Search results for: IR spectroscopy.
223 The Determination of the Zinc Sulfate, Sodium Hydroxide and Boric Acid Molar Ratio on the Production of Zinc Borates
Authors: N. Tugrul, A. S. Kipcak, E. MoroydorDerun, S. Piskin
Abstract:
Zinc borate is an important boron compound that can be used as multi-functional flame retardant additive due to its high dehydration temperature property. In this study, theraw materials of ZnSO4.7H2O, NaOH and H3BO3werecharacterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) and used in the synthesis of zinc borates.The synthesis parameters were set to 100°C reaction temperature and 120 minutes of reaction time, with different molar ratio of starting materials (ZnSO4.7H2O:NaOH:H3BO3). After the zinc borate synthesis, the identifications of the products were conducted by XRD and FT-IR. As a result,Zinc Oxide Borate Hydrate [Zn3B6O12.3.5H2O], were synthesized at the molar ratios of 1:1:3, 1:1:4, 1:2:5 and 1:2:6. Among these ratios 1:2:6 had the best results.
Keywords: Zinc borate, ZnSO4.7H2O, NaOH, H3BO3, XRD, FT-IR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3822222 Survey Gamma Radiation Measurements in Commercially-used Natural Tiling Rocks in Iran
Authors: A.Abbasi, F.Mirekhtiary
Abstract:
The gamma radiation in samples of a variety of natural tiling rocks (granites) produced and imported in Iran use in the building industry was measured, employing high-resolution Gamma-ray spectroscopy. The rock samples were pulverized, sealed in 0.5 liter plastic Marinelli beakers, and measured in the laboratory with an accumulating time between 50000 and 80000 second each. From the measured Gamma-ray spectra, activity concentrations were determined for 232Th (range from 6.5 to 172.2 Bq kg-1), 238U (from 7.5 to 178.1 Bq kg-1 ),226Ra( from 3.8 to 94.2 Bq kg-1 ) 40K (from 556.9 to 1539.2 Bq kg-1). From the 29 samples measured in this study, “Nehbndan ( Berjand )" appears to present the highest concentrations for 232Th,“Big Red Flower (China) "for 238U , “ Khoram dareh" for 226 Ra and “ Peranshahr" for 40K , respectively.Keywords: activity concentration, natural radioactivity, tilingrocks (granites)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408221 Green Synthesis of Nanosilver-Loaded Hydrogel Nanocomposites for Antibacterial Application
Authors: D. Berdous, H. Ferfera-Harrar
Abstract:
Superabsorbent polymers (SAPs) or hydrogels with three-dimensional hydrophilic network structure are high-performance water absorbent and retention materials. The in situ synthesis of metal nanoparticles within polymeric network as antibacterial agents for bio-applications is an approach that takes advantage of the existing free-space into networks, which not only acts as a template for nucleation of nanoparticles, but also provides long term stability and reduces their toxicity by delaying their oxidation and release. In this work, SAP/nanosilver nanocomposites were successfully developed by a unique green process at room temperature, which involves in situ formation of silver nanoparticles (AgNPs) within hydrogels as a template. The aim of this study is to investigate whether these AgNPs-loaded hydrogels are potential candidates for antimicrobial applications. Firstly, the superabsorbents were prepared through radical copolymerization via grafting and crosslinking of acrylamide (AAm) onto chitosan backbone (Cs) using potassium persulfate as initiator and N,N’-methylenebisacrylamide as the crosslinker. Then, they were hydrolyzed to achieve superabsorbents with ampholytic properties and uppermost swelling capacity. Lastly, the AgNPs were biosynthesized and entrapped into hydrogels through a simple, eco-friendly and cost-effective method using aqueous silver nitrate as a silver precursor and curcuma longa tuber-powder extracts as both reducing and stabilizing agent. The formed superabsorbents nanocomposites (Cs-g-PAAm)/AgNPs were characterized by X-ray Diffraction (XRD), UV-visible Spectroscopy, Attenuated Total reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Inductively Coupled Plasma (ICP), and Thermogravimetric Analysis (TGA). Microscopic surface structure analyzed by Transmission Electron Microscopy (TEM) has showed spherical shapes of AgNPs with size in the range of 3-15 nm. The extent of nanosilver loading was decreased by increasing Cs content into network. The silver-loaded hydrogel was thermally more stable than the unloaded dry hydrogel counterpart. The swelling equilibrium degree (Q) and centrifuge retention capacity (CRC) in deionized water were affected by both contents of Cs and the entrapped AgNPs. The nanosilver-embedded hydrogels exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus bacteria. These comprehensive results suggest that the elaborated AgNPs-loaded nanomaterials could be used to produce valuable wound dressing.
