Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1015

# Search results for: Distance metric

##### 1015 Graphs with Metric Dimension Two-A Characterization

Authors: Sudhakara G, Hemanth Kumar A.R

Abstract:

In this paper, we define distance partition of vertex set of a graph G with reference to a vertex in it and with the help of the same, a graph with metric dimension two (i.e. β (G) = 2 ) is characterized. In the process, we develop a polynomial time algorithm that verifies if the metric dimension of a given graph G is two. The same algorithm explores all metric bases of graph G whenever β (G) = 2 . We also find a bound for cardinality of any distance partite set with reference to a given vertex, when ever β (G) = 2 . Also, in a graph G with β (G) = 2 , a bound for cardinality of any distance partite set as well as a bound for number of vertices in any sub graph H of G is obtained in terms of diam H .

##### 1014 A Distance Function for Data with Missing Values and Its Application

Authors: Loai AbdAllah, Ilan Shimshoni

Abstract:

Missing values in data are common in real world applications. Since the performance of many data mining algorithms depend critically on it being given a good metric over the input space, we decided in this paper to define a distance function for unlabeled datasets with missing values. We use the Bhattacharyya distance, which measures the similarity of two probability distributions, to define our new distance function. According to this distance, the distance between two points without missing attributes values is simply the Mahalanobis distance. When on the other hand there is a missing value of one of the coordinates, the distance is computed according to the distribution of the missing coordinate. Our distance is general and can be used as part of any algorithm that computes the distance between data points. Because its performance depends strongly on the chosen distance measure, we opted for the k nearest neighbor classifier to evaluate its ability to accurately reflect object similarity. We experimented on standard numerical datasets from the UCI repository from different fields. On these datasets we simulated missing values and compared the performance of the kNN classifier using our distance to other three basic methods. Our  experiments show that kNN using our distance function outperforms the kNN using other methods. Moreover, the runtime performance of our method is only slightly higher than the other methods.

##### 1013 Adaptive Few-Shot Deep Metric Learning

Abstract:

Currently the most prevalent deep learning methods require a large amount of data for training, whereas few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.

##### 1012 Metric Dimension on Line Graph of Honeycomb Networks

Authors: M. Hussain, Aqsa Farooq

Abstract:

Let G = (V,E) be a connected graph and distance between any two vertices a and b in G is a−b geodesic and is denoted by d(a, b). A set of vertices W resolves a graph G if each vertex is uniquely determined by its vector of distances to the vertices in W. A metric dimension of G is the minimum cardinality of a resolving set of G. In this paper line graph of honeycomb network has been derived and then we calculated the metric dimension on line graph of honeycomb network. Downloads 467
##### 1011 Method of Moments Applied to a Cuboidal Cavity Resonator: Effect of Gravitational Field Produced by a Black Hole

Authors: Arti Vaish, Harish Parthasarathy

Abstract:

This paper deals with the formulation of Maxwell-s equations in a cavity resonator in the presence of the gravitational field produced by a blackhole. The metric of space-time due to the blackhole is the Schwarzchild metric. Conventionally, this is expressed in spherical polar coordinates. In order to adapt this metric to our problem, we have considered this metric in a small region close to the blackhole and expressed this metric in a cartesian system locally.

##### 1010 A Design-Based Cohesion Metric for Object-Oriented Classes

Abstract:

Class cohesion is an important object-oriented software quality attribute. It indicates how much the members in a class are related. Assessing the class cohesion and improving the class quality accordingly during the object-oriented design phase allows for cheaper management of the later phases. In this paper, the notion of distance between pairs of methods and pairs of attribute types in a class is introduced and used as a basis for introducing a novel class cohesion metric. The metric considers the methodmethod, attribute-attribute, and attribute-method direct interactions. It is shown that the metric gives more sensitive values than other well-known design-based class cohesion metrics. Downloads 2073
##### 1009 A Supervised Text-Independent Speaker Recognition Approach

Authors: Tudor Barbu

Abstract:

We provide a supervised speech-independent voice recognition technique in this paper. In the feature extraction stage we propose a mel-cepstral based approach. Our feature vector classification method uses a special nonlinear metric, derived from the Hausdorff distance for sets, and a minimum mean distance classifier.

