Search results for: improved envelope spectrum
236 2D Validation of a High-order Adaptive Cartesian-grid finite-volume Characteristic- flux Model with Embedded Boundaries
Authors: C. Leroy, G. Oger, D. Le Touzé, B. Alessandrini
Abstract:
A Finite Volume method based on Characteristic Fluxes for compressible fluids is developed. An explicit cell-centered resolution is adopted, where second and third order accuracy is provided by using two different MUSCL schemes with Minmod, Sweby or Superbee limiters for the hyperbolic part. Few different times integrator is used and be describe in this paper. Resolution is performed on a generic unstructured Cartesian grid, where solid boundaries are handled by a Cut-Cell method. Interfaces are explicitely advected in a non-diffusive way, ensuring local mass conservation. An improved cell cutting has been developed to handle boundaries of arbitrary geometrical complexity. Instead of using a polygon clipping algorithm, we use the Voxel traversal algorithm coupled with a local floodfill scanline to intersect 2D or 3D boundary surface meshes with the fixed Cartesian grid. Small cells stability problem near the boundaries is solved using a fully conservative merging method. Inflow and outflow conditions are also implemented in the model. The solver is validated on 2D academic test cases, such as the flow past a cylinder. The latter test cases are performed both in the frame of the body and in a fixed frame where the body is moving across the mesh. Adaptive Cartesian grid is provided by Paramesh without complex geometries for the moment.
Keywords: Finite volume method, cartesian grid, compressible solver, complex geometries, Paramesh.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610235 Hybrid Energy Harvesting System with Energy Storage Management
Authors: Lucian Pîslaru-Dănescu, George-Claudiu Zărnescu, Laurențiu Constantin Lipan, Rareș-Andrei Chihaia
Abstract:
In recent years, the utilization of supercapacitors for energy storage (ES) devices that are designed for energy harvesting (EH) applications has increased substantially. The use of supercapacitors as energy storage devices in hybrid energy harvesting systems allows the miniaturization of electronic structures for energy storage. This study is concerned with the concept of energy management capacitors – supercapacitors and the new electronic structures for energy storage used for energy harvesting devices. Supercapacitors are low-voltage devices, and electronic overvoltage protection is needed for powering the source. The power management device that uses these proposed new electronic structures for energy storage is better than conventional electronic structures used for this purpose, like rechargeable batteries, supercapacitors, and hybrid systems. A hybrid energy harvesting system with energy storage management is able to simultaneously use several energy sources with recovery from the environment. The power management device uses a summing electronic block to combine the electric power obtained from piezoelectric composite plates and from a photovoltaic conversion system. Also, an overvoltage protection circuit used as a voltage detector and an improved concept of charging supercapacitors is presented. The piezoelectric composite plates are realized only by pressing two printed circuit boards together without damaging or prestressing the piezoceramic elements. The photovoltaic conversion system has the advantage that the modules are covered with glass plates with nanostructured film of ZnO with the role of anti-reflective coating and to improve the overall efficiency of the solar panels.
Keywords: Supercapacitors, energy storage, electronic overvoltage protection, energy harvesting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10234 Optimal Efficiency Control of Pulse Width Modulation - Inverter Fed Motor Pump Drive Using Neural Network
Authors: O. S. Ebrahim, M. A. Badr, A. S. Elgendy, K. O. Shawky, P. K. Jain
Abstract:
This paper demonstrates an improved Loss Model Control (LMC) for a 3-phase induction motor (IM) driving pump load. Compared with other power loss reduction algorithms for IM, the presented one has the advantages of fast and smooth flux adaptation, high accuracy, and versatile implementation. The performance of LMC depends mainly on the accuracy of modeling the motor drive and losses. A loss-model for IM drive that considers the surplus power loss caused by inverter voltage harmonics using closed-form equations and also includes the magnetic saturation has been developed. Further, an Artificial Neural Network (ANN) controller is synthesized and trained offline to determine the optimal flux level that achieves maximum drive efficiency. The drive’s voltage and speed control loops are connecting via the stator frequency to avoid the possibility of excessive magnetization. Besides, the resistance change due to temperature is considered by a first-order thermal model. The obtained thermal information enhances motor protection and control. These together have the potential of making the proposed algorithm reliable. Simulation and experimental studies are performed on 5.5 kW test motor using the proposed control method. The test results are provided and compared with the fixed flux operation to validate the effectiveness.
