Search results for: efficiency prediction.
1695 The Potential of ‘Comprehensive Assessment System for Built Environment Efficiency for Cities’ in Developing Country: Evidence of Myanmar
Authors: Theingi Shwe, Riken Homma, Kazuhisa Iki, Juko Ito
Abstract:
The growing cities of the developing country are characterized by rapid growth and poor infrastructure management inviting and accelerating relative environmental problems. Even though the movements of the sustainability had already been developed around the world, it is still increasing in the developing countries to plant sustainable practices. Aligned with the sustainable development actions, many sustainable assessment tools are also developed to rate and evaluate the sustainability performances through the building to community level. Among them, CASBEE is developed by Japanese organizations and is recognized as one of the international well-known assessment tools. The main purpose of the study is to find out the potential of CASBEE tool reflecting sustainability city level performances in developing countries. The research framework was designed with three major phases: Quantitative Approach, Qualitative Approach and Evaluation Reflection. The first two approaches were based on the investigation of tool’s contents and indicators by means of three sustainable dimensions and sustainability categories. To know the reality and reflection on developing country, Pathein City from Myanmar was selected and evaluated by 2012 version of CASBEE for Cities. The evaluation practices went through assigned indicators and the evaluation outcome presents the performances of Pathein city’s environmental efficiency as a very good in current conditions. The results of this study indicate that the indicators of this tool have balance coverage among three dimensions of sustainability but it has not yet counted enough for some indicators like location, infrastructure and institution which are relative to society dimension. In the developing countries’ cities, the most critical issues on development such as affordable housing and heritage preservation which are already planted in Pathein City but the tool does not account for those issues. Moreover, in some of the indicators, the benchmark and the weighting coefficient are strongly linked to the system birth region. By means of this study, it can be stated that CASBEE for Cities would be potential for delivering sustainable city level development in developing country especially in Myanmar along with further inclusion of the indicators.
Keywords: Assessment tool, CASBEE, developing country, Myanmar, Pathein city, sustainable development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11201694 Exploiting Two Intelligent Models to Predict Water Level: A Field Study of Urmia Lake, Iran
Authors: Shahab Kavehkar, Mohammad Ali Ghorbani, Valeriy Khokhlov, Afshin Ashrafzadeh, Sabereh Darbandi
Abstract:
Water level forecasting using records of past time series is of importance in water resources engineering and management. For example, water level affects groundwater tables in low-lying coastal areas, as well as hydrological regimes of some coastal rivers. Then, a reliable prediction of sea-level variations is required in coastal engineering and hydrologic studies. During the past two decades, the approaches based on the Genetic Programming (GP) and Artificial Neural Networks (ANN) were developed. In the present study, the GP is used to forecast daily water level variations for a set of time intervals using observed water levels. The measurements from a single tide gauge at Urmia Lake, Northwest Iran, were used to train and validate the GP approach for the period from January 1997 to July 2008. Statistics, the root mean square error and correlation coefficient, are used to verify model by comparing with a corresponding outputs from Artificial Neural Network model. The results show that both these artificial intelligence methodologies are satisfactory and can be considered as alternatives to the conventional harmonic analysis.