Keywords: Antibacterial activity, nanocomposites, silver nanoparticles, superabsorbent hydrogel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704220 Surface Coating of Polyester Fabrics by Sol Gel Synthesized ZnO Particles
Authors: Merve Küçük, M. Lütfi Öveçoğlu
Abstract:
Zinc oxide particles were synthesized using the sol-gel method and dip coated on polyester fabric. X-ray diffraction (XRD) analysis revealed a single crystal phase of ZnO particles. Chemical characteristics of the polyester fabric surface were investigated using attenuated total reflection-Fourier transform infrared (ATR-FTIR) measurements. Morphology of ZnO coated fabric was analyzed using field emission scanning electron microscopy (FESEM). After particle analysis, the aqueous ZnO solution resulted in a narrow size distribution at submicron levels. The deposit of ZnO on polyester fabrics yielded a homogeneous spread of spherical particles. Energy dispersive X-ray spectroscopy (EDX) results also affirmed the presence of ZnO particles on the polyester fabrics.
Keywords: Dip coating, polyester fabrics, sol-gel, zinc oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518219 Feasibility of Leukemia Cancer Treatment (K562) by Atmospheric Pressure Plasma Jet
Authors: Mashayekh Amir Shahriar, Akhlaghi Morteza, Rajaee Hajar, Khani Mohammad Reza, Shokri Babak
Abstract:
A new and novel approach in medicine is the use of cold plasma for various applications such as sterilization blood coagulation and cancer cell treatment. In this paper a pin-to-hole plasma jet suitable for biological applications is investigated and characterized and the possibility and feasibility of cancer cell treatment is evaluated. The characterization includes power consumption via Lissajous method, thermal behavior of plasma using Infra-red camera as a novel method, Optical Emission Spectroscopy (OES) to determine the species that are generated. Treatment of leukemia cancer cells is also implemented and MTT assay is used to evaluate viability.
Keywords: Atmospheric Pressure Plasma Jet (APPJ), Plasma Medicine, Cancer cell treatment, leukemia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2235218 The Influence of Doping of Fullerene Derivative (PCBM) on the Optical Properties of Vanadyl Phthalocyanine (VOPc)
Authors: Fakhra Aziz, K. Sulaiman, Kh. S. Karimov, M. Hassan Sayyad
Abstract:
This paper presents a spectroscopic study on doping of Vanadyl pathalocyanine (VOPc) by [6,6]-phenyl C61 butyric acid methyl ester (PCBM). The films are characterized by UV/Vis/NIR spectroscopy. A drastic increase in the absorption coefficient has been observed with increasing dopant concentration. Optical properties of VOPc:PCBM films deposited by spin coating technique were studied in detail. Optical band gap decreased with the PCBM incorporation in the VOPc film. Optical band gap calculated from the absorption spectra decreased from 3.32 eV to 3.26 eV with a variation of 0–75 % of PCBM concentration in the VOPC films.Keywords: Optical properties, spin-coating, optical properties, optical energy gap
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187217 Immobilization of Simulated High Level Nuclear Wastes with Li2O-CeO2-Fe2O3-P2O5 Glasses
Authors: Toshinori Okura, Naoya Yoshida
Abstract:
The leaching behavior and structure of Li2O-CeO2- Fe2O3-P2O5 glasses incorporated with simulated high level nuclear wastes (HLW) were studied. The leach rates of gross and each constituent element were determined from the total weight loss of the specimen and the leachate analyses by inductively coupled argon plasma spectroscopy (ICP). The gross leach rate of the 4.5Li2O- 9.7CeO2-34.7Fe2O3-51.5P2O5 glass waste form containing 45 mass% simulated HLW is of the order of 10
Keywords: FT-IR spectra, Leach rates, Li2O-CeO2-Fe2O3-P2O5 glasses, Nuclear waste immobilization, Thermal properties
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084216 Molecular Characteristics of Phosphoric Acid Treated Soils
