
 
 

 

  
Abstract—In this work, a five step continuous method for the 

solution of third order ordinary differential equations was developed 
in block form using collocation and interpolation techniques of the 
shifted Legendre polynomial basis function. The method was found 
to be zero-stable, consistent and convergent. The application of the 
method in solving third order initial value problem of ordinary 
differential equations revealed that the method compared favorably 
with existing methods. 

 
Keywords—Shifted Legendre polynomials, third order block 

method, discrete method, convergent.  

I. INTRODUCTION 

IFFERENTIAL equations are mathematical equations 
that involve one or several variables of an unknown 

function that relate the function and its derivatives. These 
equations play very important role in engineering, physics, 
economics and many other disciplines. Differential equations 
arise in many areas of social, science and technology. 
Differential equations can predict the world around us; it 
describes the population growth of animals (Malthusian Law 
of populatpion growth) or the change in investment return 
over time [16] 

Differential equations are studied for several reasons. It is 
mostly found in the field of medicine for modeling cancer 
growth and in the spread of diseases, the movement of 
electricity in engineering and the modeling of chemical 
reactions in chemistry. Other areas that ODEs play very 
important roles are economics in finding optimum investment 
strategies and describing the motion of waves, pendulums or 
chaotic systems in physics. It is also used in physics in 
Newton's second law of motion and the law of cooling, in 
Hooke's law for modeling the motion of a spring or in 
representing models for population growth and money flow or 
circulation. Only the simplest differential equations are readily 
solvable by explicit formulas. If an explicit formula for 
the solution is not available, the solution may be approximated 
numerically (see [16] and [17]). 

While many numerical methods have been developed to 
determine the solution of initial value problems of ordinary 
differential equations with a given degree of accuracy by 
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different researchers, [13] introduced a new derivation of 
continuous multistep method using power series as basis 
function. A continuous implicit hybrid one-step method for the 
solution of second order ordinary differential equations was 
investigated using power series as basis function by [1]. A 
family of implicit uniformly accurate order block integrators 
for the solution of second order differential equations using 
power series as basis function was investigated in [2]. 
Reference [9] constructed numerical solution of third order 
ordinary differential equations using a seven-step block 
method. A robust optimal order formula for direct integration 
of second order orbital problems was developed by [14]. 
Collocation techniques were employed in this work to derive 
the block discrete formulae which shall be used in a block-
mode to solve third order initial value problems of ordinary 
differential equations directly without the need of starting 
values as discussed by researchers such as [1], [2], [8], [10] 
[13]. Similarly, work on third order methods were investigated 
using the block approach by many researchers. Reference [4] 
developed a class of hybrid collocation methods for third order 
of ordinary differential equations. Reference [7] used linear 
multistep method for the numerical integration of third order 
boundary value problems. Reference [5] introduced some 
multi-derivative hybrid block methods for the solution of 
general third order ordinary differential equations. A four-
point fully implicit method for the numerical integration of 
third-order ordinary differential equations was developed in 
[3]. Reference [15] investigated the approximate solution with 
continuous coefficients for solving third order ordinary 
differential equations. There is therefore the need to develop a 
method which is self-starting thereby eliminating the use of 
predictors with better accuracy and efficiency. This paper 
seeks to present a block method which is based on the idea of 
multistep collocation using the shifted Legendre polynomials 
as basis function for the direct solution of third order initial 
value problems of ordinary differential equations. 

II. DERIVATION OF THE METHOD 

Consider the initial value problems of ordinary differential 
equations of the third order of the form; 

 

𝑦 ′′′ 𝑥 𝑓 𝑥, 𝑦 𝑥 , 𝑦 ′ 𝑥 , 𝑦 ′′ 𝑥 , 𝑦 0 𝛼 , 𝑦 ′ 0 𝛼  , 𝑦 ′′ 0

𝛼 (1) 
 
The idea here is to approximate the exact solution 𝑦 𝑥  of 
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(1) in the partition 𝐼 : 𝑎  𝑥 𝑥 𝑥 ⋯ 𝑥   𝑏 of 
the integration interval 𝑎, 𝑏  with a constant step size 
ℎ 𝑥 𝑥 , 𝑛 0,1,2, … , 𝑁, 𝑁ℎ 𝑏 given by a shifted 
Legendre polynomial of the form 

 

𝑦 𝑥 ∑ 𝑐 𝑃 𝑡    (2) 
 
where 𝑐 ∈ ℝ, 𝑦𝜖𝐶 𝑎, 𝑏 , 𝑚 and 𝑠 are interpolation and 
collocation points respectively. 

