeddings, multiple instance learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9095682 Matrix-Interleaved Serially Concatenated Block Codes for Speech Transmission in Fixed Wireless Communication Systems
Authors: F. Mehran
Abstract:
In this paper, we study a class of serially concatenated block codes (SCBC) based on matrix interleavers, to be employed in fixed wireless communication systems. The performances of SCBC¬coded systems are investigated under various interleaver dimensions. Numerical results reveal that the matrix interleaver could be a competitive candidate over conventional block interleaver for frame lengths of 200 bits; hence, the SCBC coding based on matrix interleaver is a promising technique to be employed for speech transmission applications in many international standards such as pan-European Global System for Mobile communications (GSM), Digital Cellular Systems (DCS) 1800, and Joint Detection Code Division Multiple Access (JD-CDMA) mobile radio systems, where the speech frame contains around 200 bits.
Keywords: Matrix Interleaver, serial concatenated block codes (SCBC), turbo codes, wireless communications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19385681 Fuzzy Decision Making via Multiple Attribute
Authors: Behnaz Zohouri, Mahdi Zowghiand, Mohsen haghighi
Abstract:
In this paper, a method for decision making in fuzzy environment is presented.A new subjective and objective integrated approach is introduced that used to assign weight attributes in fuzzy multiple attribute decision making (FMADM) problems and alternatives and fmally ranked by proposed method.
Keywords: Multiple Attribute Decision Making, Triangular fuzzy numbers, ranking index, Fuzzy Entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14725680 A Distance Function for Data with Missing Values and Its Application
Authors: Loai AbdAllah, Ilan Shimshoni
Abstract:
Missing values in data are common in real world applications. Since the performance of many data mining algorithms depend critically on it being given a good metric over the input space, we decided in this paper to define a distance function for unlabeled datasets with missing values. We use the Bhattacharyya distance, which measures the similarity of two probability distributions, to define our new distance function. According to this distance, the distance between two points without missing attributes values is simply the Mahalanobis distance. When on the other hand there is a missing value of one of the coordinates, the distance is computed according to the distribution of the missing coordinate. Our distance is general and can be used as part of any algorithm that computes the distance between data points. Because its performance depends strongly on the chosen distance measure, we opted for the k nearest neighbor classifier to evaluate its ability to accurately reflect object similarity. We experimented on standard numerical datasets from the UCI repository from different fields. On these datasets we simulated missing values and compared the performance of the kNN classifier using our distance to other three basic methods. Our experiments show that kNN using our distance function outperforms the kNN using other methods. Moreover, the runtime performance of our method is only slightly higher than the other methods.
Keywords: Missing values, Distance metric, Bhattacharyya distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27505679 Multi-Objective Planning and Operation of Water Supply Systems Subject to Climate Change
Authors: B. J. C. Perera, D. A. Sachindra, W. Godoy., A.F. Barton, F. Huang
Abstract:
Many water supply systems in Australia are currently undergoing significant reconfiguration due to reductions in long term average rainfall and resulting low inflows to water supply reservoirs since the second half of the 20th century. When water supply systems undergo change, it is necessary to develop new operating rules, which should consider climate, because the climate change is likely to further reduce inflows. In addition, water resource systems are increasingly intended to be operated to meet complex and multiple objectives representing social, economic, environmental and sustainability criteria. This is further complicated by conflicting preferences on these objectives from diverse stakeholders. This paper describes a methodology to develop optimum operating rules for complex multi-reservoir systems undergoing significant change, considering all of the above issues. The methodology is demonstrated using the Grampians water supply system in northwest Victoria, Australia. Initial work conducted on the project is also presented in this paper.Keywords: Climate change, Multi-objective planning, Pareto optimal; Stakeholder preference, Statistical downscaling, Water supply systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18965678 Multiple Positive Periodic Solutions of a Competitor-Competitor-Mutualist Lotka-Volterra System with Harvesting Terms
Authors: Yongkun Li, Erliang Xu
Abstract:
In this paper, by using Mawhin-s continuation theorem of coincidence degree theory, we establish the existence of multiple positive periodic solutions of a competitor-competitor-mutualist Lotka-Volterra system with harvesting terms. Finally, an example is given to illustrate our results.
