Identification of Arglecins B and C and Actinofuranosin A from a Termite Gut-Associated Streptomyces Species
Authors: Christian A. Romero, Tanja Grkovic, John. R. J. French, D. İpek. Kurtböke, Ronald J. Quinn
Abstract:
A high-throughput and automated 1H NMR metabolic fingerprinting dereplication approach was used to accelerate the discovery of unknown bioactive secondary metabolites. The applied dereplication strategy accelerated the discovery of new natural products, provided rapid and competent identification and quantification of the known secondary metabolites and avoided time-consuming isolation procedures. The effectiveness of the technique was demonstrated by the isolation and elucidation of arglecins B (1), C (2) and actinofuranosin A (3) from a termite-gut associated Streptomyces sp. (USC 597) grown under solid state fermentation. The structures of these compounds were elucidated by extensive interpretation of 1H, 13C and 2D NMR spectroscopic data. These represent the first report of arglecin analogues isolated from a termite gut-associated Streptomyces species.
Keywords: Actinomycetes, actinofuranosin, antibiotics, arglecins, NMR spectroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 222References:
[1] Atanasov, A. G.; Zotchev, S. B.; Dirsch, V. M.; International Natural Product Sciences, T.; Supuran, C. T., Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug. Discov. 2021, 20 (3), 200-216.
[2] De Corte, B. L., Underexplored Opportunities for Natural Products in Drug Discovery. J. Med. Chem. 2016, 59 (20), 9295-304.
[3] Thomford, N. E.; Senthebane, D. A.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K., Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery. Int. J. Mol. Sci. 2018, 19 (6), 1-29.
[4] De Simeis, D.; Serra, S., Actinomycetes: A Never-Ending Source of Bioactive Compounds-An Overview on Antibiotics Production. Antibiotics (Basel). 2021, 10 (5), 1-32.
[5] Kurtböke, I., From Actinomycin onwards: Actinomycete success stories. Microbiol. Aust. 2012, 33 (3), 108-110.
[6] Sanglier, J. J.; Haag, H.; Huck, T. A.; Fehr, T., Novel bioactive compounds from Actinomycetes: a short review (1988-1992). Res. Microbiol. 1993, 144, 633-642.
[7] Waksman, S. A.; Woodruff, H. B., Bacteriostatic and bacteriocidal substances produced by soil actinomycetes. Proc. Soc. Exp. Biol. Med. 1940, 45, 609–614.
[8] Genilloud, O.; Gonzalez, I.; Salazar, O.; Martin, J.; Tormo, J. R.; Vicente, F., Current approaches to exploit actinomycetes as a source of novel natural products. J. Ind. Microbiol. Biotechnol. 2011, 38 (3), 375-389.
[9] Mast, Y.; Stegmann, E., Actinomycetes: The Antibiotics Producers. Antibiotics. 2019, 8 (3), 1-4.
[10] Nett, M.; Hertweck, C., Farinamycin, a quinazoline from Streptomyces griseus. J Nat Prod. 2011, 74 (10), 2265-8.
[11] Sidebottom, A. M.; Johnson, A. R.; Karty, J. A.; Trader, D. J.; Carlson, E. E., Integrated metabolomics approach facilitates discovery of an unpredicted natural product suite from Streptomyces coelicolor M145. ACS Chem. Biol. 2013, 8 (9), 2009-2016.
[12] Baltz, R. H., Antimicrobials from Actinomycetes: Back to the Future. Microbe. 2007, 2, 125-131.
[13] Baltz, R. H., Streptomyces and Saccharopolyspora hosts for heterologous expression of secondary metabolite gene clusters. J. Ind. Microbiol. Biotechnol. 2010, 37 (8), 759-772.
[14] Dias, D. A.; Urban, S.; Roessner, U., A historical overview of natural products in drug discovery. Metabolites. 2012, 2 (2), 303-36.
[15] Katz, L.; Baltz, R. H., Natural product discovery: past, present, and future. J. Ind. Microbiol. Biotechnol. 2016, 43 (2-3), 155-76.
