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Abstract—The development of change prediction models can
help the software practitioners in planning testing and inspection
resources at early phases of software development. However, a major
challenge faced during the training process of any classification
model is the imbalanced nature of the software quality data. A data
with very few minority outcome categories leads to inefficient
learning process and a classification model developed from the
imbalanced data generally does not predict these minority categories
correctly. Thus, for a given dataset, a minority of classes may be
change prone whereas a majority of classes may be non-change
prone. This study explores various alternatives for adeptly handling
the imbalanced software quality data using different sampling
methods and effective MetaCost learners. The study also analyzes
and justifies the use of different performance metrics while dealing
with the imbalanced data. In order to empirically validate different
alternatives, the study uses change data from three application
packages of open-source Android data set and evaluates the
performance of six different machine learning techniques. The results
of the study indicate extensive improvement in the performance of
the classification models when using resampling method and robust
performance measures.

Keywords—Change proneness, empirical validation, imbalanced
learning, machine learning techniques, object-oriented metrics.

[LINTRODUCTION

VER the years, a number of studies have established the

capability of software quality classification models for
improving software quality by identifying change-prone and
fault-prone modules or classes [1]-[3]. The prediction models
learn from historical software quality data and software
metrics capturing various constructs (such as coupling,
cohesion) are used for developing these models. Various
machine learning (ML) techniques are used for developing the
metric models. In binary prediction models, the outcome
variable (or predictor variable) has two categories. For
example, the classes in an object-oriented (OO) system can
either belong to change-prone category or to non-change
prone category. Software practitioners can benefit from the
prediction models by using them for effectively planning
testing and inspection resources.
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A number of previous studies have confirmed that software
quality data follows the Pareto principle, which states that
majority of changes or defects in a software (80%) actually
originate from very few classes or modules (20%) [3]. Thus,
there are very few change prone or defective classes leading to
imbalanced and skewed data. Learning from such imbalanced
data is problematic as there are very few instances to
effectively train the model, which identifies the property of
interest (change prone classes in our case). Thus, the classifier
may produce high predictive capability but exhibits extremely
poor performance for the minority class [4]. Such models are
of no use in practical scenarios.

Although a number of ML techniques have been used in
literature for developing software quality models, they may
not be effective due to three possible reasons (1) the
techniques are generally based on optimizing “accuracy”
measure, to which the minority instances contribute little (2)
the techniques assume similar class distribution of training and
testing data, which may not be the case and (3) the techniques
assume uniform costs for all types of misclassification errors,
however one type of error may be more critical than the other
in order to balance learning [5]. Thus, researchers and
practitioners need ways to effectively deal with imbalanced
learning problem (ILP) so that the actual performance of
software quality prediction models is reflected. Hence, this
paper explores the following research questions (RQs): (1)
What is the performance of ML techniques for ILP using
different sampling methods? (2) Are ML MetaCost learners
efficient for developing models using imbalanced data? (3)
Which performance metrics should be evaluated for and while
dealing with ILP? In order to answer the above RQs, we
perform an empirical evaluation on data sets obtained from
three application packages of Android operating system
software to assess the performance of six ML techniques for
predicting change prone nature of classes using OO metrics.
The study uses two sampling methods (resampling and
SMOTE) along with a robust class of MetaCost learners for
dealing with ILP. Also, in order to evaluate the performance
of the developed learners, we validate the results of the models
using three stable performance metrics. Furthermore, the use
of these performance metrics is justified by comparing it with
other commonly used performance metrics i.e. “accuracy” and
“recall”.

The organization of the various sections of the study is as
follows: Section II states the related work and Section III
discusses the ILP in detail, Section IV describes various
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methods used in the study for handling ILP and Section V
discusses the performance metrics. Section VI provides the
research methodology and Section VII discusses and analyzes
the results. Finally, Section VIII provides the conclusion of the
study.

ILRELATED WORK

He and Garcia analyzed the nature of ILP and presented a
brief review of various state-of-the-art methods for dealing
with imbalanced data sets [6]. A study by Weiss discusses in
detail the problems of mining rare classes and suggests
methods such as cost sensitive learning, sampling etc. to
handle them efficiently [7].