Keywords: Positive periodic solutions, competitor-competitor mutualist Lotka-Volterra systems, coincidence degree, harvesting term.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13525677 Oxygen Transfer by Multiple Inclined Plunging Water Jets
Authors: Surinder Deswal
Abstract:
There has been a growing interest in the oxygenation by plunging water jets in the last few years due to their inherent advantages, like energy-efficient, low operation cost, etc. Though a lot of work has been reported on the oxygen-transfer by single plunging water jets but very few studies have been carried out using multiple plunging jets. In this paper, volumetric oxygen-transfer coefficient and oxygen-transfer efficiency has been studied experimentally for multiple inclined plunging jets (having jet plunge angle of 60 0 ) in a pool of water for different configurations, in terms of varying number of jets and jet diameters. This research suggests that the volumetric oxygen-transfer coefficient and oxygentransfer efficiency of the multiple inclined plunging jets for air-water system are significantly higher than those of a single vertical as well as inclined plunging jet for same flow area and other similar conditions. The study also reveals that the oxygen-transfer increase with increase in number of multiple jets under similar conditions, which will be most advantageous and energy-efficient in practical situations when large volumes of wastewaters are to be treated. A relationship between volumetric oxygen-transfer coefficient and jet parameters is also proposed. The suggested relationship predicts the volumetric oxygen-transfer coefficient for multiple inclined plunging jet(s) within a scatter of ±15 percent. The relationship will be quite useful in scale-up and in deciding optimum configuration of multiple inclined plunging jet aeration system.Keywords: Multiple inclined plunging jets, jet plunge angle, volumetric oxygen-transfer coefficient, oxygen-transfer efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17685676 Hierarchical PSO-Adaboost Based Classifiers for Fast and Robust Face Detection
Authors: Hong Pan, Yaping Zhu, Liang Zheng Xia
Abstract:
We propose a fast and robust hierarchical face detection system which finds and localizes face images with a cascade of classifiers. Three modules contribute to the efficiency of our detector. First, heterogeneous feature descriptors are exploited to enrich feature types and feature numbers for face representation. Second, a PSO-Adaboost algorithm is proposed to efficiently select discriminative features from a large pool of available features and reinforce them into the final ensemble classifier. Compared with the standard exhaustive Adaboost for feature selection, the new PSOAdaboost algorithm reduces the training time up to 20 times. Finally, a three-stage hierarchical classifier framework is developed for rapid background removal. In particular, candidate face regions are detected more quickly by using a large size window in the first stage. Nonlinear SVM classifiers are used instead of decision stump functions in the last stage to remove those remaining complex nonface patterns that can not be rejected in the previous two stages. Experimental results show our detector achieves superior performance on the CMU+MIT frontal face dataset.
Keywords: Adaboost, Face detection, Feature selection, PSO
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21985675 Adaptive Score Normalization: A Novel Approach for Multimodal Biometric Systems
Authors: Anouar Ben Khalifa, Sami Gazzah, Najoua Essoukri BenAmara
Abstract:
Multimodal biometric systems integrate the data presented by multiple biometric sources, hence offering a better performance than the systems based on a single biometric modality. Although the coupling of biometric systems can be done at different levels, the fusion at the scores level is the most common since it has been proven effective than the rest of the fusion levels. However, the scores from different modalities are generally heterogeneous. A step of normalizing the scores is needed to transform these scores into a common domain before combining them. In this paper, we study the performance of several normalization techniques with various fusion methods in a context relating to the merger of three unimodal systems based on the face, the palmprint and the fingerprint. We also propose a new adaptive normalization method that takes into account the distribution of client scores and impostor scores. Experiments conducted on a database of 100 people show that the performances of a multimodal system depend on the choice of the normalization method and the fusion technique. The proposed normalization method has given the best results.