##### 1008 Accelerating GLA with an M-Tree

Abstract:

In this paper, we propose a novel improvement for the generalized Lloyd Algorithm (GLA). Our algorithm makes use of an M-tree index built on the codebook which makes it possible to reduce the number of distance computations when the nearest code words are searched. Our method does not impose the use of any specific distance function, but works with any metric distance, making it more general than many other fast GLA variants. Finally, we present the positive results of our performance experiments.

Keywords: Clustering, GLA, M-Tree, Vector Quantization .

##### 1007 A New Concept for Deriving the Expected Value of Fuzzy Random Variables

Authors: Liang-Hsuan Chen, Chia-Jung Chang

Abstract:

Fuzzy random variables have been introduced as an imprecise concept of numeric values for characterizing the imprecise knowledge. The descriptive parameters can be used to describe the primary features of a set of fuzzy random observations. In fuzzy environments, the expected values are usually represented as fuzzy-valued, interval-valued or numeric-valued descriptive parameters using various metrics. Instead of the concept of area metric that is usually adopted in the relevant studies, the numeric expected value is proposed by the concept of distance metric in this study based on two characters (fuzziness and randomness) of FRVs. Comparing with the existing measures, although the results show that the proposed numeric expected value is same with those using the different metric, if only triangular membership functions are used. However, the proposed approach has the advantages of intuitiveness and computational efficiency, when the membership functions are not triangular types. An example with three datasets is provided for verifying the proposed approach.

##### 1006 Distances over Incomplete Diabetes and Breast Cancer Data Based on Bhattacharyya Distance

Authors: Loai AbdAllah, Mahmoud Kaiyal

Abstract:

Missing values in real-world datasets are a common problem. Many algorithms were developed to deal with this problem, most of them replace the missing values with a fixed value that was computed based on the observed values. In our work, we used a distance function based on Bhattacharyya distance to measure the distance between objects with missing values. Bhattacharyya distance, which measures the similarity of two probability distributions. The proposed distance distinguishes between known and unknown values. Where the distance between two known values is the Mahalanobis distance. When, on the other hand, one of them is missing the distance is computed based on the distribution of the known values, for the coordinate that contains the missing value. This method was integrated with Wikaya, a digital health company developing a platform that helps to improve prevention of chronic diseases such as diabetes and cancer. In order for Wikaya’s recommendation system to work distance between users need to be measured. Since there are missing values in the collected data, there is a need to develop a distance function distances between incomplete users profiles. To evaluate the accuracy of the proposed distance function in reflecting the actual similarity between different objects, when some of them contain missing values, we integrated it within the framework of k nearest neighbors (kNN) classifier, since its computation is based only on the similarity between objects. To validate this, we ran the algorithm over diabetes and breast cancer datasets, standard benchmark datasets from the UCI repository. Our experiments show that kNN classifier using our proposed distance function outperforms the kNN using other existing methods. Downloads 582
##### 1005 Analysis on Fractals in Intuitionistic Fuzzy Metric Spaces

Authors: R. Uthayakumar, D. Easwaramoorthy

Abstract:

This paper investigates the fractals generated by the dynamical system of intuitionistic fuzzy contractions in the intuitionistic fuzzy metric spaces by generalizing the Hutchinson-Barnsley theory. We prove some existence and uniqueness theorems of fractals in the standard intuitionistic fuzzy metric spaces by using the intuitionistic fuzzy Banach contraction theorem. In addition to that, we analyze some results on intuitionistic fuzzy fractals in the standard intuitionistic fuzzy metric spaces with respect to the Hausdorff intuitionistic fuzzy metrics. Downloads 1674
##### 1004 Hutchinson-Barnsley Operator in Intuitionistic Fuzzy Metric Spaces

Authors: R. Uthayakumar, D. Easwaramoorthy

Abstract:

The main purpose of this paper is to prove the intuitionistic fuzzy contraction properties of the Hutchinson-Barnsley operator on the intuitionistic fuzzy hyperspace with respect to the Hausdorff intuitionistic fuzzy metrics. Also we discuss about the relationships between the Hausdorff intuitionistic fuzzy metrics on the intuitionistic fuzzy hyperspaces. Our theorems generalize and extend some recent results related with Hutchinson-Barnsley operator in the metric spaces to the intuitionistic fuzzy metric spaces.