According to Zhang and Li, ILP has varied effects on
different learning techniques due to unstable effects on the
bias and variance elements of errors [8]. Thus, a number of
studies in literature have evaluated different sampling
techniques for improving software fault prediction models [9]-
[12]. Seliya and Khosgoftaar analyzed various cost sensitive
learning techniques for handling ILP [13]. Various literature
studies analyzed the use of both cost-sensitive and sampling
methods and compared these approaches with ensemble
learning for ILP [14], [15]. Certain other studies explored the
use of feature selection and sampling techniques for learning
through imbalanced data sets [16], [17].

Certain studies analyze and recommend the use of various
performance metrics for effectively handling imbalanced data
sets [18]. Tan et al. compared the performance of resampling
techniques and updateable classification on imbalanced data
sets for change classification [19].

To the best of author’s knowledge, apart from [19], no
study has evaluated the effect of imbalanced learning on
change classification models. Moreover, [19] does not
evaluate the use of MetaCost learners for change prediction.
Also, in this study we use stable performance metrics for
evaluating the change prediction models, as compared to the
use of traditional performance evaluators like precision and
recall by many studies in the literature.

III.THE IMBALANCE DATA PROBLEM

Efficient handling of imbalanced data sets for developing
effective software quality models is critical. An imbalanced
data is one that under-represents a specific class with very few
examples. This paper deals with two-class imbalance problem,
where the minority class is the more important one.

The importance of efficiently handling ILP in the context of
software quality can be understood with the help of an
example. Consider an OO software quality data set with 1000
instances, where each instance is a collection of OO metrics
and indicates whether a class is change prone or not. The
objective is to develop a model with high balanced degree of
accurate predictions for both change-prone and not change
prone classes. Correct identification of change prone classes is
crucial as these classes are “weak areas” of a software product.
However, the data set is skewed with only 10% of change
prone classes and the rest non-change prone in nature
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(Pareto’s Principle). Thus, developing a model using a
standard classifier may provide high accuracy, but the
accuracy achieved is biased towards the majority (non-change
prone) class and the rate of misclassification would be much
higher for change-prone instances. Thus, the developed
models would exhibit highly accurate predictions (close to
100%) for the non-change prone classes but for change prone
classes it would only be 0-10% [6]. This would mean that only
10 out of 100 change-prone classes would be correctly
predicted for the software quality data set (assuming 10%
accuracy for change-prone classes). This is highly disastrous
as incorrectly recognizing a change prone class as not change
prone would lead to losses and poor quality software product
as classes that require more resources and attention would be
deprived of it. Similarly, predicting not change prone classes
as change prone would lead to wastage of resources. Thus, we
need minimize both type of misclassification errors in order to
establish an effective software quality model. A product with
high misclassification of change prone classes would be very
expensive and has higher probability of budget and schedule
overruns as implementation of changes and defects in later
phases of a software life cycle is very expensive. An
organization which cannot deliver projects on time and within
budget gets a bad reputation leading to considerable losses.
Moreover, the maintenance effort for such products would be
huge as they may be developed with lower quality standards to
remain within budget and time restrictions. Thus, it is
important for researchers and software quality practitioners to
focus their attention on effectively learning from imbalanced
data.

IV.METHODS FOR HANDLING ILP

This section briefly describes the various methods used in
the study for effectively handling the ILP. We deal with ILP
using two alternatives: (1) Over-Sampling Methods (2) Meta-
cost Classifiers.

A. Over-Sampling Methods

An over-sampling approach is the one that oversamples the
minority class in order to increase the examples representing
the minority class. SMOTE (Synthetic Minority Over-
Sampling Technique) method involves over-sampling by
creation of “synthetic” examples [20]. In order to over-sample
a minority class, k-nearest neighbors are randomly chosen
(k=5 in our case). Next, neighbors are selected depending on
the amount of over-sampling i.e. 300% over-sampling means
three out of five nearest neighbors are chosen and one
synthetic sample is created in the direction of each chosen
sample. In order to generate the synthetic sample, first the
difference between the chosen sample and the nearest
neighbor is computed. Next, the difference is multiplied by a
random number between 0 and 1 and added to the sample
under consideration. These type of generated synthetic
samples generalize the decision region of the minority class
[20].