Keywords: Water-Level variation, forecasting, artificial neural networks, genetic programming, comparative analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23401693 A New Method for Rapid DNA Extraction from Artemia (Branchiopoda, Crustacea)
Authors: R. Manaffar, R. Maleki, S. Zare, N. Agh, S. Soltanian, B. Sehatnia, P. Sorgeloos, P. Bossier, G. Van Stappen
Abstract:
Artemia is one of the most conspicuous invertebrates associated with aquaculture. It can be considered as a model organism, offering numerous advantages for comprehensive and multidisciplinary studies using morphologic or molecular methods. Since DNA extraction is an important step of any molecular experiment, a new and a rapid method of DNA extraction from adult Artemia was described in this study. Besides, the efficiency of this technique was compared with two widely used alternative techniques, namely Chelex® 100 resin and SDS-chloroform methods. Data analysis revealed that the new method is the easiest and the most cost effective method among the other methods which allows a quick and efficient extraction of DNA from the adult animal.Keywords: APD, Artemia, DNA extraction, Molecularexperiments
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32001692 Dynamic Safety-Stock Calculation
Authors: Julian Becker, Wiebke Hartmann, Sebastian Bertsch, Johannes Nywlt, Matthias Schmidt
Abstract:
In order to ensure a high service level industrial enterprises have to maintain safety-stock that directly influences the economic efficiency at the same time. This paper analyses established mathematical methods to calculate safety-stock. Therefore, the performance measured in stock and service level is appraised and the limits of several methods are depicted. Afterwards, a new dynamic approach is presented to gain an extensive method to calculate safety-stock that also takes the knowledge of future volatility into account.
Keywords: Inventory dimensioning, material requirement planning, safety-stock calculation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 68841691 CACSC tool for Automatic Design of Robust Controllers for Hydropower Plants
Authors: Jose J.CarreñoZagarra, Rodolfo Villamizar Mejía
Abstract:
This work describes a CACSD tool for automatic design of robust controllers for hydraulic turbines. The tool calculates the optimal controller using the MATLAB hinfopt function and it serves as a practical and effective solution for the laborious task of designing a different controller for each type of turbine and generator, and different parameters and conditions of the plant. Results of the simulation of a generating unit subject to parameters variation show the accuracy and efficiency of the obtained robust controllers.Keywords: Robust Control, Hydroelectric System Turbine, Control H∞, CACSD
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15781690 Fourier Spectral Method for Analytic Continuation
Authors: Zhenyu Zhao, Lei You
Abstract:
The numerical analytic continuation of a function f(z) = f(x + iy) on a strip is discussed in this paper. The data are only given approximately on the real axis. The periodicity of given data is assumed. A truncated Fourier spectral method has been introduced to deal with the ill-posedness of the problem. The theoretic results show that the discrepancy principle can work well for this problem. Some numerical results are also given to show the efficiency of the method.
Keywords: Analytic continuation, ill-posed problem, regularization method Fourier spectral method, the discrepancy principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15111689 A New Image Psychovisual Coding Quality Measurement based Region of Interest
Authors: M. Nahid, A. Bajit, A. Tamtaoui, E. H. Bouyakhf
Abstract:
To model the human visual system (HVS) in the region of interest, we propose a new objective metric evaluation adapted to wavelet foveation-based image compression quality measurement, which exploits a foveation setup filter implementation technique in the DWT domain, based especially on the point and region of fixation of the human eye. This model is then used to predict the visible divergences between an original and compressed image with respect to this region field and yields an adapted and local measure error by removing all peripheral errors. The technique, which we call foveation wavelet visible difference prediction (FWVDP), is demonstrated on a number of noisy images all of which have the same local peak signal to noise ratio (PSNR), but visibly different errors. We show that the FWVDP reliably predicts the fixation areas of interest where error is masked, due to high image contrast, and the areas where the error is visible, due to low image contrast. The paper also suggests ways in which the FWVDP can be used to determine a visually optimal quantization strategy for foveation-based wavelet coefficients and to produce a quantitative local measure of image quality.
