WASET
	%0 Journal Article
	%A Yogi Satrya Aryadinata and  Anne Laurent and  Michel Sala
	%D 2013
	%J International Journal of Computer and Information Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 75, 2013
	%T M2LGP: Mining Multiple Level Gradual Patterns
	%U https://publications.waset.org/pdf/2869
	%V 75
	%X Gradual patterns have been studied for many years as
they contain precious information. They have been integrated in
many expert systems and rule-based systems, for instance to reason
on knowledge such as “the greater the number of turns, the greater
the number of car crashes”. In many cases, this knowledge has been
considered as a rule “the greater the number of turns → the greater
the number of car crashes” Historically, works have thus been
focused on the representation of such rules, studying how implication
could be defined, especially fuzzy implication. These rules were
defined by experts who were in charge to describe the systems they
were working on in order to turn them to operate automatically. More
recently, approaches have been proposed in order to mine databases
for automatically discovering such knowledge. Several approaches
have been studied, the main scientific topics being: how to determine
what is an relevant gradual pattern, and how to discover them as
efficiently as possible (in terms of both memory and CPU usage).
However, in some cases, end-users are not interested in raw level
knowledge, and are rather interested in trends. Moreover, it may be
the case that no relevant pattern can be discovered at a low level of
granularity (e.g. city), whereas some can be discovered at a higher
level (e.g. county). In this paper, we thus extend gradual pattern
approaches in order to consider multiple level gradual patterns. For
this purpose, we consider two aggregation policies, namely
horizontal and vertical.
	%P 353 - 360