[16] Kurtböke, D. I., Exploitation of phage battery in the search for bioactive actinomycetes. Appl. Microbiol. Biotechnol. 2011, 89 (4), 931-937.
[17] Kurtböke, D. I., Biodiscovery from rare actinomycetes: an eco-taxonomical perspective. Appl. Microbiol. Biotechnol. 2012, 93 (5), 1843-1852.
[18] Watve, M. G.; Tickoo, R.; Jog, M. M.; Bhole, B. D., How many antibiotics are produced by the genus Streptomyces? Arch. Microbiol. 2001, 176, 386-390.
[19] Harvey, A. L.; Edrada-Ebel, R.; Quinn, R. J., The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 2015, 14 (2), 111-129.
[20] Buedenbender, L.; Carroll, A. R.; Kurtböke, D. I., Integrated Approaches for Marine Actinomycete Biodiscovery. In Frontiers in Clinical Drug Research - Anti-Infectives, Rahman, A. U., Ed. Bentham eBooks United Arab Emirates, 2019; Vol. 5, pp 1-40.
[21] Buedenbender, L.; Carroll, A. R.; Kurtböke, D. İ., Detecting co-cultivation induced chemical diversity via 2D NMR fingerprints. Micobiol. Aust. 2019, 40 (4), 186-189.
[22] Buedenbender, L.; Habener, L. J.; Grkovic, T.; Kurtböke, D. I.; Duffy, S.; Avery, V. M.; Carroll, A. R., HSQC-TOCSY Fingerprinting for Prioritization of Polyketide- and Peptide-Producing Microbial Isolates. J. Nat. Prod. 2018, 81 (4), 957-965.
[23] Carr, G.; Poulsen, M.; Klassen, J. L.; Hou, Y.; Wyche, T. P.; Bugni, T. S.; Currie, C. R.; Clardy, J., Microtermolides A and B from termite-associated Streptomyces sp. and structural revision of vinylamycin. Org. Lett. 2012, 14, 2822-2825.
[24] Chen, H.; Chen, G.; Du, F.; Fu, Q.; Zhao, Y.; Tang, Z., DNA display for drug discovery. RSC Advances. 2013, 3 (37), 16251-16254.
[25] Ochi, K.; Hosaka, T., New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl. Microbiol. Biotechnol. 2013, 97 (1), 87-98.
[26] Kurtböke, D. I.; French, J. R.; Hayes, R. A.; Quinn, R. J., Eco-taxonomic insights into actinomycete symbionts of termites for discovery of novel bioactive compounds. In Advances in Biochemical Engineering/Biotechnology, Scheper, T.; Ulber, R., Eds. Springer: Switzerland, 2015; Vol. 147, pp 111-135.
[27] Kurtböke, D. I.; Okazaki, T.; Vobis, G., Actinobacteria in Marine Environments: From terrigenous origin to adapted functional diversity. Encycl. Mar. Biotechnol. 2020, 3, 1951-1978.
[28] Kurtböke, D. I., Bioactive Actinomycetes: Reaching Rarity Through Sound Understanding of Selective Culture and Molecular Diversity. In Microbial Resources. From Functional Excistence in Nature to Applications Kurtböke, I., Ed. Elsevier Inc.: London, 2017; pp 45-76. https://doi.org/10.1016/b978-0-12-804765-1.00003-5.
[29] Paulus, C.; Rebets, Y.; Tokovenko, B.; Nadmid, S.; Terekhova, L. P.; Myronovskyi, M.; Zotchev, S. B.; Ruckert, C.; Braig, S.; Zahler, S.; Kalinowski, J.; Luzhetskyy, A., New natural products identified by combined genomics-metabolomics profiling of marine Streptomyces sp. MP131-18. Sci. Rep. 2017, 7, 42382.
[30] Zotchev, S. B.; Sekurova, O. N.; Kurtböke, D. İ., Metagenomics of marine actinomycetes: from functional gene diversity to biodiscovery. In Marine OMICS. Principles and Applications, Kim, S.-K., Ed. CRC Press.: Boca Raton, 2016; pp 185-206.