The third derivative of (2) gives 
 

𝑦 𝑥 ∑ 𝑐 𝑃 𝑡      (3) 
 

Substituting (3) into (1) gives a differential system of the 
form 

 

𝑦 𝑥 ∑ 𝑐 𝑃 𝑡  𝑓 𝑥, 𝑦 𝑥 , 𝑦 𝑥 , 𝑦 𝑥  (4) 
 

The interpolation and collocation equations (2) and (4) are 
evaluated at 𝑥 , 𝑟 0,1 and 𝑘 1 and 𝑥 , 𝑟 0 1 𝑘 
respectively to give a system of algebraic equations of the 
form 

 
𝑨𝑿 𝑩     (5) 

 
where 
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Solving (5) for   𝑐 ′𝑠,  𝑖 0 1 𝑚 𝑠 1 by inverse of a 

matrix method and substituting the result into (2) produce a 
continuous implicit method of the form 
 

𝑦 𝑥 ∑ 𝛼 𝑥 𝑦 ℎ ∑ 𝛽 𝑥 𝑓 𝑥 , 𝑦  (6) 
 
where 𝛼 𝑥  and 𝛽 𝑥  are coefficients to be determined. 

Evaluating (6) at the non-interpolation points and its first and 
second derivatives evaluated at the points 𝑥 , 𝑟 0 1 𝑘 
give the block discrete scheme of the form 
 

𝐴 𝑤 𝐵 𝑞 ℎ 𝐷 𝐹   (7) 
 

where 𝐴 , 𝐵  and 𝐷 are square matrices 
 
𝑤 𝑦 , … , 𝑦 , ℎ𝑈 , … , ℎ𝑈 , ℎ 𝑉 , … , ℎ 𝑉  

 
𝑞 𝑦 , ℎ𝑈 , ℎ 𝑉 , 𝐹 𝑓 , 𝑓 , 𝑓 , … , 𝑓  

Specification of the Method 

Considering 𝑘 5, the interpolation of (2) at 𝑥 , 𝑟 0, 
1, 4 and collocating (4) at 𝑥 , 𝑟 0, 1, 2, 3, 4, 5 and solving 
for the 𝑐 ′𝑠 and substituting in (2), leads to the continuous 
linear multistep method of the form  

 

𝑦 𝑥 ∑ 𝛼 𝑡 𝑦 ℎ ∑ 𝛽 𝑡 𝑓   (8) 
 
where 
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    (9) 

 
Evaluating (9) at 𝑥 , 𝑟 2, 3,5 and its first and second 

derivatives evaluated at 𝑥 , 𝑟 0, 1, 2, 3, 4, 5, the following 
block discrete scheme is obtained 
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Note: 𝑈 𝑦 𝑥  and 𝑉 𝑦 𝑥 , 𝑟 0, 1, 2, 3, 4, 5. 

III. ANALYSIS OF THE METHOD 

Order and Error Constant 

Expanding the block method (10) in Taylor’s series and 
collecting like terms in powers of ℎ, we obtain the following: 

 

𝐶 𝐶 𝐶 ⋯ 𝐶 𝐶  0,0,0,0,0 , 

𝐶 , , , , . 

 
Hence the block discrete scheme has order 𝜌 6 with error 

constant 𝐶 , , , , . 
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Consistency 

Following [6] the block discrete scheme is consistent since 
it has order 𝜌 6 1. 

 Zero Stability 

The block method (10) is said to be zero stable if the roots 
𝑧 ;  𝑟 1, … , 𝑛 of the first characteristic polynomial 𝑝 𝑧 , 
defined by 𝑝 𝑧 𝑑𝑒𝑡|𝑧𝑄 𝑇| satisfy |𝑧 | 1 and every 
root with |𝑧 | 1 has multiplicity not exceeding three in the 
limit as ℎ → 0 

From the block method (10), substituting for Q and T in 
𝑝 𝑧 𝑑𝑒𝑡|𝑧𝑄 𝑇| leads to 

 
𝑧 2𝑧 𝑧 0 

𝑧 0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,1, 1  
 

This shows that the block method is zero stable since all 
roots with modulus one do not have multiplicity exceeding the 
order of the differential equation in the limit as ℎ → 0 

Convergence 

The block method is convergent since it is both consistent 
and zero stable following [6]. 