Authors: Amin Eisazadeh, Khairul Anuar Kassim, Hadi Nur
Abstract:
The expansive nature of soils containing high amounts of clay minerals can be altered through chemical stabilization, resulting in a material suitable for construction purposes. The primary objective of this investigation was to study the changes induced in the molecular structure of phosphoric acid stabilized bentonite and lateritic soil using Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FTIR) spectroscopy. Based on the obtained data, it was found that a surface alteration mechanism was the main reason responsible for the improvement of treated soils. Furthermore, the results indicated that the Al present in the octahedral layer of clay minerals were more amenable to chemical attacks and also partly responsible for the formation of new products.Keywords: Bentonite, Laterite clay, Molecularcharacterization, Phosphoric acid, Stabilization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2406215 Identification of Arglecins B and C and Actinofuranosin A from a Termite Gut-Associated Streptomyces Species
Authors: Christian A. Romero, Tanja Grkovic, John. R. J. French, D. İpek. Kurtböke, Ronald J. Quinn
Abstract:
A high-throughput and automated 1H NMR metabolic fingerprinting dereplication approach was used to accelerate the discovery of unknown bioactive secondary metabolites. The applied dereplication strategy accelerated the discovery of new natural products, provided rapid and competent identification and quantification of the known secondary metabolites and avoided time-consuming isolation procedures. The effectiveness of the technique was demonstrated by the isolation and elucidation of arglecins B (1), C (2) and actinofuranosin A (3) from a termite-gut associated Streptomyces sp. (USC 597) grown under solid state fermentation. The structures of these compounds were elucidated by extensive interpretation of 1H, 13C and 2D NMR spectroscopic data. These represent the first report of arglecin analogues isolated from a termite gut-associated Streptomyces species.
Keywords: Actinomycetes, actinofuranosin, antibiotics, arglecins, NMR spectroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 222214 Effect of Temperature of Exposure on Properties of Cement Mortar with MSWI Bottom Ash
Authors: Z. Pavlík, M. Keppert, J. Žumár, M. Pavlíková, A. Trník, R. Černý
Abstract:
Effect of high temperature exposure on properties of cement mortar containing municipal solid waste incineration (MSWI) bottom ash as partial natural aggregate replacement is analyzed in the paper. The measurements of mechanical properties, bulk density, matrix density, total open porosity, sorption and desorption isotherms are done on samples exposed to the temperatures of 20°C to 1000°C. TGA analysis is performed as well. Finally, the studied samples are analyzed by IR spectroscopy in order to evaluate TGA data.
Keywords: Cement mortar, high temperature exposure, MSWI bottom ash, natural aggregate replacement, mechanical properties
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858213 Green, Smooth and Easy Electrochemical Synthesis of N-Protected Indole Derivatives
Authors: Sarah Fahad Alajmi, Tamer Ezzat Youssef
Abstract:
Here, we report a simple method for the direct conversion of 6-Nitro-1H-indole into N-substituted indoles via electrochemical dehydrogenative reaction with halogenated reagents under strongly basic conditions through N–R bond formation. The N-protected indoles have been prepared under moderate and scalable electrolytic conditions. The conduct of the reactions was performed in a simple divided cell under constant current without oxidizing reagents or transition-metal catalysts. The synthesized products have been characterized via UV/Vis spectrophotometry, 1H-NMR, and FTIR spectroscopy. A possible reaction mechanism is discussed based on the N-protective products. This methodology could be applied to the synthesis of various biologically active N-substituted indole derivatives.