Keywords: Human Visual System, Image Quality, ImageCompression, foveation wavelet, region of interest ROI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15041688 Multi-Linear Regression Based Prediction of Mass Transfer by Multiple Plunging Jets
Abstract:
The paper aims to compare the performance of vertical and inclined multiple plunging jets and to model and predict their mass transfer capacity by multi-linear regression based approach. The multiple vertical plunging jets have jet impact angle of θ = 90O; whereas, multiple inclined plunging jets have jet impact angle of θ = 60O. The results of the study suggests that mass transfer is higher for multiple jets, and inclined multiple plunging jets have up to 1.6 times higher mass transfer than vertical multiple plunging jets under similar conditions. The derived relationship, based on multi-linear regression approach, has successfully predicted the volumetric mass transfer coefficient (KLa) from operational parameters of multiple plunging jets with a correlation coefficient of 0.973, root mean square error of 0.002 and coefficient of determination of 0.946. The results suggests that predicted overall mass transfer coefficient is in good agreement with actual experimental values; thereby, suggesting the utility of derived relationship based on multi-linear regression based approach and can be successfully employed in modeling mass transfer by multiple plunging jets.
Keywords: Mass transfer, multiple plunging jets, multi-linear regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22051687 Comparison of Artificial Neural Network and Multivariate Regression Methods in Prediction of Soil Cation Exchange Capacity
Authors: Ali Keshavarzi, Fereydoon Sarmadian
Abstract:
Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. Then, multivariate regression and neural network model (feedforward back propagation network) were employed to develop a pedotransfer function for predicting soil parameter using easily measurable characteristics of clay and organic carbon. The performance of the multivariate regression and neural network model was evaluated using a test data set. In order to evaluate the models, root mean square error (RMSE) was used. The value of RMSE and R2 derived by ANN model for CEC were 0.47 and 0.94 respectively, while these parameters for multivariate regression model were 0.65 and 0.88 respectively. Results showed that artificial neural network with seven neurons in hidden layer had better performance in predicting soil cation exchange capacity than multivariate regression.Keywords: Easily measurable characteristics, Feed-forwardback propagation, Pedotransfer functions, CEC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22231686 Neuro-Fuzzy System for Equalization Channel Distortion
Authors: Rahib H. Abiyev
Abstract:
In this paper the application of neuro-fuzzy system for equalization of channel distortion is considered. The structure and operation algorithm of neuro-fuzzy equalizer are described. The use of neuro-fuzzy equalizer in digital signal transmission allows to decrease training time of parameters and decrease the complexity of the network. The simulation of neuro-fuzzy equalizer is performed. The obtained result satisfies the efficiency of application of neurofuzzy technology in channel equalization.
Keywords: Neuro-fuzzy system, noise equalization, neuro-fuzzy equalizer, neural system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16351685 Performance Study of Neodymium Extraction by Carbon Nanotubes Assisted Emulsion Liquid Membrane Using Response Surface Methodology
Authors: Payman Davoodi-Nasab, Ahmad Rahbar-Kelishami, Jaber Safdari, Hossein Abolghasemi
Abstract:
The high purity rare earth elements (REEs) have been vastly used in the field of chemical engineering, metallurgy, nuclear energy, optical, magnetic, luminescence and laser materials, superconductors, ceramics, alloys, catalysts, and etc. Neodymium is one of the most abundant rare earths. By development of a neodymium–iron–boron (Nd–Fe–B) permanent magnet, the importance of neodymium has dramatically increased. Solvent extraction processes have many operational limitations such as large inventory of extractants, loss of solvent due to the organic solubility in aqueous solutions, volatilization of diluents, etc. One of the promising methods of liquid membrane processes is emulsion liquid membrane (ELM) which offers an alternative method to the solvent extraction processes. In this work, a study on Nd extraction through multi-walled carbon nanotubes (MWCNTs) assisted ELM using response surface methodology (RSM) has been performed. The ELM composed of diisooctylphosphinic acid (CYANEX 272) as carrier, MWCNTs as nanoparticles, Span-85 (sorbitan triooleate) as surfactant, kerosene as organic diluent and nitric acid as internal phase. The effects of important operating variables namely, surfactant concentration, MWCNTs concentration, and treatment ratio were investigated. Results were optimized using a central composite design (CCD) and a regression model for extraction percentage was developed. The 3D response surfaces of Nd(III) extraction efficiency were achieved and significance of three important variables and their interactions on the Nd extraction efficiency were found out. Results indicated that introducing the MWCNTs to the ELM process led to increasing the Nd extraction due to higher stability of membrane and mass transfer enhancement. MWCNTs concentration of 407 ppm, Span-85 concentration of 2.1 (%v/v) and treatment ratio of 10 were achieved as the optimum conditions. At the optimum condition, the extraction of Nd(III) reached the maximum of 99.03%.Keywords: Emulsion liquid membrane, extraction of neodymium, multi-walled carbon nanotubes, response surface method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12621684 Haar wavelet Method for Solving Initial and Boundary Value Problems of Bratu-type
Authors: S.G.Venkatesh, S.K.Ayyaswamy, G.Hariharan
Abstract:
In this paper, we present a framework to determine Haar solutions of Bratu-type equations that are widely applicable in fuel ignition of the combustion theory and heat transfer. The method is proposed by applying Haar series for the highest derivatives and integrate the series. Several examples are given to confirm the efficiency and the accuracy of the proposed algorithm. The results show that the proposed way is quite reasonable when compared to exact solution.