Keywords: Multibiometrics, Fusion, Score level, Score normalization, Adaptive normalization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35535674 An Exploratory Study of Reliability of Ranking vs. Rating in Peer Assessment
Authors: Yang Song, Yifan Guo, Edward F. Gehringer
Abstract:
Fifty years of research has found great potential for peer assessment as a pedagogical approach. With peer assessment, not only do students receive more copious assessments; they also learn to become assessors. In recent decades, more educational peer assessments have been facilitated by online systems. Those online systems are designed differently to suit different class settings and student groups, but they basically fall into two categories: rating-based and ranking-based. The rating-based systems ask assessors to rate the artifacts one by one following some review rubrics. The ranking-based systems allow assessors to review a set of artifacts and give a rank for each of them. Though there are different systems and a large number of users of each category, there is no comprehensive comparison on which design leads to higher reliability. In this paper, we designed algorithms to evaluate assessors' reliabilities based on their rating/ranking against the global ranks of the artifacts they have reviewed. These algorithms are suitable for data from both rating-based and ranking-based peer assessment systems. The experiments were done based on more than 15,000 peer assessments from multiple peer assessment systems. We found that the assessors in ranking-based peer assessments are at least 10% more reliable than the assessors in rating-based peer assessments. Further analysis also demonstrated that the assessors in ranking-based assessments tend to assess the more differentiable artifacts correctly, but there is no such pattern for rating-based assessors.
Keywords: Peer assessment, peer rating, peer ranking, reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11125673 A Novel Transmission Scheme for Reliable Cooperative Communication
Authors: Won-Jun Choi, Seung-Jun Yu, Jung-In Baik, Hyoung-Kyu Song
Abstract:
Cooperative communication scheme can be substituted for multiple-input multiple-output (MIMO) technique when it may not be able to support multiple antennas due to size, cost or hardware limitations. In other words, cooperative communication scheme is an efficient method to achieve spatial diversity without multiple antennas. For satisfaction of rising QoS, we propose a reliable cooperative communication scheme with M-QAM based Dual Carrier Modulation (M-DCM), which can increase diversity gain. Although our proposed scheme is very simple method, it gives us frequency and spatial diversity. Simulation result shows our proposed scheme obtains diversity gain more than the conventional cooperative communication scheme.Keywords: cooperation, diversity, M-DCM, OFDM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16415672 Electromyography Pattern Classification with Laplacian Eigenmaps in Human Running
Authors: Elnaz Lashgari, Emel Demircan
Abstract:
Electromyography (EMG) is one of the most important interfaces between humans and robots for rehabilitation. Decoding this signal helps to recognize muscle activation and converts it into smooth motion for the robots. Detecting each muscle’s pattern during walking and running is vital for improving the quality of a patient’s life. In this study, EMG data from 10 muscles in 10 subjects at 4 different speeds were analyzed. EMG signals are nonlinear with high dimensionality. To deal with this challenge, we extracted some features in time-frequency domain and used manifold learning and Laplacian Eigenmaps algorithm to find the intrinsic features that represent data in low-dimensional space. We then used the Bayesian classifier to identify various patterns of EMG signals for different muscles across a range of running speeds. The best result for vastus medialis muscle corresponds to 97.87±0.69 for sensitivity and 88.37±0.79 for specificity with 97.07±0.29 accuracy using Bayesian classifier. The results of this study provide important insight into human movement and its application for robotics research.
Keywords: Electrocardiogram, manifold learning, Laplacian Eigenmaps, running pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11185671 Aircraft Selection Using Preference Optimization Programming (POP)
Authors: C. Ardil
Abstract:
A multiple-criteria decision support system is proposed for the best aircraft selection decision. Various strategic, economic, environmental, and risk-related factors can directly or indirectly influence this choice, and they should be taken into account in the decision-making process. The paper suggests a multiple-criteria analysis to aid in the airline management's decision-making process when choosing an appropriate aircraft. In terms of the suggested approach, an integrated entropic preference optimization programming (POP) for fleet modeling risk analysis is applied. The findings of the study of multiple criteria analysis indicate that the A321(neo) aircraft type is the best alternative in this particular optimization instance. The proposed methodology can be applied to other complex engineering problems involving multiple criteria analysis.
Keywords: Aircraft selection, decision making, multiple criteria decision making, preference optimization programming, POP, entropic weight method, TOPSIS, WSM, WPM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6245670 Single and Multiple Sourcing in the Auto-Manufacturing Industry
Authors: Sung Ho Ha, Eun Kyoung Kwon, Jong Sik Jin, Hyun Sun Park
Abstract:
This article outlines a hybrid method, incorporating multiple techniques into an evaluation process, in order to select competitive suppliers in a supply chain. It enables a purchaser to do single sourcing and multiple sourcing by calculating a combined supplier score, which accounts for both qualitative and quantitative factors that have impact on supply chain performance.Keywords: Analytic hierarchy process, Data envelopment analysis, Neural network, Supply chain management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2660