Keywords: Artificial neural network, ANN, efficiency optimization, induction motor, IM, Pulse Width Modulated, PWM, harmonic losses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 358233 Fuzzy Logic Based Improved Range Free Localization for Wireless Sensor Networks
Authors: Ashok Kumar, Vinod Kumar
Abstract:
Wireless Sensor Networks (WSNs) are used to monitor/observe vast inaccessible regions through deployment of large number of sensor nodes in the sensing area. For majority of WSN applications, the collected data needs to be combined with geographic information of its origin to make it useful for the user; information received from remote Sensor Nodes (SNs) that are several hops away from base station/sink is meaningless without knowledge of its source. In addition to this, location information of SNs can also be used to propose/develop new network protocols for WSNs to improve their energy efficiency and lifetime. In this paper, range free localization protocols for WSNs have been proposed. The proposed protocols are based on weighted centroid localization technique, where the edge weights of SNs are decided by utilizing fuzzy logic inference for received signal strength and link quality between the nodes. The fuzzification is carried out using (i) Mamdani, (ii) Sugeno, and (iii) Combined Mamdani Sugeno fuzzy logic inference. Simulation results demonstrate that proposed protocols provide better accuracy in node localization compared to conventional centroid based localization protocols despite presence of unintentional radio frequency interference from radio frequency (RF) sources operating in same frequency band.
Keywords: localization, range free, received signal strength, link quality indicator, Mamdani fuzzy logic inference, Sugeno fuzzy logic inference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2631232 Dynamic Threshold Adjustment Approach For Neural Networks
Authors: Hamza A. Ali, Waleed A. J. Rasheed
Abstract:
The use of neural networks for recognition application is generally constrained by their inherent parameters inflexibility after the training phase. This means no adaptation is accommodated for input variations that have any influence on the network parameters. Attempts were made in this work to design a neural network that includes an additional mechanism that adjusts the threshold values according to the input pattern variations. The new approach is based on splitting the whole network into two subnets; main traditional net and a supportive net. The first deals with the required output of trained patterns with predefined settings, while the second tolerates output generation dynamically with tuning capability for any newly applied input. This tuning comes in the form of an adjustment to the threshold values. Two levels of supportive net were studied; one implements an extended additional layer with adjustable neuronal threshold setting mechanism, while the second implements an auxiliary net with traditional architecture performs dynamic adjustment to the threshold value of the main net that is constructed in dual-layer architecture. Experiment results and analysis of the proposed designs have given quite satisfactory conducts. The supportive layer approach achieved over 90% recognition rate, while the multiple network technique shows more effective and acceptable level of recognition. However, this is achieved at the price of network complexity and computation time. Recognition generalization may be also improved by accommodating capabilities involving all the innate structures in conjugation with Intelligence abilities with the needs of further advanced learning phases.
Keywords: Classification, Recognition, Neural Networks, Pattern Recognition, Generalization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627231 Using Artificial Neural Network to Forecast Groundwater Depth in Union County Well
Authors: Zahra Ghadampour, Gholamreza Rakhshandehroo
Abstract:
A concern that researchers usually face in different applications of Artificial Neural Network (ANN) is determination of the size of effective domain in time series. In this paper, trial and error method was used on groundwater depth time series to determine the size of effective domain in the series in an observation well in Union County, New Jersey, U.S. different domains of 20, 40, 60, 80, 100, and 120 preceding day were examined and the 80 days was considered as effective length of the domain. Data sets in different domains were fed to a Feed Forward Back Propagation ANN with one hidden layer and the groundwater depths were forecasted. Root Mean Square Error (RMSE) and the correlation factor (R2) of estimated and observed groundwater depths for all domains were determined. In general, groundwater depth forecast improved, as evidenced by lower RMSEs and higher R2s, when the domain length increased from 20 to 120. However, 80 days was selected as the effective domain because the improvement was less than 1% beyond that. Forecasted ground water depths utilizing measured daily data (set #1) and data averaged over the effective domain (set #2) were compared. It was postulated that more accurate nature of measured daily data was the reason for a better forecast with lower RMSE (0.1027 m compared to 0.255 m) in set #1. However, the size of input data in this set was 80 times the size of input data in set #2; a factor that may increase the computational effort unpredictably. It was concluded that 80 daily data may be successfully utilized to lower the size of input data sets considerably, while maintaining the effective information in the data set.Keywords: Neural networks, groundwater depth, forecast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2516230 Remittances and the Changing Roles of Women in Laos
Authors: N. Southiseng, J. Walsh
Abstract:
Prior to 1975, women in Laos suffered from having reduced levels of power over decision-making in their families and in their communities. This has had a negative impact on their ability to develop their own identities. Their roles were identified as being responsible for household activities and making preparations for their marriage. Many women lost opportunities to get educated and access the outdoor work that might have empowered them to improve their situations. So far, no accurate figures of either emigrants or return migrants have been compiled but it appears that most of them were women, and it was women who most and more frequently remitted money home. However, very few recent studies have addressed the relationship between remittances and the roles of women in Laos. This study, therefore, aims at redressing to some extent the deficiencies in knowledge. Qualitative techniques were used to gather data, including individual in-depth interviews and direct observation in combination with the content analysis method. Forty women in Vientiane Municipality and Savannakhet province were individually interviewed. It was found that the monetary remittance was typically used for family security and well-being; on fungible activities; on economic and business activities; and on community development, especially concerning hospitality and providing daily household necessities. Remittances played important roles in improving many respondents- livelihoods and positively changed their identities in families and communities. Women became empowered as they were able to start commercial businesses, rather than taking care of (just) housework, children and elders. Interviews indicated that 92.5% of the respondents their quality of lives improved, 90% felt happier in their families and 82.5% felt conflicts in their families were reduced.Keywords: Laos, Monetary Remittances, Social Remittance, Women's Empowerment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2141229 Generative Adversarial Network Based Fingerprint Anti-Spoofing Limitations
Authors: Yehjune Heo
Abstract:
Fingerprint Anti-Spoofing approaches have been actively developed and applied in real-world applications. One of the main problems for Fingerprint Anti-Spoofing is not robust to unseen samples, especially in real-world scenarios. A possible solution will be to generate artificial, but realistic fingerprint samples and use them for training in order to achieve good generalization. This paper contains experimental and comparative results with currently popular GAN based methods and uses realistic synthesis of fingerprints in training in order to increase the performance. Among various GAN models, the most popular StyleGAN is used for the experiments. The CNN models were first trained with the dataset that did not contain generated fake images and the accuracy along with the mean average error rate were recorded. Then, the fake generated images (fake images of live fingerprints and fake images of spoof fingerprints) were each combined with the original images (real images of live fingerprints and real images of spoof fingerprints), and various CNN models were trained. The best performances for each CNN model, trained with the dataset of generated fake images and each time the accuracy and the mean average error rate, were recorded. We observe that current GAN based approaches need significant improvements for the Anti-Spoofing performance, although the overall quality of the synthesized fingerprints seems to be reasonable. We include the analysis of this performance degradation, especially with a small number of samples. In addition, we suggest several approaches towards improved generalization with a small number of samples, by focusing on what GAN based approaches should learn and should not learn.
Keywords: Anti-spoofing, CNN, fingerprint recognition, GAN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 593228 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores
Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay
Abstract:
Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.
Keywords: Retail stores, Faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 583227 Use of Chlorophyll Meters to Assess In-Season Wheat Nitrogen Fertilizer Requirements in the Southern San Joaquin Valley
Authors: Brian H. Marsh
Abstract:
Nitrogen fertilizer is the most used and often the most mismanaged nutrient input. Nitrogen management has tremendous implications on crop productivity, quality and environmental stewardship. Sufficient nitrogen is needed to optimum yield and quality. Soil and in-season plant tissue testing for nitrogen status are a time consuming and expensive process. Real time sensing of plant nitrogen status can be a useful tool in managing nitrogen inputs. The objectives of this project were to assess the reliability of remotely sensed non-destructive plant nitrogen measurements compared to wet chemistry data from sampled plant tissue, develop in-season nitrogen recommendations based on remotely sensed data for improved nitrogen use efficiency and assess the potential for determining yield and quality from remotely sensed data. Very good correlations were observed between early-season remotely sensed crop nitrogen status and plant nitrogen concentrations and subsequent in-season fertilizer recommendations. The transmittance/absorbance type meters gave the most accurate readings. Early in-season fertilizer recommendation would be to apply 40 kg nitrogen per hectare plus 15 kg nitrogen per hectare for each unit difference measured with the SPAD meter between the crop and reference area or 25 kg plus 13 kg per hectare for each unit difference measured with the CCM 200. Once the crop was sufficiently fertilized meter readings became inconclusive and were of no benefit for determining nitrogen status, silage yield and quality and grain yield and protein.