##### 1003 Application of l1-Norm Minimization Technique to Image Retrieval

Authors: C. S. Sastry, Saurabh Jain, Ashish Mishra

Abstract:

Image retrieval is a topic where scientific interest is currently high. The important steps associated with image retrieval system are the extraction of discriminative features and a feasible similarity metric for retrieving the database images that are similar in content with the search image. Gabor filtering is a widely adopted technique for feature extraction from the texture images. The recently proposed sparsity promoting l1-norm minimization technique finds the sparsest solution of an under-determined system of linear equations. In the present paper, the l1-norm minimization technique as a similarity metric is used in image retrieval. It is demonstrated through simulation results that the l1-norm minimization technique provides a promising alternative to existing similarity metrics. In particular, the cases where the l1-norm minimization technique works better than the Euclidean distance metric are singled out.

##### 1002 Hutchinson-Barnsley Operator in Fuzzy Metric Spaces

Authors: R. Uthayakumar, D. Easwaramoorthy

Abstract:

The purpose of this paper is to present the fuzzy contraction properties of the Hutchinson-Barnsley operator on the fuzzy hyperspace with respect to the Hausdorff fuzzy metrics. Also we discuss about the relationships between the Hausdorff fuzzy metrics on the fuzzy hyperspaces. Our theorems generalize and extend some recent results related with Hutchinson-Barnsley operator in the metric spaces. Downloads 1601
##### 1001 Feature Extraction for Surface Classification – An Approach with Wavelets

Authors: Smriti H. Bhandari, S. M. Deshpande

Abstract:

Surface metrology with image processing is a challenging task having wide applications in industry. Surface roughness can be evaluated using texture classification approach. Important aspect here is appropriate selection of features that characterize the surface. We propose an effective combination of features for multi-scale and multi-directional analysis of engineering surfaces. The features include standard deviation, kurtosis and the Canny edge detector. We apply the method by analyzing the surfaces with Discrete Wavelet Transform (DWT) and Dual-Tree Complex Wavelet Transform (DT-CWT). We used Canberra distance metric for similarity comparison between the surface classes. Our database includes the surface textures manufactured by three machining processes namely Milling, Casting and Shaping. The comparative study shows that DT-CWT outperforms DWT giving correct classification performance of 91.27% with Canberra distance metric.

##### 1000 Cognitive Weighted Polymorphism Factor: A Comprehension Augmented Complexity Metric

Authors: T. Francis Thamburaj, A. Aloysius

Abstract:

Polymorphism is one of the main pillars of objectoriented paradigm. It induces hidden forms of class dependencies which may impact software quality, resulting in higher cost factor for comprehending, debugging, testing, and maintaining the software. In this paper, a new cognitive complexity metric called Cognitive Weighted Polymorphism Factor (CWPF) is proposed. Apart from the software structural complexity, it includes the cognitive complexity on the basis of type. The cognitive weights are calibrated based on 27 empirical studies with 120 persons. A case study and experimentation of the new software metric shows positive results. Further, a comparative study is made and the correlation test has proved that CWPF complexity metric is a better, more comprehensive, and more realistic indicator of the software complexity than Abreu’s Polymorphism Factor (PF) complexity metric. Downloads 1771
##### 999 A New Approach for Image Segmentation using Pillar-Kmeans Algorithm

Authors: Ali Ridho Barakbah, Yasushi Kiyoki

Abstract:

This paper presents a new approach for image segmentation by applying Pillar-Kmeans algorithm. This segmentation process includes a new mechanism for clustering the elements of high-resolution images in order to improve precision and reduce computation time. The system applies K-means clustering to the image segmentation after optimized by Pillar Algorithm. The Pillar algorithm considers the pillars- placement which should be located as far as possible from each other to withstand against the pressure distribution of a roof, as identical to the number of centroids amongst the data distribution. This algorithm is able to optimize the K-means clustering for image segmentation in aspects of precision and computation time. It designates the initial centroids- positions by calculating the accumulated distance metric between each data point and all previous centroids, and then selects data points which have the maximum distance as new initial centroids. This algorithm distributes all initial centroids according to the maximum accumulated distance metric. This paper evaluates the proposed approach for image segmentation by comparing with K-means and Gaussian Mixture Model algorithm and involving RGB, HSV, HSL and CIELAB color spaces. The experimental results clarify the effectiveness of our approach to improve the segmentation quality in aspects of precision and computational time. Downloads 3186
##### 998 A Geometrical Perspective on the Insulin Evolution