Keywords: Green chemistry, 1H-indole, NH-containing heteroaromatic, organic electrosynthesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931212 Characterization for Post-treatment Effect of Bagasse Ash for Silica Extraction
Authors: Patcharin Worathanakul, Wisaroot Payubnop, Akhapon Muangpet
Abstract:
Utilization of bagasse ash for silica sources is one of the most common application for agricultural wastes and valuable biomass byproducts in sugar milling. The high percentage silica content from bagasse ash was used as silica source for sodium silicate solution. Different heating temperature, time and acid treatment were studies for silica extraction. The silica was characterized using various techniques including X-ray fluorescence, X-ray diffraction, Scanning electron microscopy, and Fourier Transform Infrared Spectroscopy method,. The synthesis conditions were optimized to obtain the bagasse ash with the maximum silica content. The silica content of 91.57 percent was achieved from heating of bagasse ash at 600°C for 3 hours under oxygen feeding and HCl treatment. The result can be used as value added for bagasse ash utilization and minimize the environmental impact of disposal problems.Keywords: Bagasse ash, synthesis, silica, extraction, posttreatment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3818211 Supercritical Methanol for Biodiesel Production from Jatropha Oil in the Presence of Heterogeneous Catalysts
Authors: Velid Demir, Mesut Akgün
Abstract:
The lanthanum and zinc oxide were synthesized and then loaded with 6 wt% over γ-Al2O3 using the wet impregnation method. The samples were calcined at 900 °C to ensure a coherent structure with high catalytic performance. Characterization of the catalysts was verified by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). The effect of catalysts on biodiesel content from jatropha oil was studied under supercritical conditions. The results showed that ZnO/γ-Al2O3 was the superior catalyst for jatropha oil with 98.05% biodiesel under reaction conditions of 7 min reaction time, 1:40 oil to methanol molar ratio, 6 wt% of catalyst loading, 90 bar of reaction pressure, and 300 °C of reaction temperature, compared to 95.50% with La2O3/γ-Al2O3 at the same parameters. For this study, ZnO/γ-Al2O3 was the most suitable catalyst due to performance and cost considerations.
Keywords: Biodiesel, heterogeneous catalyst, Jatropha oil, supercritical methanol, transesterification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157210 Structural Analysis of Lignins from Different Sources
Authors: I. F. Fiţigău, F. Peter, C. G. Boeriu
Abstract:
Five lignin samples were fractionated with Acetone/Water mixtures and the obtained fractions were subjected to extensive structural characterization, including Fourier Transform Infrared (FT-IR), Gel permeation Chromatography (GPC) and Phosphorus-31 NMR spectroscopy (31P-NMR). The results showed that for all studied lignins the solubility increases with the increment of the acetone concentration. Wheat straw lignin has the highest solubility in 90/10 (v/v) Acetone/Water mixture, 400 mg lignin being dissolved in 1 mL mixture. The weight average molecular weight of the obtained fractions increased with the increment of acetone concentration and thus with solubility. 31P-NMR analysis based on lignin modification by reactive phospholane into phosphitylated compounds was used to differentiate and quantify the different types of OH groups (aromatic, aliphatic, and carboxylic) found in the fractions obtained with 70/30 (v/v) Acetone/Water mixture.Keywords: Lignin, fractionation, FT-IR, GPC, 31P-NMR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4945209 Phase Behavior of CO2 and CH4 Hydrate in Porous Media
Authors: Seong-Pil Kang, Ho-Jung Ryu, Yongwon Seo
Abstract:
Hydrate phase equilibria for the binary CO2+water and CH4+water mixtures in silica gel pore of nominal diameters 6, 30, and 100 nm were measured and compared with the calculated results based on van der Waals and Platteeuw model. At a specific temperature, three-phase hydrate-water-vapor (HLV) equilibrium curves for pore hydrates were shifted to the higher-pressure condition depending on pore sizes when compared with those of bulk hydrates. Notably, hydrate phase equilibria for the case of 100 nominal nm pore size were nearly identical with those of bulk hydrates. The activities of water in porous silica gels were modified to account for capillary effect, and the calculation results were generally in good agreement with the experimental data. The structural characteristics of gas hydrates in silica gel pores were investigated through NMR spectroscopy.Keywords: CO2, CH4, gas hydrate, equilibria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2440208 Wet Polymeric Precipitation Synthesis for Monophasic Tricalcium Phosphate
Authors: I. Grigoraviciute-Puroniene, K. Tsuru, E. Garskaite, Z. Stankeviciute, A. Beganskiene, K. Ishikawa, A. Kareiva
Abstract:
Tricalcium phosphate (β-Ca3(PO4)2, β-TCP) powders were synthesized using wet polymeric precipitation method for the first time to our best knowledge. The results of X-ray diffraction analysis showed the formation of almost single a Ca-deficient hydroxyapatite (CDHA) phase of a poor crystallinity already at room temperature. With continuously increasing the calcination temperature up to 800 °C, the crystalline β-TCP was obtained as the main phase. It was demonstrated that infrared spectroscopy is very effective method to characterize the formation of β-TCP. The SEM results showed that β-TCP solids were homogeneous having a small particle size distribution. The β-TCP powders consisted of spherical particles varying in size from 100 to 300 nm. Fabricated β-TCP specimens were placed to the bones of the rats and maintained for 1-2 months.