Keywords: Haar wavelet method, Bratu's problem, boundary value problems, initial value problems, adomain decomposition method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29741683 A Theoretical Analysis for Modeling and Prediction of the Jet Engine Emissions
Authors: Jamal S. Yassin
Abstract:
This paper is to formulate a mathematical model to predict the amounts of the emissions produced from the combustion process of the gas turbine unit of the jet engine. These emissions have bad impacts on the environment if they are out of standards, which cause real threats to all type of life on the earth. The amounts of the emissions from the gas turbine engine are functions to many operational and design factors. In landing-takeoff (LTO) these amounts are not the same as in taxi or cruise of the plane using jet engines, because of the difference in the activity period during these operating modes. These emissions can be affected by several physical and chemical variables, such as fuel type, fuel to air ratio or equivalence ratio, flame temperature, combustion pressure, in addition to some inlet conditions such as ambient temperature and air humidity. To study the influence of these variables on the amounts of these emissions during the combustion process in the gas turbine unit, a computer program has been developed by using the visual basic 6 software. Here, the analysis of the combustion process is carried out by considering it as a chemical reaction with shifting equilibrium to find the products of the combustion of the octane fuel, at different equivalence ratios, compressor pressure ratios (CPR) and combustion temperatures. The results obtained have shown that there is noticeable influence of the equivalence ratio, CPR, and the combustion temperature on the amounts of the main emissions which are considered pollutants, such as CO, CO2 and NO.
Keywords: Mathematical model, gas turbine unit, equivalence ratio, emissions, shifting equilibrium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7441682 An Investigation on Vegetable Oils as Potential Insulating Liquid
Authors: C. Kocatepe, E. Taslak, C. F. Kumru, O. Arıkan
Abstract:
While choosing insulating oil, characteristic features such as thermal cooling, endurance, efficiency and being environment-friendly should be considered. Mineral oils are referred as petroleum-based oil. In this study, vegetable oils investigated as an alternative insulating liquid to mineral oil. Dissipation factor, breakdown voltage, relative dielectric constant and resistivity changes with the frequency and voltage of mineral, rapeseed and nut oils were measured. Experimental studies were performed according to ASTM D924 and IEC 60156 standards.Keywords: Breakdown voltage, dielectric dissipation factor, mineral oil, vegetable oils.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26021681 An Incomplete Factorization Preconditioner for LMS Adaptive Filter
Authors: Shazia Javed, Noor Atinah Ahmad
Abstract:
In this paper an efficient incomplete factorization preconditioner is proposed for the Least Mean Squares (LMS) adaptive filter. The proposed preconditioner is approximated from a priori knowledge of the factors of input correlation matrix with an incomplete strategy, motivated by the sparsity patter of the upper triangular factor in the QRD-RLS algorithm. The convergence properties of IPLMS algorithm are comparable with those of transform domain LMS(TDLMS) algorithm. Simulation results show efficiency and robustness of the proposed algorithm with reduced computational complexity.