Abstract:

We study the molecular evolution of insulin from metric geometry point of view. In mathematics, and in particular in geometry, distances and metrics between objects are of fundamental importance. Using a weaker notion than the classical distance, namely the weighted quasi-metrics, one can study the geometry of biological sequences (DNA, mRNA, or proteins) space. We analyze from geometrical point of view a family of 60 insulin homologous sequences ranging on a large variety of living organisms from human to the nematode C. elegans. We show that the distances between sequences provide important information about the evolution and function of insulin.

Keywords: Metric geometry, evolution, insulin.

##### 997 The Validity Range of LSDP Robust Controller by Exploiting the Gap Metric Theory

Abstract:

This paper attempts to define the validity domain of LSDP (Loop Shaping Design Procedure) controller system, by determining the suitable uncertainty region, so that linear system be stable. Indeed the LSDP controller cannot provide stability for any perturbed system. For this, we will use the gap metric tool that is introduced into the control literature for studying robustness properties of feedback systems with uncertainty. A 2nd order electric linear system example is given to define the validity domain of LSDP controller and effectiveness gap metric.

Keywords: LSDP, Gap metric, Robust Control.

##### 996 Fixed Point Theorems for Set Valued Mappings in Partially Ordered Metric Spaces

Authors: Ismat Beg, Asma Rashid Butt

Abstract:

Let (X,) be a partially ordered set and d be a metric on X such that (X, d) is a complete metric space. Assume that X satisfies; if a non-decreasing sequence xn → x in X, then xn  x, for all n. Let F be a set valued mapping from X into X with nonempty closed bounded values satisfying; (i) there exists κ ∈ (0, 1) with D(F(x), F(y)) ≤ κd(x, y), for all x  y, (ii) if d(x, y) < ε < 1 for some y ∈ F(x) then x  y, (iii) there exists x0 ∈ X, and some x1 ∈ F(x0) with x0  x1 such that d(x0, x1) < 1. It is shown that F has a fixed point. Several consequences are also obtained.

##### 995 IFS on the Multi-Fuzzy Fractal Space

Abstract:

The IFS is a scheme for describing and manipulating complex fractal attractors using simple mathematical models. More precisely, the most popular “fractal –based" algorithms for both representation and compression of computer images have involved some implementation of the method of Iterated Function Systems (IFS) on complete metric spaces. In this paper a new generalized space called Multi-Fuzzy Fractal Space was constructed. On these spases a distance function is defined, and its completeness is proved. The completeness property of this space ensures the existence of a fixed-point theorem for the family of continuous mappings. This theorem is the fundamental result on which the IFS methods are based and the fractals are built. The defined mappings are proved to satisfy some generalizations of the contraction condition.

##### 994 An Iterated Function System for Reich Contraction in Complete b Metric Space

Authors: R. Uthayakumar, G. Arockia Prabakar

Abstract:

In this paper, we introduce R Iterated Function System and employ the Hutchinson Barnsley theory (HB) to construct a fractal set as its unique fixed point by using Reich contractions in a complete b metric space. We discuss about well posedness of fixed point problem for b metric space.

##### 993 Best Proximity Point Theorems for MT-K and MT-C Rational Cyclic Contractions in Metric Spaces

Authors: M. R. Yadav, A. K. Sharma, B. S. Thakur

Abstract:

The purpose of this paper is to present a best proximity point theorems through rational expression for a combination of contraction condition, Kannan and Chatterjea nonlinear cyclic contraction in what we call MT-K and MT-C rational cyclic contraction. Some best proximity point theorems for a mapping satisfy these conditions have been established in metric spaces. We also give some examples to support our work.

##### 992 Differences in Students` Satisfaction with Distance Learning Studies

Authors: Ana Horvat, Maja Krsmanovic, Mladen Djuric

Abstract:

Rapid growth of distance learning resulted in importance to conduct research on students- satisfaction with distance learning because differences in students- satisfaction might influence educational opportunities for learning in a relevant Web-based environment. In line with this, this paper deals with satisfaction of students with distance module at Faculty of organizational sciences (FOS) in Serbia as well as some factors affecting differences in their satisfaction . We have conducted a research on a population of 68 first-year students of distance learning studies at FOS. Using statistical techniques, we have found out that there is no significant difference in students- satisfaction with distance learning module between men and women. In the same way, we also concluded that there is a difference in satisfaction with distance learning module regarding to student-s perception of opportunity to gain knowledge as the classic students.