Keywords: β-TCP, bone regeneration, wet chemical processing, polymeric precipitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1064207 Detecting Subsurface Circular Objects from Low Contrast Noisy Images: Applications in Microscope Image Enhancement
Authors: Soham De, Nupur Biswas, Abhijit Sanyal, Pulak Ray, Alokmay Datta
Abstract:
Particle detection in very noisy and low contrast images is an active field of research in image processing. In this article, a method is proposed for the efficient detection and sizing of subsurface spherical particles, which is used for the processing of softly fused Au nanoparticles. Transmission Electron Microscopy is used for imaging the nanoparticles, and the proposed algorithm has been tested with the two-dimensional projected TEM images obtained. Results are compared with the data obtained by transmission optical spectroscopy, as well as with conventional circular object detection algorithms.Keywords: Transmission Electron Microscopy, Circular Hough Transform, Au Nanoparticles, Median Filter, Laplacian Sharpening Filter, Canny Edge Detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2581206 UV Resistibility of a Carbon Nanofiber Reinforced Polymer Composite
Authors: A. Evcin, N. Çiçek Bezir, R. Duman, N. Duman
Abstract:
Nowadays, a great concern is placed on the harmfulness of ultraviolet radiation (UVR) which attacks human bodies. Nanocarbon materials, such as carbon nanotubes (CNTs), carbon nanofibers (CNFs) and graphene, have been considered promising alternatives to shielding materials because of their excellent electrical conductivities, very high surface areas and low densities. In the present work, carbon nanofibers have been synthesized from solutions of Polyacrylonitrile (PAN)/ N,N-dimethylformamide (DMF) by electrospinning method. The carbon nanofibers have been stabilized by oxidation at 250 °C for 2 h in air and carbonized at 750 °C for 1 h in H2/N2. We present the fabrication and characterization of transparent and ultraviolet (UV) shielding CNF/polymer composites. The content of CNF filler has been varied from 0.2% to 0.6 % by weight. UV Spectroscopy has been performed to study the effect of composition on the transmittance of polymer composites.
Keywords: Electrospinning, carbon nanofiber, characterization, composites, nanofiber, ultraviolet radiation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 810205 Effect of Bentonite on the Properties of Liquid Insulating Oil
Authors: Loai Nasrat, Mervat S. Hassan
Abstract:
Bentonitic material from South Aswan, Egypt was evaluated in terms of mineral-ogy and chemical composition as bleaching clay in refining of transformer oil before and after acid activation and thermal treatment followed by acid leaching using HCl and H2SO4 for different contact times. Structural modification and refining power of bento-nite were investigated during modification by means of X-ray diffraction and infrared spectroscopy. The results revealed that the activated bentonite could be used for refining of transformer oil. The oil parameters such as; dielectric strength, viscosity and flash point had been improved. The dielectric breakdown strength of used oil increased from 29 kV for used oil treated with unactivated bentonite to 74 kV after treatment with activated bentonite. Kinematic Viscosity changed from 19 to 11 mm2 /s after treatment with activated bentonite. However, flash point achieved 149 ºC.