The resample technique is used to create a number of
random subsamples of the data by using the sampling
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technique with or without replacement [21]. This study uses
this technique to bias the actual class distribution and produce
a uniform class distribution by oversampling the minority
class with replacement.

B. MetaCost Classifiers

As discussed previously, it is important to balance both
types of misclassification errors. In order to do so, we
associate  different costs with different types of
misclassification errors. MetaCost is a procedure for cost-
sensitizing a base classification technique by using another
procedure around it which minimizes cost. A misclassification
cost is represented by C(m,n), where C is the cost of
misclassifying a class ‘m’ instance as belonging to class ‘n’. A
MetaCost classifier uses Bayes optimal prediction which is
used to minimize the conditional risk (R(m]|x)), which is also
termed as the expected cost of predicting that an instance ‘x’
belongs to class ‘m’, as shown in (1). Here, P(n|x) is the
probability that a given instance ‘X’ belongs to class ‘n’. This
implies that the instance space ‘X’ can be partitioned into ‘n’
regions. These partitions are such that class ‘n’ is the least-cost
(optimal) prediction in region ‘n’ [22].

ROnlx)= Y P(r] 2)C(m| ) 1)
n

The MetaCost procedure appropriately modifies the class
labels of the instances of the training data, such that they are
representative of their optimal class. In order to do so,
MetaCost uses an ensemble of ‘k’ classifiers (a variation of
Breiman’s Bagging with replacement) for learning, and then
assigns the class labels to each instance depending on the
number of votes it receives or using the probability estimates
of ‘k> models (k=10). Thus, a new class label is assigned to
each instance depending upon two things: the cost ratio and
the estimated probability. This new relabeled training set is
used by a base classification technique to develop a cost-
sensitive prediction model [13], [22].

TABLE1
CONFUSION MATRIX

Predicted Positive Predicted Negative
Actual Positive  True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

V.PERFORMANCE METRICS FOR ILP

This study uses two “traditional” performance metrics
namely “accuracy” and “recall”. Apart from these
performance indicators, a number of literature studies have
advocated the use G-mean, Area under the Receiver Operating
Characteristic (ROC) Curve and Balance for imbalanced data
[6], [15]. We first present a confusion matrix for a two-class
problem in Table I. In this study positives are change prone
classes and negatives are not change prone classes. A brief
description of all the performance measures is given in Table
1.
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TABLE I
DESCRIPTION OF PERFORMANCE METRICS
Performance Descrintion
Metric 'pti
It is defined as the percentage of correct predictions.
Accuracy TP +TN 100
TP + FP+ FN + TN
It is defined as the percentage of correctly predicted
Recall positives amongst actual positives.
(PD) " 0
TP +FN
It is defined as the percentage of correctly predicted
negatives amongst actual negatives.
Specificity
w__, 100
FP +TN
It represents high accuracy for both positive as well as
negative prediction.
G-mean P, IN
TP + FP TN +FN
ROC is defined as a plot between recall values on the
Area Under ) : o . .
the ROC vertical axis and 1-specificity values on the horizontal axis.
The higher the area under the ROC curve, the better
Curve (AUC) . .
performing model it is.
It represents the Euclidean distance between a specific pair
of (PD., Probability of False Alarm (PF)) to the optimum
value of PD =1 and PF =0. PF is the percentage of
incorrectly predicted positives amongst actual negatives.
Balance (O—(PF 00 2+(1—(P7O >
1- 100)) 100)) where
2
PF = L *100
FP+TN
VI.RESEARCH METHODOLOGY
This section briefly describes the dependent and

independent variables, data collection procedure, description
of datasets and the various techniques used in the study.

A. Independent and Dependent Variables

This study uses eighteen OO metrics, which illustrate
characteristics of an OO software product such as size,
cohesion, coupling, etc. These metrics include two commonly
used metrics i.e. Chidamber and Kemerer (CK) metric suite
[23] and QMOOD metric suite. The CK metric suite includes
Weighted Methods of a Class (WMC), Lack of Cohesion in
Methods (LCOM), Coupling Between Objects (CBO),
Number of Children (NOC), Depth of Inheritance Tree (DIT),
and Response for a Class (RFC) metrics. The QMOOD metric
suite includes Measure of Aggression (MOA), Data Access
Metric (DAM), Method of Functional Abstraction (MFA),
Cohesion Among Methods of a Class (CAM) and Number of
Public Methods (NPM) metrics. Other OO metrics used were
Average Method Complexity (AMC), Coupling Between
Methods of a Class (CBM), Inheritance Coupling (IC),
LCOMS3, Lines of Code (LCO), Afferent Coupling (Ca) and
Efferent Coupling (Ce).