Keywords: distance learning, students' satisfaction

##### 991 A P2P File Sharing Technique by Indexed-Priority Metric

Authors: Toshinori Takabatake, Yoshikazu Komano

Abstract:

Recently, the improvements in processing performance of a computer and in high speed communication of an optical fiber have been achieved, so that the amount of data which are processed by a computer and flowed on a network has been increasing greatly. However, in a client-server system, since the server receives and processes the amount of data from the clients through the network, a load on the server is increasing. Thus, there are needed to introduce a server with high processing ability and to have a line with high bandwidth. In this paper, concerning to P2P networks to resolve the load on a specific server, a criterion called an Indexed-Priority Metric is proposed and its performance is evaluated. The proposed metric is to allocate some files to each node. As a result, the load on a specific server can distribute them to each node equally well. A P2P file sharing system using the proposed metric is implemented. Simulation results show that the proposed metric can make it distribute files on the specific server. Downloads 1228
##### 990 OWA Operators in Generalized Distances

Authors: José M. Merigó, Anna M. Gil-Lafuente

Abstract:

Different types of aggregation operators such as the ordered weighted quasi-arithmetic mean (Quasi-OWA) operator and the normalized Hamming distance are studied. We introduce the use of the OWA operator in generalized distances such as the quasiarithmetic distance. We will call these new distance aggregation the ordered weighted quasi-arithmetic distance (Quasi-OWAD) operator. We develop a general overview of this type of generalization and study some of their main properties such as the distinction between descending and ascending orders. We also consider different families of Quasi-OWAD operators such as the Minkowski ordered weighted averaging distance (MOWAD) operator, the ordered weighted averaging distance (OWAD) operator, the Euclidean ordered weighted averaging distance (EOWAD) operator, the normalized quasi-arithmetic distance, etc. Downloads 1476
##### 989 Analyzing Methods of the Relation between Concepts based on a Concept Hierarchy

Authors: Ke Lu, Tetsuya Furukawa

Abstract:

Data objects are usually organized hierarchically, and the relations between them are analyzed based on a corresponding concept hierarchy. The relation between data objects, for example how similar they are, are usually analyzed based on the conceptual distance in the hierarchy. If a node is an ancestor of another node, it is enough to analyze how close they are by calculating the distance vertically. However, if there is not such relation between two nodes, the vertical distance cannot express their relation explicitly. This paper tries to fill this gap by improving the analysis method for data objects based on hierarchy. The contributions of this paper include: (1) proposing an improved method to evaluate the vertical distance between concepts; (2) defining the concept horizontal distance and a method to calculate the horizontal distance; and (3) discussing the methods to confine a range by the horizontal distance and the vertical distance, and evaluating the relation between concepts. Downloads 1034
##### 988 Using the OWA Operator in the Minkowski Distance

Authors: José M. Merigó, Anna M. Gil-Lafuente

Abstract:

We study different types of aggregation operators such as the ordered weighted averaging (OWA) operator and the generalized OWA (GOWA) operator. We analyze the use of OWA operators in the Minkowski distance. We will call these new distance aggregation operator the Minkowski ordered weighted averaging distance (MOWAD) operator. We give a general overview of this type of generalization and study some of their main properties. We also analyze a wide range of particular cases found in this generalization such as the ordered weighted averaging distance (OWAD) operator, the Euclidean ordered weighted averaging distance (EOWAD) operator, the normalized Minkowski distance, etc. Finally, we give an illustrative example of the new approach where we can see the different results obtained by using different aggregation operators. Downloads 1938
##### 987 The Distance between a Point and a Bezier Curveon a Bezier Surface

Authors: Wen-Haw Chen, Sheng-Gwo Chen

Abstract:

The distance between two objects is an important problem in CAGD, CAD and CG etc. It will be presented in this paper that a simple and quick method to estimate the distance between a point and a Bezier curve on a Bezier surface.

Keywords: Geodesic-like curve, distance, projection, Bezier.