Keywords: Autocorrelation matrix, Cholesky's factor, eigenvalue spread, Markov input.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17981680 Initializing K-Means using Genetic Algorithms
Authors: Bashar Al-Shboul, Sung-Hyon Myaeng
Abstract:
K-Means (KM) is considered one of the major algorithms widely used in clustering. However, it still has some problems, and one of them is in its initialization step where it is normally done randomly. Another problem for KM is that it converges to local minima. Genetic algorithms are one of the evolutionary algorithms inspired from nature and utilized in the field of clustering. In this paper, we propose two algorithms to solve the initialization problem, Genetic Algorithm Initializes KM (GAIK) and KM Initializes Genetic Algorithm (KIGA). To show the effectiveness and efficiency of our algorithms, a comparative study was done among GAIK, KIGA, Genetic-based Clustering Algorithm (GCA), and FCM [19].Keywords: Clustering, Genetic Algorithms, K-means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21121679 Forecasting Optimal Production Program Using Profitability Optimization by Genetic Algorithm and Neural Network
Authors: Galal H. Senussi, Muamar Benisa, Sanja Vasin
Abstract:
In our business field today, one of the most important issues for any enterprises is cost minimization and profit maximization. Second issue is how to develop a strong and capable model that is able to give us desired forecasting of these two issues. Many researches deal with these issues using different methods. In this study, we developed a model for multi-criteria production program optimization, integrated with Artificial Neural Network.
The prediction of the production cost and profit per unit of a product, dealing with two obverse functions at same time can be extremely difficult, especially if there is a great amount of conflict information about production parameters.
Feed-Forward Neural Networks are suitable for generalization, which means that the network will generate a proper output as a result to input it has never seen. Therefore, with small set of examples the network will adjust its weight coefficients so the input will generate a proper output.
This essential characteristic is of the most important abilities enabling this network to be used in variety of problems spreading from engineering to finance etc.
From our results as we will see later, Feed-Forward Neural Networks has a strong ability and capability to map inputs into desired outputs.
Keywords: Project profitability, multi-objective optimization, genetic algorithm, Pareto set, Neural Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20611678 Energy Detection Based Sensing and Primary User Traffic Classification for Cognitive Radio
Authors: Urvee B. Trivedi, U. D. Dalal
Abstract:
As wireless communication services grow quickly; the seriousness of spectrum utilization has been on the rise gradually. An emerging technology, cognitive radio has come out to solve today’s spectrum scarcity problem. To support the spectrum reuse functionality, secondary users are required to sense the radio frequency environment, and once the primary users are found to be active, the secondary users are required to vacate the channel within a certain amount of time. Therefore, spectrum sensing is of significant importance. Once sensing is done, different prediction rules apply to classify the traffic pattern of primary user. Primary user follows two types of traffic patterns: periodic and stochastic ON-OFF patterns. A cognitive radio can learn the patterns in different channels over time. Two types of classification methods are discussed in this paper, by considering edge detection and by using autocorrelation function. Edge detection method has a high accuracy but it cannot tolerate sensing errors. Autocorrelation-based classification is applicable in the real environment as it can tolerate some amount of sensing errors.Keywords: Cognitive radio (CR), probability of detection (PD), probability of false alarm (PF), primary User (PU), secondary user (SU), Fast Fourier transform (FFT), signal to noise ratio (SNR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14771677 Certain Data Dimension Reduction Techniques for application with ANN based MCS for Study of High Energy Shower
Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta
Abstract:
Cosmic showers, from their places of origin in space, after entering earth generate secondary particles called Extensive Air Shower (EAS). Detection and analysis of EAS and similar High Energy Particle Showers involve a plethora of experimental setups with certain constraints for which soft-computational tools like Artificial Neural Network (ANN)s can be adopted. The optimality of ANN classifiers can be enhanced further by the use of Multiple Classifier System (MCS) and certain data - dimension reduction techniques. This work describes the performance of certain data dimension reduction techniques like Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Self Organizing Map (SOM) approximators for application with an MCS formed using Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN). The data inputs are obtained from an array of detectors placed in a circular arrangement resembling a practical detector grid which have a higher dimension and greater correlation among themselves. The PCA, ICA and SOM blocks reduce the correlation and generate a form suitable for real time practical applications for prediction of primary energy and location of EAS from density values captured using detectors in a circular grid.Keywords: EAS, Shower, Core, ANN, Location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16141676 Evaluation of a Remanufacturing for Lithium Ion Batteries from Electric Cars
Authors: Achim Kampker, Heiner H. Heimes, Mathias Ordung, Christoph Lienemann, Ansgar Hollah, Nemanja Sarovic
Abstract:
Electric cars with their fast innovation cycles and their disruptive character offer a high degree of freedom regarding innovative design for remanufacturing. Remanufacturing increases not only the resource but also the economic efficiency by a prolonged product life time. The reduced power train wear of electric cars combined with high manufacturing costs for batteries allow new business models and even second life applications. Modular and intermountable designed battery packs enable the replacement of defective or outdated battery cells, allow additional cost savings and a prolongation of life time. This paper discusses opportunities for future remanufacturing value chains of electric cars and their battery components and how to address their potentials with elaborate designs. Based on a brief overview of implemented remanufacturing structures in different industries, opportunities of transferability are evaluated. In addition to an analysis of current and upcoming challenges, promising perspectives for a sustainable electric car circular economy enabled by design for remanufacturing are deduced. Two mathematical models describe the feasibility of pursuing a circular economy of lithium ion batteries and evaluate remanufacturing in terms of sustainability and economic efficiency. Taking into consideration not only labor and material cost but also capital costs for equipment and factory facilities to support the remanufacturing process, cost benefit analysis prognosticate that a remanufacturing battery can be produced more cost-efficiently. The ecological benefits were calculated on a broad database from different research projects which focus on the recycling, the second use and the assembly of lithium ion batteries. The results of this calculations show a significant improvement by remanufacturing in all relevant factors especially in the consumption of resources and greenhouse warming potential. Exemplarily suitable design guidelines for future remanufacturing lithium ion batteries, which consider modularity, interfaces and disassembly, are used to illustrate the findings. For one guideline, potential cost improvements were calculated and upcoming challenges are pointed out.
Keywords: Circular economy, electric mobility, lithium ion batteries, remanufacturing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 54041675 Comparison between XGBoost, LightGBM and CatBoost Using a Home Credit Dataset
Authors: Essam Al Daoud
Abstract:
Gradient boosting methods have been proven to be a very important strategy. Many successful machine learning solutions were developed using the XGBoost and its derivatives. The aim of this study is to investigate and compare the efficiency of three gradient methods. Home credit dataset is used in this work which contains 219 features and 356251 records. However, new features are generated and several techniques are used to rank and select the best features. The implementation indicates that the LightGBM is faster and more accurate than CatBoost and XGBoost using variant number of features and records.
Keywords: Gradient boosting, XGBoost, LightGBM, CatBoost, home credit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 94961674 On the Efficiency of Five Step Approximation Method for the Solution of General Third Order Ordinary Differential Equations
Authors: N. M. Kamoh, M. C. Soomiyol
Abstract:
In this work, a five step continuous method for the solution of third order ordinary differential equations was developed in block form using collocation and interpolation techniques of the shifted Legendre polynomial basis function. The method was found to be zero-stable, consistent and convergent. The application of the method in solving third order initial value problem of ordinary differential equations revealed that the method compared favorably with existing methods.