The dependent variable used in the study is change-
proneness attribute of a class. An OO class is change prone if
it is likely to change after the software has been released and
goes into operational phase [1]. The variable is binary in
nature and has two values i.e. “yes” if a specific class is
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change prone in nature or “no” if the class is not change prone.
Change is evaluated in terms of LOC added, deleted or
modified in a class.

B. Data Collection Procedure and Data Description

The data sets used in the study are collected with the aid of
Defect Collection and Reporting System (DCRS) tool [24].
The students of Delhi technological University, India
developed the tool. It enables collection of data from software
repositories, which use GIT for version controlling. It
evaluates the source code of two versions of a software by
extracting change logs. Each data point of a data set consists
of eighteen independent variables along with change statistics.
A binary variable “ALTER” represents the change prone or
non-change prone nature of a class.

This study analyzes the source code of three application
packages of Android operating system, which is a popular
operating system for mobile devices. The source code for the
Android system can be downloaded from
http://android.googlesource.com. The details of the three
android application packages used in the study are given in
Table III. It shows the name, versions analyzed, number of
data points and the skew ratio of each data set. The skew ratio
is defined as the ration of not change prone classes to change
prone classes. It should be noted that we analyzed only the
Java source code files, ignoring the other media and layout
files. Further, we removed all the outliers in each data set
using Inter-quartile range filter of the WEKA tool. In order to
reduce the independent variables by eliminating noisy and
redundant variables, we use Correlation based Feature
Selection (CFS) method [25]. After application of the CFS
method, the CBO and Ce metrics were found highly correlated
to change for Calendar data set. The WMC, RFC, LOC and
CAM metrics were extracted for Bluetooth data set and the
LCOM3, LOC, DAM, MOA, CAM and AMC metrics for the
MMS data set.

TABLE III
DATA SET DESCRIPTION
Application Package Versions No. of Data Points Skew Ratio
Calendar 43.1-442 106 4.88
Bluetooth 43.1-442 72 4.90
MMS 237-402 195 2.68

C. Experimental Settings and Techniques

The study evaluates six different ML techniques namely
Multilayer Perceptron (MLP), Random Forests (RF), Naive
Bayes (NB), Adaboost (AB), LogitBoost (LB) and Bagging
(BG) [21]. We use the default parameter settings for each
technique in the WEKA tool. We develop ten-fold cross
validation models ten times using each technique and state the
average of ten runs.

In order to effectively validate the results of SMOTE
technique we used SMOTE with 100%, 200%, 300%, 400%
and 500% oversampling. However, due to space constraints
we only discuss the results of SMOTE with 100%, 400% and
500% oversampling. For the MetaCost learners, we do not
assign any cost to correct predictions i.e. TPs and TNs.
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However, we penalize the FPs and FNs. As it is more
important to predict change prone classes correctly, we
penalize the FNs, i.e. the cost of FN is higher than the cost of
FP. This will increase the recall values as the model will
predict low FNs as they are associated with higher costs. A
cost ratio (CR) is defined as the Cost of FN/Cost of FP. This
study analyzes three different CRs that are 5, 10 and 15.

VII.ANALYSIS AND RESULTS

This section analyzes and states the results of all the six ML
techniques using different methods for handling ILP using the
three data sets of the study. Tables IV-VI state the average of
all the performance metrics for the ten iterations. Each table
states the results of the original technique i.e. without any
method to encounter ILP, the results of technique with
SMOTE i.e. with 100%, 400% and 500% oversampling
(SM100, SM400, SM500), with resampling and with
MetaCost classification. Tables IV-VI state the results of three
CRs i.e. 5, 10 and 15 for MetaCost classification (MCS5,
MC10, MC15). The metric values for certain cases are “Not
Defined” and are depicted by ND in the tables as the formula
for these values turned out to be divided by zero. The results
show that the value of AUC, recall, G-Mean and balance
increased in most of the cases after application of a method for
handling ILP. However, the results of accuracy measure
generally declined with the use of any method for handling
ILP. We present a description and comparative analysis of all
the results while answering the RQs of the study.