IV. NUMERICAL ILLUSTRATIONS AND RESULTS 

To achieve the validity, the accuracy and support the 
theoretical discussion of the proposed method; the 
computations associated with the examples are performed 
using MAPLE 18. Furthermore, the performance of the 
method is tested on some examples in the literature. The 
developed block method is used in evaluating each of the test 
problems to determine its performance. For each example, 
absolute errors of the approximate solutions are compared 
with existing methods.  
Example 1. Consider the differential equation problem of the 
third order given by  
 
𝑦 𝑥 𝑒 , 𝑦 0 3, 𝑦 0 1, 𝑦 0 5, 0 𝑥 1, ℎ 0.1 
 

Exact solution 𝑦 𝑥 2 2𝑥 𝑒 , the results are shown in 
Table I. 
Example 2. Consider the differential equation of the third 
order given by 
 

𝑦 𝑥 𝑦, 𝑦 0 1, 𝑦 0 1, 𝑦 0 1, 0 𝑥 1, ℎ
0.1  

 
Exact solution 𝑦 𝑥 𝑒 , the results are shown in Table II. 

Example 3. Consider the differential equation of the third 
order given by 
 

𝑦 𝑥 3S𝑖𝑛𝑥,𝑦 0 1, 𝑦 0 0, 𝑦 0 2, ℎ 0.1  
 

Exact solution 𝑦 𝑥 3𝑐𝑜𝑠𝑥 2, the results are shown 

in Table III. 
 
 
 

TABLE I 
COMPARING PROPOSED RESULTS WITH [18] 

𝑥 Exact solution Result of Proposed 
Method  

Error in 
Proposed 
Method 

𝐾 5, 𝑃 6

Error in [18] 
𝐾 7, 𝑃 9

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

3.12517091807565 
3.30140275816017 
3.52985880757600 
3.81182469764127 
4.14872127070013 
4.54211880039051 
4.99375270747048 
5.50554092849247 
6.07960311115695 
6.71828182845905 

3.12517091807901 
3.30140275818176 
3.52985880762931 
3.81182469774112 
4.14872127085997 
4.54211880064155 
4.99375270786647 
5.50554092908497 
6.07960311199962 
6.71828182960333 

3.36 10  
2.16 10  
5.33 10  
9.99 10  
1.60 10  
2.51 10  
3.96 10  
5.93 10  
8.27 10  
1.14 10

0 
2.84 10  
1.67 10  
3.00 10  
3.18 10  
9.19 10  
8.95 10  
1.92 10  
2.11 10  
4.94 10

 
TABLE II 

COMPARING PROPOSED RESULTS WITH [11] 
𝑥 Exact solution Result of Proposed 

Method  
Error in 

Proposed 
Method 
𝑃 6

Error in [11], 
𝑃 9 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.904837418035960 
0.818730753077982 
0.740818220681718 
0.670320046035639 
0.606530659712633 
0.548811636094026 
0.496585303791410 
0.449328964117222 
0.406569659740599 
0.367879441171442

0.904837418033781 
0.818730753064047 
0.740818220647252 
0.670320045971130 
0.606530659609410 
0.548811635935252 
0.496585303553820 
0.449328963778233 
0.406569659277454 
0.367879440562268 

2.18 10
1.39 10
3.45 10
6.45 10
1.03 10
1.59 10
2.38 10
3.39 10
4.63 10
6.09 10

2.18 10
1.39 10
3.44 10
6.45 10
1.03 10
1.50 10
2.05 10
2.68 10
6.94 10
1.42 10

 
TABLE III 

COMPARING PROPOSED RESULTS WITH [12] 
𝑥 Exact solution Result of Proposed 

Method 
Error in 

Proposed 
Method 
P 6 

Error in 
[12], P 7 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0

0.990012495834077 
0.96019973352373 

0.911009467376818 
0.843182982008655 
0.757747685671118 
0.656006844729035 
0.539526561853465 
0.410120128041496 
0.269829904811994 
0.120906917604419

0.9900124958323234 
0.960199733512464 

0.9110094673490696 
0.8431829819566858 
0.757747685587981 

0.6560068445948196 
0.5395265616278406 
0.4101201276862894 
0.2698299042869376 
0.1209069168714127 

1.75 10
1.13 10
2.77 10
5.20 10
8.31 10
1.34 10
2.26 10
3.55 10
5.25 10
7.33 10

3.41 10
1.24 10
1.77 10
4.09 10
3.71 10
7.10 10
7.47 10
1.96 10
3.89 10
6.40 10

V. DISCUSSION OF RESULTS 

In this work, a block method of order six is developed for 
the direct solution of general third order ordinary differential 
equations. The method was found to be consistent, zero stable 
and convergent. Furthermore, the results obtained revealed 
that the proposed method compares favorably with some 
existing methods despite its low order and step number.  
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