[31] Kurtböke, D. I.; French, J. R., Use of phage battery to investigate the actinofloral layers of termite gut microflor. J. Appl. Microbiol. 2007, 103 (3), 722-734.
[32] MacDonald, J. C.; Bishop, G. G.; Mazurek, M., C and proton NMR spectra of 2(1H)pyrazinones. Tetrahedron. 1976, 32, 655-660.
[33] Hirano, K.; Kubota, T.; Tsuda, M.; Watanabe, K.; Fromont, J.; Kobayashi, J., Ma'edamines A and B, cytotoxic bromotyrosine alkaloids with a unique 2(1H)pyrazinone ring from sponge Suberea sp. Tetrahedron. 2000, 56, 8107-8110.
[34] Tatsuta, K.; Tsuchiya, T.; Someno, T.; Umezawa, S., Arglecin, a new microbial metabolite, isolation and chemical structure. J. Antibiot. 1971, 24, 735-746.
[35] Tatsuta, K.; Tsuchiya, T.; Umezawa, S., Revised structure for Arglecin. J. Antibiot. 1972, 25, 674-676.
[36] Umezawa, S.; Tatsuta, K.; Tsuchiya, T., The structure of arglecin, a new metabolite of Streptomyces. Tetrahedron Lett. 1971, 25, 259-262.
[37] Wright, A. E.; Pomponi, S. A.; Cross, S. S.; McCarthy, P., A New Bis(indo1e) alkaloid from a deep-water marine sponge of the genus Spongosorites. J. Org. Chem. 1992, 57, 4772-4775.
[38] Bubb, W. A., NMR spectroscopy in the study of carbohydrates: Characterizing the structural complexity. Concepts Magn. Reson. 2003, 19A (1), 1-19.
[39] Prochazkova, E.; Sala, M.; Nencka, R.; Dracinsky, M., C6-substituted purine derivatives: an experimental and theoretical 1H, 13C and 15N NMR study. Magn. Reson. Chem. 2012, 50 (3), 181-186.
[40] Standara, S.; Bouzkova, K.; Straka, M.; Zacharova, Z.; Hocek, M.; Marek, J.; Marek, R., Interpretation of substituent effects on 13C and 15N NMR chemical shifts in 6-substituted purines. Phys. Chem. Chem. Phys. 2011, 13 (35), 15854-64.
[41] Starck, S. R.; Qi, X.; Olsen, B. N.; Roberts, R. W., The puromycin route to assess stereo- and regiochemical constraints on peptide bond formation in eukaryotic ribosomes. J. Am. Chem. Soc. 2003, 125 (27), 8090-8091.
[42] (N,N-dimethyl-6-amino-9)-4-O-methyl-β-D-ribofuranoside, 0.02 mmol) in MeOH (10 mL) was treated with of HCl (0.25 mL, 0.2 N) and the resulting mixture was stirred for 50 min at 40°C and another hour at room temperature. Then the mixture was concentrated under reduced pressure to provide a colorless precipitate which after purification by silica gel chromatography (eluate; 20:1, v/v DCM/MeOH) gave 9.5 mg (0.03 mmol, 95% yield) of 8. Colourless amorphous solid; Mp 190°; LRESIMS m/z 310.14
[M+H]+; UV (MeOH) λmax (log ε): 216 (4.31).
[43] Liu, M.; Abdel-Mageed, W. M.; Ren, B.; He, W.; Huang, P.; Li, X.; Bolla, K.; Guo, H.; Chen, C.; Song, F.; Dai, H.; Quinn, R. J.; Grkovic, T.; Zhang, X.; X., L.; Zhang, L., Endophytic Streptomyces sp. Y3111 from traditional Chinese medicine produced antitubercular pluramycins. Appl. Microbiol. Biotechnol. 2013, 98, 1077-1085.
[44] Ji, Z.; Wei, S.; Zhang, J.; Wu, W.; Wang., M., Identification of Streptothricin Class Antibiotics in the Early-stage of Antibiotics Screening by Electrospray Ionization Mass Spectrometry. J. Antibiot. 2008, 61, 660-667.