Keywords: Shifted Legendre polynomials, third order block method, discrete method, convergent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6741673 Big Bang – Big Crunch Optimization Method in Optimum Design of Complex Composite Laminates
Authors: Pavel Y. Tabakov
Abstract:
An accurate optimal design of laminated composite structures may present considerable difficulties due to the complexity and multi-modality of the functional design space. The Big Bang – Big Crunch (BB-BC) optimization method is a relatively new technique and has already proved to be a valuable tool for structural optimization. In the present study the exceptional efficiency of the method is demonstrated by an example of the lay-up optimization of multilayered anisotropic cylinders based on a three-dimensional elasticity solution. It is shown that, due to its simplicity and speed, the BB-BC is much more efficient for this class of problems when compared to the genetic algorithms.Keywords: Big Bang – Big Crunch method, optimization, composite laminates, pressure vessel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22651672 Strict Stability of Fuzzy Differential Equations by Lyapunov Functions
Authors: Mustafa Bayram Gücen, Coşkun Yakar
Abstract:
In this study, we have investigated the strict stability of fuzzy differential systems and we compare the classical notion of strict stability criteria of ordinary differential equations and the notion of strict stability of fuzzy differential systems. In addition that, we present definitions of stability and strict stability of fuzzy differential equations and also we have some theorems and comparison results. Strict Stability is a different stability definition and this stability type can give us an information about the rate of decay of the solutions. Lyapunov’s second method is a standard technique used in the study of the qualitative behavior of fuzzy differential systems along with a comparison result that allows the prediction of behavior of a fuzzy differential system when the behavior of the null solution of a fuzzy comparison system is known. This method is a usefull for investigating strict stability of fuzzy systems. First of all, we present definitions and necessary background material. Secondly, we discuss and compare the differences between the classical notion of stability and the recent notion of strict stability. And then, we have a comparison result in which the stability properties of the null solution of the comparison system imply the corresponding stability properties of the fuzzy differential system. Consequently, we give the strict stability results and a comparison theorem. We have used Lyapunov second method and we have proved a comparison result with scalar differential equations.Keywords: Fuzzy systems, fuzzy differential equations, fuzzy stability, strict stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11431671 Enhancement of Shape Description and Representation by Slope
Authors: Ali Salem Bin Samma, Rosalina Abdul Salam
Abstract:
Representation and description of object shapes by the slopes of their contours or borders are proposed. The idea is to capture the essence of the features that make it easier for a shape to be stored, transmitted, compared and recognized. These features must be independent of translation, rotation and scaling of the shape. A approach is proposed to obtain high performance, efficiency and to merge the boundaries into sequence of straight line segments with the fewest possible segments. Evaluation on the performance of the proposed method is based on its comparison with established method of object shape description.Keywords: Shape description, Shape representation and Slope.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14631670 Behavioral Mapping and Post-Occupancy Evaluation of Meeting-Point Design in an International Airport
Authors: Meng-Cong Zheng, Yu-Sheng Chen
Abstract:
The meeting behavior is a pervasive kind of interaction, which often occurs between the passenger and the shuttle. However, the meeting point set up at the Taoyuan International Airport is too far from the entry-exit, often causing passengers to stop searching near the entry-exit. When the number of people waiting for the rush hour increases, it often results in chaos in the waiting area. This study tried to find out what is the key factor to promote the rapid finding of each other between the passengers and the pick-ups. Then we implemented several design proposals to improve the meeting behavior of passengers and pick-ups based on behavior mapping and post-occupancy evaluation to enhance their meeting efficiency in unfamiliar environments. The research base is the reception hall of the second terminal of Taoyuan International Airport. Behavioral observation and mapping are implemented on the entry of inbound passengers into the welcome space, including the crowd distribution of the people who rely on the separation wall in the waiting area, the behavior of meeting and the interaction between the inbound passengers and the pick-ups. Then we redesign the space planning and signage design based on post-occupancy evaluation to verify the effectiveness of space plan and signage design. This study found that passengers ignore existing meeting-point designs which are placed on distant pillars at both ends. The position of the screen affects the area where the receiver is stranded, causing the pick-ups to block the passenger's moving line. The pick-ups prefer to wait where it is easy to watch incoming passengers and where it is closest to the mode of transport they take when leaving. Large visitors tend to gather next to landmarks, and smaller groups have a wide waiting area in the lobby. The location of the meeting point chosen by the pick-ups is related to the view of the incoming passenger. Finally, this study proposes an improved design of the meeting point, setting the traffic information in it, so that most passengers can see the traffic information when they enter the country. At the same time, we also redesigned the pick-ups desk to improve the efficiency of passenger meeting.