Keywords: Dielectric strength, unactivated bentonite, X-ray diffraction, SEM image
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2696204 The Effects of 2wt% Cu Addition on the Corrosion Behavior of Heat Treated Al-6Si-0.5Mg-2Ni Alloy
Authors: A. Hossain, M. A. Gafur, F. Gulshan, A. S. W. Kurny
Abstract:
Al-Si-Mg-Ni(-Cu) alloys are widely used in the automotive industry. They have the advantage of low weight associated with low coefficient of thermal expansion and excellent mechanical properties – mainly at high temperatures. The corrosion resistance of these alloys in coastal area, particularly sea water, however is not yet known. In this investigation, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization have been used to evaluate the corrosion resistance of Al-6Si-0.5Mg-2Ni (-2Cu) alloys in simulated sea water environments. The potentiodynamic polarization curves reveal that 2 wt% Cu content alloy (Alloy-2) is more prone to corrosion than the Cu free alloy (Alloy-1). But the EIS test results showed that corrosion resistance or charge transfer resistance (Rct) increases with the addition of Cu. Due to addition of Cu and thermal treatment, the magnitude of open circuit potential (OCP), corrosion potential (Ecorr) and pitting corrosion potential (Epit) of Al-6Si-0.5Mg-2Ni alloy in NaCl solution were shifted to the more noble direction.
Keywords: Al-Si alloy, potentiodynamic polarization, EIS, SEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2254203 Utilizing Fly Ash Cenosphere and Aerogel for Lightweight Thermal Insulating Cement-Based Composites
Authors: Asad Hanif, Pavithra Parthasarathy, Zongjin Li
Abstract:
Thermal insulating composites help to reduce the total power consumption in a building by creating a barrier between external and internal environment. Such composites can be used in the roofing tiles or wall panels for exterior surfaces. This study purposes to develop lightweight cement-based composites for thermal insulating applications. Waste materials like silica fume (an industrial by-product) and fly ash cenosphere (FAC) (hollow micro-spherical shells obtained as a waste residue from coal fired power plants) were used as partial replacement of cement and lightweight filler, respectively. Moreover, aerogel, a nano-porous material made of silica, was also used in different dosages for improved thermal insulating behavior, while poly vinyl alcohol (PVA) fibers were added for enhanced toughness. The raw materials including binders and fillers were characterized by X-Ray Diffraction (XRD), X-Ray Fluorescence spectroscopy (XRF), and Brunauer–Emmett–Teller (BET) analysis techniques in which various physical and chemical properties of the raw materials were evaluated like specific surface area, chemical composition (oxide form), and pore size distribution (if any). Ultra-lightweight cementitious composites were developed by varying the amounts of FAC and aerogel with 28-day unit weight ranging from 1551.28 kg/m3 to 1027.85 kg/m3. Excellent mechanical and thermal insulating properties of the resulting composites were obtained ranging from 53.62 MPa to 8.66 MPa compressive strength, 9.77 MPa to 3.98 MPa flexural strength, and 0.3025 W/m-K to 0.2009 W/m-K as thermal conductivity coefficient (QTM-500). The composites were also tested for peak temperature difference between outer and inner surfaces when subjected to heating (in a specially designed experimental set-up) by a 275W infrared lamp. The temperature difference up to 16.78 oC was achieved, which indicated outstanding properties of the developed composites to act as a thermal barrier for building envelopes. Microstructural studies were carried out by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) for characterizing the inner structure of the composite specimen. Also, the hydration products were quantified using the surface area mapping and line scale technique in EDS. The microstructural analyses indicated excellent bonding of FAC and aerogel in the cementitious system. Also, selective reactivity of FAC was ascertained from the SEM imagery where the partially consumed FAC shells were observed. All in all, the lightweight fillers, FAC, and aerogel helped to produce the lightweight composites due to their physical characteristics, while exceptional mechanical properties, owing to FAC partial reactivity, were achieved.
Keywords: Sustainable development, fly ash cenosphere, aerogel, lightweight, cement, composite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209202 Study of Temperature Difference and Current Distribution in Parallel-Connected Cells at Low Temperature
Authors: Sara Kamalisiahroudi, Jun Huang, Zhe Li, Jianbo Zhang
Abstract:
Two types of commercial cylindrical lithium ion batteries (Panasonic 3.4 Ah NCR-18650B and Samsung 2.9 Ah INR-18650), were investigated experimentally. The capacities of these samples were individually measured using constant current-constant voltage (CC-CV) method at different ambient temperatures (-10°C, 0°C, 25°C). Their internal resistance was determined by electrochemical impedance spectroscopy (EIS) and pulse discharge methods. The cells with different configurations of parallel connection NCR-NCR, INR-INR and NCR-INR were charged/discharged at the aforementioned ambient temperatures. The results showed that the difference of internal resistance between cells much more evident at low temperatures. Furthermore, the parallel connection of NCR-NCR exhibits the most uniform temperature distribution in cells at -10°C, this feature is quite favorable for the safety of the battery pack.