[45] Goodfellow, M.; Fiedler, H. P., A guide to successful bioprospecting: informed by actinobacterial systematics. Antonie Van Leeuwenhoek. 2010, 98 (2), 119-142.
[46] Oh, D. C.; Poulsen, M.; Currie, C. R.; Clardy, J., Sceliphrolactam, a Polyene Macrocyclic Lactam from a Wasp-Associated Streptomyces sp. Org. Lett. 2011, 13, 752-755.
[47] Oh, D.-C.; Scott, J. J.; Currie, C. R.; Clardy, J., Mycangimycin, a Polyene Peroxide from a Mutualist Streptomyces sp. Org. Lett. 2009, 11, 633-636.
[48] Shin, B.; Ahn, S.; Noh, M.; Shin, J.; Oh, D. C., Suncheonosides A-D, Benzothioate Glycosides from a Marine-Derived Streptomyces sp. J. Nat. Prod. 2015, 78 (6), 1390-1396.
[49] Poulsen, M.; Oh, D. C.; Clardy, J.; Currie, C. R., Chemical analyses of wasp-associated streptomyces bacteria reveal a prolific potential for natural products discovery. PLoS One. 2011, 6 (2), e16763.
[50] Chen, M.; Chai, W.; Zhu, R.; Song, T.; Zhang, Z.; Lian, X.-Y., Streptopyrazinones A−D, rare metabolites from marine-derived Streptomyces sp. ZZ446. Tetrahedron. 2018, 74 (16), 2100-2106.
[51] Krishanti, N. P. R. A.; Zulfiana, D.; Wikantyoso, B.; Zulfitri, A.; Sulaeman, Y., Antimicrobial Production by an Actinomycetes Isolated from The Termite Nest. J. Trop. Life Sci. 2018, 8 (3), 279-288.
[52] Romero, C. A.; Grkovic, T.; Han, J.; Zhang, L.; French, J. R. J.; Kurtböke, D. I.; Quinn, R. J., NMR fingerprints, an integrated approach to uncover the unique components of the drug-like natural product metabolome of termite gut-associated Streptomyces species. RSC Advances. 2015, 5 (126), 104524-104534.
[53] Chenon, M. T.; Pugmire, R. J.; Grant, D. M.; Panzica, R. P.; Townsend, L. B., A basic set of parameters for the investigation of tautomerism in purines established from carbon-13 magnetic resonance studies using certain purines and pyrrolo
[2,3-d]pyrimidines. J. Am. Chem. Soc. 1975, 97, 4627-4636.
[54] Wu, R. T.; Okabe, T.; Namikoshi, M.; Okuda, S.; Nishimura, T.; Tanaka, N., Cadeguomycin, a novel nucleoside analog antibiotic. J. Antibiot. 1982, 35, 279-284.
[55] Davis, R. H.; Beattie, K. D.; Xu, M.; Yang, X.; Yin S.; Holla, H.; Healy, P. C.; Sykes, M.; Shelper, T.; Avery, V. M.; Elofsson, M.; Sundin, C.; Quinn, R. J., Solving the supply of resveratrol tetramers from Papua New Guinean rainforest anisoptera species that inhibit bacterial type III secretion systems. J. Nat. Prod. 2014, Dec 26, 77(12), 2633-2640, https://doi.org/10.1021/np500433z.
[56] Boyanova, L.; Gergova, G.; Nikolov, R.; Derejian, S.; Lazarova, E.; Katsarov, N.; Mitov, I.; Krastev, Z., Activity of Bulgarian propolis against 94 Helicobacter pylori strains in vitro by agar-well diffusion, agar dilution and disc diffusion methods. J. Med. Microbiol. 2005, 54 (Pt 5), 481-483.
[57] Nobakht, M.; Trueman, S. J.; Wallace, H. M.; Brooks, P. R.; Streeter, K. J.; Katouli, M., Antibacterial Properties of Flavonoids from Kino of the Eucalypt Tree, Corymbia torelliana. Plants (Basel). 2017, 6 (3).