RQ1: What is the performance of ML techniques for ILP
using different sampling methods?

The performance of various ML techniques improved
significantly using different sampling methods. Figs. 1-3
depict the percentage improvement of the performance of
various ML techniques in terms of AUC and Balance measure
for all the three data sets used in the study. The figures
represent the percentage improvement of AUC (bars) and the
percentage improvement of balance (lines). The percentage
improvement is a result of comparing the performance metrics
of the “original” technique with the performance metrics
achieved after using sampling methods. It may be noted from
the figures that the best results were achieved by the
resampling method in majority of the cases. The SMOTE
method also performed well in almost all cases. The results of
SMOTE 400 were best when compared with other SMOTE
variations in Calendar and Bluetooth data sets. However, the
SMOTE 500 method gave optimum results for MMS data set.
These variations in results are due to variation in skewness of
the data sets. A researcher should evaluate different
combinations of SMOTE, to achieve a balance between both
the majority and minority classes.

RQ2: Are MetaCost learners efficient for developing
models using imbalanced data?

MetaCost learners improve the efficiency of the predicted
models for ILP. Since these techniques take into account the
varying misclassification costs, they are sensitive to class
distributions and the models are developed in such a way that
the total cost is minimized. In order to ascertain the
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effectiveness of the MetaCost learners on imbalanced data sets
Figs. 4-6 depict the percentage improvement in terms of AUC
in all the three data sets respectively (represented by bars in
the figure). Again, the percentage improvement is calculated
by comparing the AUC of the original technique with AUC of
the techniques using different MetaCost learners. The figures
also depict the total cost of the developed model (represented
by lines). The total cost for a corresponding model is
calculated by adding the misclassification costs of FP and FN
prediction as in (2). The figures show positive improvement in
terms of AUC with the application of MetaCost learners.
However, the Calendar and Bluetooth data sets performed
most effectively with CR=5, but the MMS data sets achieved
best results with CR=10. This could be due to difference in
skew ratios of the data sets.

Total Cost = Cost of FN *FN + Cost of FP *FP @)

RQ3: Which performance metrics should be evaluated for
and while dealing with ILP?

It can be seen that the results of the accuracy measure
decreased in most of the cases after using any method for
handling ILP. This is because accuracy is not termed as a good
performance metric for imbalanced data sets [6], [17], [26].
The results of accuracy measure using the “original” technique
are highly optimistic. They only take into account the high
number of not change prone (majority class) classes predicted
correctly. The percentage of correctly predicted change prone
classes is very low. This can be seen from the recall values.
The values of recall performance metric increased after
application of any method for handling ILP. However, in this
case recall is biased towards the “minority” class.