Keywords: Wheat, nitrogen fertilization, chlorophyll meter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199226 An Empirical Study of the Effect of Robot Programming Education on the Computational Thinking of Young Children: The Role of Flowcharts
Abstract:
There is an increasing interest in introducing computational thinking at an early age. Computational thinking, like mathematical thinking, engineering thinking, and scientific thinking, is a kind of analytical thinking. Learning computational thinking skills is not only to improve technological literacy, but also allows learners to equip with practicable skills such as problem-solving skills. As people realize the importance of computational thinking, the field of educational technology faces a problem: how to choose appropriate tools and activities to help students develop computational thinking skills. Robots are gradually becoming a popular teaching tool, as robots provide a tangible way for young children to access to technology, and controlling a robot through programming offers them opportunities to engage in developing computational thinking. This study explores whether the introduction of flowcharts into the robotics programming courses can help children convert natural language into a programming language more easily, and then to better cultivate their computational thinking skills. An experimental study was adopted with a sample of children ages six to seven (N = 16) participated, and a one-meter-tall humanoid robot was used as the teaching tool. Results show that children can master basic programming concepts through robotic courses. Children's computational thinking has been significantly improved. Besides, results suggest that flowcharts do have an impact on young children’s computational thinking skills development, but it only has a significant effect on the "sequencing" and "correspondence" skills. Overall, the study demonstrates that the humanoid robot and flowcharts have qualities that foster young children to learn programming and develop computational thinking skills.
Keywords: Robotics, computational thinking, programming, young children, flowcharts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 810225 The Use of Information and Communication Technologies in Electoral Procedures: Comments on Electronic Voting Security
Authors: Magdalena Musiał-Karg
Abstract:
The expansion of telecommunication and progress of electronic media constitute important elements of our times. The recent worldwide convergence of information and communication technologies (ICT) and dynamic development of the mass media is leading to noticeable changes in the functioning of contemporary states and societies. Currently, modern technologies play more and more important roles and filter down to almost every field of contemporary human life. It results in the growth of online interactions that can be observed by the inconceivable increase in the number of people with home PCs and Internet access. The proof of it is undoubtedly the emergence and use of concepts such as e-society, e-banking, e-services, e-government, e-government, e-participation and e-democracy. The newly coined word e-democracy evidences that modern technologies have also been widely used in politics. Without any doubt in most countries all actors of political market (politicians, political parties, servants in political/public sector, media) use modern forms of communication with the society. Most of these modern technologies progress the processes of getting and sending information to the citizens, communication with the electorate, and also – which seems to be the biggest advantage – electoral procedures. Thanks to implementation of ICT the interaction between politicians and electorate are improved. The main goal of this text is to analyze electronic voting (e-voting) as one of the important forms of electronic democracy in terms of security aspects. The author of this paper aimed at answering the questions of security of electronic voting as an additional form of participation in elections and referenda.