Keywords: Meeting point design, post-occupancy evaluation, behavioral mapping, international airport.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10411669 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data
Authors: Ruchika Malhotra, Megha Khanna
Abstract:
The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.Keywords: Change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15241668 A Hybrid DEA Model for the Measurement of the Enviromental Performance
Authors: A. Hadi-Vencheh, N. Shayesteh Moghadam
Abstract:
Data envelopment analysis (DEA) has gained great popularity in environmental performance measurement because it can provide a synthetic standardized environmental performance index when pollutants are suitably incorporated into the traditional DEA framework. Since some of the environmental performance indicators cannot be controlled by companies managers, it is necessary to develop the model in a way that it could be applied when discretionary and/or non-discretionary factors were involved. In this paper, we present a semi-radial DEA approach to measuring environmental performance, which consists of non-discretionary factors. The model, then, has been applied on a real case.
Keywords: Environmental performance, efficiency, non-discretionary variables, data envelopment analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13851667 A Codebook-based Redundancy Suppression Mechanism with Lifetime Prediction in Cluster-based WSN
Authors: Huan Chen, Bo-Chao Cheng, Chih-Chuan Cheng, Yi-Geng Chen, Yu Ling Chou
Abstract:
Wireless Sensor Network (WSN) comprises of sensor nodes which are designed to sense the environment, transmit sensed data back to the base station via multi-hop routing to reconstruct physical phenomena. Since physical phenomena exists significant overlaps between temporal redundancy and spatial redundancy, it is necessary to use Redundancy Suppression Algorithms (RSA) for sensor node to lower energy consumption by reducing the transmission of redundancy. A conventional algorithm of RSAs is threshold-based RSA, which sets threshold to suppress redundant data. Although many temporal and spatial RSAs are proposed, temporal-spatial RSA are seldom to be proposed because it is difficult to determine when to utilize temporal or spatial RSAs. In this paper, we proposed a novel temporal-spatial redundancy suppression algorithm, Codebookbase Redundancy Suppression Mechanism (CRSM). CRSM adopts vector quantization to generate a codebook, which is easily used to implement temporal-spatial RSA. CRSM not only achieves power saving and reliability for WSN, but also provides the predictability of network lifetime. Simulation result shows that the network lifetime of CRSM outperforms at least 23% of that of other RSAs.Keywords: Redundancy Suppression Algorithm (RSA), Threshold-based RSA, Temporal RSA, Spatial RSA and Codebookbase Redundancy Suppression Mechanism (CRSM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14451666 The Projection Methods for Computing the Pseudospectra of Large Scale Matrices
Authors: Zhengsheng Wang, Xiangyong Ji, Yong Du
Abstract:
The projection methods, usually viewed as the methods for computing eigenvalues, can also be used to estimate pseudospectra. This paper proposes a kind of projection methods for computing the pseudospectra of large scale matrices, including orthogonalization projection method and oblique projection method respectively. This possibility may be of practical importance in applications involving large scale highly nonnormal matrices. Numerical algorithms are given and some numerical experiments illustrate the efficiency of the new algorithms.Keywords: Pseudospectra, eigenvalue, projection method, Arnoldi, IOM(q)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1333