TABLE IV
AVERAGE RESULTS OF CALENDAR DATA SET
Technique Performance Metrics Original ~ SM100 SM400 SM500 Resample MC5 MC10 MCI5
Accuracy 85.00 74.36 56.55 51.89 71.85 73.00 16.00 17.00
Recall 17.65 17.65 3529 51.96 56.73 29.41 88.24 100
MLP G-Mean 0.80 0.75 0.58 0.52 0.73 0.46 0.23 ND
AUC 0.53 0.49 0.63 0.56 0.74 0.54 0.41 0.41
Balance 41.76 41.74 51.74 51.88 66.36 48.48 29.65 29.29
Accuracy 83.00 76.07 73.21 76.76 80.3 68.00 33.00 31.00
Recall 5.88 29.41 60.00 67.65 72.61 41.18 70.59 82.35
RF G-Mean 0.65 0.74 0.75 0.78 0.81 0.46 0.36 0.39
AUC 0.61 0.69 0.80 0.82 0.84 0.52 0.44 0.47
Balance 33.44 49.97 70.20 75.59 75.97 5438 43.23 42.40
Accuracy 81.00 72.65 57.74 55.14 62.745 73.00 64.00 34.00
Recall 29.41 29.41 30.59 30.39 38.69 29.41 47.06 70.59
NB G-Mean 0.59 0.65 0.61 0.60 0.64 0.46 0.44 0.37
AUC 0.58 0.60 0.56 0.56 0.64 0.62 0.60 0.54
Balance 49.73 49.62 49.87 49.73 54.36 48.48 56.06 44.02
Accuracy 85.00 74.36 55.95 56.22 74.10 82.00 17.00 16.00
Recall 17.65 17.65 40.00 78.43 61.30 41.18 94.12 94.12
AB G-Mean 0.80 0.75 0.57 0.55 0.76 0.64 0.28 0.00
AUC 0.43 0.54 0.57 0.61 0.78 0.66 0.44 0.47
Balance 41.76 41.74 53.27 47.47 68.798 57.85 30.02 29.17
Accuracy 85.00 53.73 70.83 74.59 78.10 78.00 25.00 18.00
Recall 17.65 17.65 58.82 67.65 65.00 41.18 88.24 94.12
LB G-Mean 0.80 0.59 0.72 0.75 0.81 0.57 0.38 0.33
AUC 0.49 0.64 0.69 0.76 0.82 0.61 0.43 0.46
Balance 41.76 41.41 68.54 74.2 71.749 57.17 37.25 30.87
Accuracy 83.00 75.21 74.40 69.73 77.00 74.00 17.00 17.00
Recall 17.65 17.65 62.35 68.63 65.21 29.41 100.00 100
BG G-Mean 0.65 0.79 0.76 0.69 0.78 0.47 ND ND
AUC 0.54 0.65 0.76 0.79 0.81 0.56 0.50 0.50
Balance 41.71 41.76 71.78 69.83 72.351 48.68 29.29 29.29

A good prediction model should achieve an optimum
balance between recall as well as specificity values, and both
these values should be as high as possible. Domination of any
of “recall” or “specificity” values leads to an inappropriate
model and wastage of resources or higher loses. Though, the
value of G-mean decreased in some cases after application of
certain methods for handling ILP, but it provides an accurate
measure for evaluating the performance of a classifier on
imbalanced data set. This is because it is based on the correct
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predictive accuracy of both the classes i.e. minority as well as
majority class. Thus, a high G-mean value indicates a
balanced model, which maximizes the correct predictions of
both the classes. However, if a model is prejudiced towards a
specific class (minority or majority), we are bound to obtain a
low G-mean values [11]. Similarly, ROC analysis is effective
for evaluating models developed on imbalanced data sets [18].
It is insensitive to data distribution and does not assume any
specific cost of misclassification or previous class
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probabilities [9], [16]. Since AUC obtained from ROC
analysis provides a trade-off between recall and specificity
values, it is effective for evaluation of a classifier’s
performance over different threshold values [12], [17]. It
provides a visual comparative analysis and is considered a
stable performance measure for evaluating ILP. Recently, the
use of balance performance metric has been advocated for ILP

[12]. Tt is an effective indicator as it measures the Euclidean
distance from the optimum point on the ROC curve of the
actual (PF, PD) values. Thus, it is an appropriate measure for
ILP.

A comparison of resampling techniques and the MetaCost
learners using the AUC performance metric reveals that the
resampling technique gives better results.