Keywords: Batteries in parallel connection, internal resistance, low temperature, temperature difference, current distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3215201 Learning Materials of Atmospheric Pressure Plasma Process: Turning Hydrophilic Surface to Hydrophobic
Authors: C.W. Kan
Abstract:
This paper investigates the use of atmospheric pressure plasma for improving the surface hydrophobicity of polyurethane synthetic leather with tetramethylsilane (TMS). The atmospheric pressure plasma treatment with TMS is a single-step process to enhance the hydrophobicity of polyurethane synthetic leather. The hydrophobicity of the treated surface was examined by contact angle measurement. The physical and chemical surface changes were evaluated by scanning electron microscopy (SEM) and infrared spectroscopy (FTIR). The purpose of this paper is to provide learning materials for understanding how to use atmospheric pressure plasma in the textile finishing process to transform a hydrophilic surface to hydrophobic.
Keywords: Learning materials, atmospheric pressure plasma treatment, hydrophobic, hydrophilic, surface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785200 Spectroscopic Characterization of Indium-Tin Laser Ablated Plasma
Abstract:
In the present research work we present the optical emission studies of the Indium (In) – Tin (Sn) plasma produced by the first (1064 nm) harmonic of an Nd: YAG nanosecond pulsed laser. The experimentally observed line profiles of neutral Indium (In I) and Tin (SnI) are used to extract the electron temperature (Te) using the Boltzmann plot method. Whereas, the electron number density (Ne) has been determined from the Stark broadening line profile method. The Te is calculated by varying the distance from the target surface along the line of propagation of plasma plume and also by varying the laser irradiance. Beside we have studied the variation of Ne as a function of laser irradiance as well as its variation with distance from the target surface.Keywords: Indium – Tin plasma, laser ablation, optical emission spectroscopy, electron temperature, and electron number density.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2294199 Eco-Friendly Natural Filler Based Epoxy Composites
Authors: Suheyla Kocaman, Gulnare Ahmetli
Abstract:
In this study, acrylated soybean oil (AESO) was used as modifying agent for DGEBF-type epoxy resin (ER). AESO was used as a co-matrix in 50 wt % with ER. Composites with eco-friendly natural fillers-banana bark and seashell were prepared. MNA was used as a hardener. Effect of banana peel (BP) and seashell (SSh) fillers on mechanical properties, such as tensile strength, elongation at break, and hardness of M-ERs were investigated. The structure epoxy resins (M-ERs) cured with MNA and sebacic acid (SAc) hardeners were characterized by Fourier transform infrared spectroscopy (FTIR). Tensile test results show that Young’s (elastic) modulus, tensile strength and hardness of SSh particles reinforced with M-ERs were higher than the M-ERs reinforced with banana bark.
Keywords: Biobased composite, epoxy resin, mechanical properties, natural fillers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125198 Effects of Irradiation to Morphological, Physicochemical and Biocompatibility Properties of Carrageenan
Authors: Jhalique Jane R. Fojas, Rizalinda L. De Leon, Lucille V. Abad
Abstract:
The characterization of κ-carrageenan could provide a better understanding of its functions in biological, medical and industrial applications. Chemical and physical analyses of carrageenan from seaweeds, Euchema cottonii L., were done to offer information on its properties and the effects of Co-60 γ-irradiation on its thermochemical characteristics. The structural and morphological characteristics of κ-carrageenan were determined using scanning electron microscopy (SEM) while the composition, molecular weight and thermal properties were determined using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), gel permeation chromatography (GPC), thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Further chemical analysis was done using hydrogen-1 nuclear magnetic resonance (1H NMR) and functional characteristics in terms of biocompatibility were evaluated using cytotoxicity test.Keywords: Biocompatibility, carrageenan, DSC, FTIR, GPC, irradiation, NMR, physicochemical, SEM, TGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557197 Synthesis of Copper Sulfide Nanoparticles by Pulsed Plasma in Liquid Method
Authors: Zhypargul Abdullaeva, Emil Omurzak, Tsutomu Mashimo
Abstract:
Copper sulfide nanoparticles (CuS) were successfully synthesized by the pulsed plasma in liquid method, using two copper rod electrodes submerged in molten sulfur. Low electrical energy and no high temperature were applied for synthesis. Obtained CuS nanoparticles were then analyzed by means of X-ray diffraction, Low and High Resolution Transmission Electron Microscopy, Electron Diffraction, X-ray Photoelectron, Raman Spectroscopies and Field Emission Scanning Electron Microscopy. XRD analysis revealed peaks for CuS with hexagonal phase composition. TEM and HRTEM studies showed that sizes of CuS nanoparticles ranged between 10-60 nm, with the average size of about 20 nm. Copper sulfide nanoparticles have short nanorod-like structure. Raman spectroscopy found peak for CuS at 474.2cm-1of Raman region.