TABLE V
AVERAGE RESULTS OF BLUETOOTH DATA SET
Technique Performance Metrics Original SM100  SM400 SMS500 Resample MC5 MCI10 MCI15
Accuracy 83.08 81.58 81.65 82.50 88.86 75.38 64.62 56.92
Recall 27.27 68.18 89.09 89.39 8321 72.73 81.82 81.82
MLP G-Mean 0.66 0.77 0.82 0.83 0.89 0.59 0.53 0.49
AUC 0.79 0.85 0.88 0.89 0.88 0.81 0.82 0.81
Balance 48.42 75.71 80.11 80.19 86.61 74.28 69.64 63.61
Accuracy 78.46 77.63 82.57 81.67 96.62 81.54 64.06 63.08
Recall 27.27 54.55 83.64 83.33 98.27 72.73 80.00 81.82
RF G-Mean 0.53 0.72 0.83 0.81 0.96 0.66 0.51 0.52
AUC 0.70 0.81 0.88 0.88 0.97 0.78 0.76 0.79
Balance 47.98 66.58 82.53 81.39 96.38 774 69.08 68.45
Accuracy 83.08 81.58 78.90 83.05 86.62 84.62 78.46 76.92
Recall 36.36 54.55 7091 80.30 72.01 72.73 72.73 72.73
NB G-Mean 0.66 0.79 0.79 0.83 0.89 0.71 0.63 0.61
AUC 0.85 0.88 0.90 0.89 091 0.87 0.86 0.87
Balance 54.70 67.43 77.48 83.13 80.17 78.65 75.93 75.12
Accuracy 75.38 80.26 78.90 79.17 92.92 76.92 69.23 67.69
Recall 9.09 72.73 80.00 84.85 91.72 72.73 72.73 72.73
AB G-Mean 0.34 0.75 0.79 0.79 0.93 0.61 0.54 0.53
AUC 0.66 0.80 0.83 0.87 0.94 0.76 0.70 0.74
Balance 35.24 77.4 78.86 77.63 92.42 75.12 70.55 69.55
Accuracy 78.46 80.26 86.24 85.00 96.61 73.85 72.31 63.08
Recall 27.27 59.09 85.45 87.88 97.58 81.82 72.73 72.73
LB G-Mean 0.53 0.76 0.86 0.85 0.96 0.59 0.57 0.50
AUC 0.67 0.84 0.91 0.89 0.96 0.78 0.73 0.76
Balance 4798 70.02 86.22 84.35 96.49 76.52 72.47 66.41
Accuracy 83.08 82.89 80.73 81.67 84.55 76.92 66.15 61.54
Recall 9.09 68.18 78.18 83.33 86.55 72.73 81.82 81.82
BG G-Mean 0.65 0.79 0.81 0.81 0.84 0.61 0.54 0.51
AUC 0.77 0.79 0.88 0.87 0.94 0.77 0.78 0.73
Balance 35.70 76.17 80.59 81.39 82.53 75.12 70.83 67.25
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Fig. 1 AUC & Balance Improvement for Calendar using Sampling
Methods
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Fig. 2 AUC & Balance Improvement for Bluetooth using Sampling
Methods
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Fig. 3 AUC & Balance Improvement for MMS using Sampling
Methods

#CR=5 ' (R=10 »CR=15

160 60
140 S
Lo ¥ v
2 100 = 0 <
3 ¥ [
$9 1 0§
=
4 3
203
20 °
0 4 E
MLP RF NB AB LB BG -

ML Techniques

Fig. 4 Total Cost & AUC Improvement for Calendar using MetaCost

BCR=5 OCR=10 nCR=I5

60 0
$
9 14 15 *
240 B 0z
4] s
=3 5 8
Zn 1 o, 0
10 5z
g
0 10 £
MLP RF NB AB LB BG =

ML Techniques

Fig. 5 Total Cost & AUC Improvement for Bluetooth using MetaCost

International Scholarly and Scientific Research & Innovation 10(4) 2016

BCR=5 (R=10 nCR=15
200 100 _
80
150 Fy
: “
0 “
= 100 S
3 0 £
0 3
0 4 £
MLP RF NB AB LB BG a

ML Techniques

Fig. 6 Total Cost & AUC Improvement for MMS using MetaCost

VIII.CONCLUSIONS AND FUTURE WORK

The goal of this study was to evaluate different methods for
handling ILP on change data of three Android data sets. The
study evaluated two oversampling techniques (SMOTE and
Resample) and MetaCost learners with three different cost
ratios using six ML techniques for developing change
prediction models using OO metrics. The main contributions
of the study include advocating the use of different methods
for handling ILP and ascertaining their effectiveness by
estimating the improvement in the performance of ML
techniques using these methods. Furthermore, the study
provides a comprehensive evaluation of the developed models
using effective performance metrics. The conclusions of the
study are summarized as follows:

e The use of oversampling methods is an effective way of
dealing with ILP as considerable improvement is seen in
the performance of different ML techniques by their use.
The results of the study support the use of resample
method for learning on imbalanced data sets. The
SMOTE method also provided competent results.
However, a researcher should adjust the percentage of
over sampling using SMOTE to obtain optimum results,
depending upon the skewness of a data set.

e The MetaCost learners are competent and economical
methods for handling ILP as their use leads to substantial
improvement in a model’s performance. Moreover, their
capability to perform cost-sensitive classifications results
in better models at optimum costs. However, we strongly
recommend that a researcher should explore different cost
ratios as an important parameter while model
development. The cost as well as model’s performance
should be evaluated while choosing a specific cost ratio
parameter setting.

e The study supports the use of stable performance metrics

such as ROC analysis, G-mean and Balance for evaluating

models developed using imbalanced data. These
performance metrics overcome the weakness of
traditional metrics like accuracy and recall. They

effectively estimate the model’s performance without
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biasing the results due to presence of a majority class. The
resampling technique gave better results than the
MetaCost learners using the ROC analysis.

Thus, researchers and practitioners can use the results of the

study to develop effective models with optimum associated
costs for change prediction using imbalanced data sets. In

(1

[2]

B3]

[4]

[3]

[6]
[7
[8]

future, we plan to replicate our study using evolutionary
techniques such as genetic algorithms to ascertain their
performance using these methods for ILP. Furthermore, we
plan to use other software data sets from different domains
and programming language environments.

TABLE VI
AVERAGE RESULTS OF MMS DATA SET

Technique Performance Metrics Original ~ SM100

SM400 SMS00  Resample MC5 MCI10 MCI5

Accuracy 75.72 74.55 80.89 86.03 88.95 75.72 61.27 58.38

Recall 44.68 68.09 89.79 93.62 93.71 44.68 95.74 93.62

MLP G-Mean 0.68 0.74 0.80 0.85 0.89 0.68 0.63 0.61
AUC 0.53 0.49 0.83 0.88 0.91 0.54 0.70 0.71

Balance 59.87 73.13 73.73 77.65 87.88 59.87 63.40 61.02

Accuracy 71.68 79.09 88.37 89.95 95.78 71.68 63.01 60.12

Recall 40.43 77.66 95.74 95.74 97.09 40.43 93.62 93.62

RF G-Mean 0.61 0.79 0.89 0.90 0.96 0.61 0.63 0.62
AUC 0.61 0.69 0.91 0.92 0.98 0.51 0.78 0.73

Balance 56.26 78.87 81.79 83.45 95.31 56.26 65.47 62.69

Accuracy 70.52 72.73 77.84 78.19 78.27 66.67 65.32 65.32

Recall 70.21 78.72 84.26 83.69 86.62 57.89 82.98 85.11

NB G-Mean 0.64 0.73 0.75 0.74 0.79 0.61 0.62 0.63
AUC 0.58 0.60 0.81 0.82 0.82 0.62 0.78 0.78

Balance 70.42 72.98 73.42 73.25 76.73 63.70 68.43 68.45

Accuracy 69.94 73.18 82.27 85.05 80.29 69.94 91.30 58.96

Recall 51.06 85.11 95.74 96.10 90.93 51.06 91.49 95.74

AB G-Mean 0.61 0.74 0.84 0.86 0.81 0.61 0.91 0.62
AUC 0.43 0.54 0.86 0.89 0.87 0.66 0.79 0.79

Balance 61.76 72.64 69.55 71.80 77.66 61.76 91.33 61.16

Accuracy 73.99 77.27 81.99 85.05 84.45 73.99 61.27 55.49

Recall 38.30 84.04 92.34 95.39 88.72 38.30 91.49 93.62

LB G-Mean 0.65 0.77 0.82 0.85 0.85 0.65 0.62 0.59
AUC 0.49 0.64 0.88 0.89 0.92 0.61 0.79 0.77

Balance 55.46 77.35 73.07 72.87 83.72 55.46 64.14 5823

Accuracy 78.61 7127 85.04 87.75 89.71 78.61 61.85 57.23

Recall 40.43 74.47 94.47 96.10 92.32 40.43 93.62 95.74

BG G-Mean 0.74 0.77 0.86 0.88 0.90 0.74 0.63 0.61
AUC 0.54 0.65 0.89 0.90 0.96 0.56 0.71 0.72

Balance 57.57 76.79 76.66 77.94 89.29 57.57 64.36 59.48
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