Keywords: Copper sulfide, Nanoparticles, Pulsed plasma, Synthesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4396196 Speciation of Iron (III) Oxide Nanoparticles and Other Paramagnetic Intermediates during High-Temperature Oxidative Pyrolysis of 1-Methylnaphthalene
Authors: Michael P. Herring, Lavrent Khachatryan, Barry Dellinger
Abstract:
Low Temperature Matrix Isolation - Electron Paramagnetic Resonance (LTMI-EPR) Spectroscopy was utilized to identify the species of iron oxide nanoparticles generated during the oxidative pyrolysis of 1-methylnaphthalene (1-MN). The otherwise gas-phase reactions of 1--MN were impacted by a polypropylenimine tetra-hexacontaamine dendrimer complexed with iron (III) nitrate nonahydrate diluted in air under atmospheric conditions. The EPR fine structure of Fe (III)2O3 nanoparticles clusters, characterized by gfactors of 2.00, 2.28, 3.76 and 4.37 were detected on a cold finger maintained at 77 K after accumulation over a multitude of experiments. Additionally, a high valence Fe (IV) paramagnetic intermediate and superoxide anion-radicals, O2•- adsorbed on nanoparticle surfaces in the form of Fe (IV) --- O2•- were detected from the quenching area of Zone 1 in the gas-phase.Keywords: Cryogenic trapping, EPFRs, dendrimer, Fe2O3 doped silica, soot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093195 Friction Behavior of Wood-Plastic Composites against Uncoated Cemented Carbide
Authors: A. Vilutis, V. Jankauskas
Abstract:
The paper presents the results of the investigation of the dry sliding friction of wood-plastic composites (WPCs) against tungsten carbide-cobalt (WC-Co) hard alloy. The dependence of the dynamic coefficient of friction on the main influencing factors (vertical load, temperature, and sliding distance) was investigated by evaluating their mutual interaction. Multiple regression analysis showed a high polynomial dependence (adjusted R2 > 0.98). The resistance of the composite to thermo-mechanical effects determines how temperature and force factors affect the magnitude of the coefficient of friction. WPC-B composite has the lowest friction and highest resistance compared to WPC-A, while composite and cemented carbide materials wear the least. Energy Dispersive Spectroscopy (EDS), based on elemental composition, provided important insights into the friction process.
Keywords: Friction, composite, carbide, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75194 Synthesis and Application of an Organic Dye in Nanostructure Solar Cells Device
Authors: M. Hoseinnezhad, K. Gharanjig
Abstract:
Two organic dyes comprising carbazole as the electron donors and cyanoacetic acid moieties as the electron acceptors were synthesized. The organic dye was prepared by standard reaction from carbazole as the starting material. To this end, carbazole was reacted with bromobenzene and further oxidation and reacted with cyanoacetic acid. The obtained organic dye was purified and characterized using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1HNMR), carbon nuclear magnetic resonance (13CNMR) and elemental analysis. The influence of heteroatom on carbazole donors and cyno substitution on the acid acceptor is evidenced by spectral and electrochemical photovoltaic experiments. Finally, light fastness properties for organic dye were investigated.Keywords: Dye-sensitized solar cells, Indoline dye, nanostructure, oxidation potential, solar energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 967