Keywords: Electronic democracy, electronic participation, electronic voting, security of e-voting, ICT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1068224 Formant Tracking Linear Prediction Model using HMMs for Noisy Speech Processing
Authors: Zaineb Ben Messaoud, Dorra Gargouri, Saida Zribi, Ahmed Ben Hamida
Abstract:
This paper presents a formant-tracking linear prediction (FTLP) model for speech processing in noise. The main focus of this work is the detection of formant trajectory based on Hidden Markov Models (HMM), for improved formant estimation in noise. The approach proposed in this paper provides a systematic framework for modelling and utilization of a time- sequence of peaks which satisfies continuity constraints on parameter; the within peaks are modelled by the LP parameters. The formant tracking LP model estimation is composed of three stages: (1) a pre-cleaning multi-band spectral subtraction stage to reduce the effect of residue noise on formants (2) estimation stage where an initial estimate of the LP model of speech for each frame is obtained (3) a formant classification using probability models of formants and Viterbi-decoders. The evaluation results for the estimation of the formant tracking LP model tested in Gaussian white noise background, demonstrate that the proposed combination of the initial noise reduction stage with formant tracking and LPC variable order analysis, results in a significant reduction in errors and distortions. The performance was evaluated with noisy natual vowels extracted from international french and English vocabulary speech signals at SNR value of 10dB. In each case, the estimated formants are compared to reference formants.Keywords: Formants Estimation, HMM, Multi Band Spectral Subtraction, Variable order LPC coding, White Gauusien Noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962223 Adaptive Shape Parameter (ASP) Technique for Local Radial Basis Functions (RBFs) and Their Application for Solution of Navier Strokes Equations
Authors: A. Javed, K. Djidjeli, J. T. Xing
Abstract:
The concept of adaptive shape parameters (ASP) has been presented for solution of incompressible Navier Strokes equations using mesh-free local Radial Basis Functions (RBF). The aim is to avoid ill-conditioning of coefficient matrices of RBF weights and inaccuracies in RBF interpolation resulting from non-optimized shape of basis functions for the cases where data points (or nodes) are not distributed uniformly throughout the domain. Unlike conventional approaches which assume globally similar values of RBF shape parameters, the presented ASP technique suggests that shape parameter be calculated exclusively for each data point (or node) based on the distribution of data points within its own influence domain. This will ensure interpolation accuracy while still maintaining well conditioned system of equations for RBF weights. Performance and accuracy of ASP technique has been tested by evaluating derivatives and laplacian of a known function using RBF in Finite difference mode (RBFFD), with and without the use of adaptivity in shape parameters. Application of adaptive shape parameters (ASP) for solution of incompressible Navier Strokes equations has been presented by solving lid driven cavity flow problem on mesh-free domain using RBF-FD. The results have been compared for fixed and adaptive shape parameters. Improved accuracy has been achieved with the use of ASP in RBF-FD especially at regions where larger gradients of field variables exist.
Keywords: CFD, Meshless Particle Method, Radial Basis Functions, Shape Parameters
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2830222 A Hybrid Ontology Based Approach for Ranking Documents
Authors: Sarah Motiee, Azadeh Nematzadeh, Mehrnoush Shamsfard
Abstract:
Increasing growth of information volume in the internet causes an increasing need to develop new (semi)automatic methods for retrieval of documents and ranking them according to their relevance to the user query. In this paper, after a brief review on ranking models, a new ontology based approach for ranking HTML documents is proposed and evaluated in various circumstances. Our approach is a combination of conceptual, statistical and linguistic methods. This combination reserves the precision of ranking without loosing the speed. Our approach exploits natural language processing techniques to extract phrases from documents and the query and doing stemming on words. Then an ontology based conceptual method will be used to annotate documents and expand the query. To expand a query the spread activation algorithm is improved so that the expansion can be done flexible and in various aspects. The annotated documents and the expanded query will be processed to compute the relevance degree exploiting statistical methods. The outstanding features of our approach are (1) combining conceptual, statistical and linguistic features of documents, (2) expanding the query with its related concepts before comparing to documents, (3) extracting and using both words and phrases to compute relevance degree, (4) improving the spread activation algorithm to do the expansion based on weighted combination of different conceptual relationships and (5) allowing variable document vector dimensions. A ranking system called ORank is developed to implement and test the proposed model. The test results will be included at the end of the paper.Keywords: Document ranking, Ontology, Spread activation algorithm, Annotation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630221 Economic Assessment of Green House for Cultivation of Float Based Seedling Production in India
Authors: Srinath Ramakkrushnan, Aswathaman Vijayan
Abstract:
In conventional seedling production, the seedlings are being grown in the open field under natural conditions. Here they are susceptible to sudden changes in climate were their quality and yield is affected. Quality seedlings are essential for good growth and performance of crops in main field; they serve as a foundation for the economic returns to the farmer. Producing quality seedling demands usage of hybrid seeds as they have the ability to result in better yield, greater uniformity, improved color, disease resistance, and so forth. Hybrid seed production poses major operational challenge and its seed use efficiency plays an important role. Thus in order to overcome the difficulties currently present in conventional seedling production and to efficiently use hybrid seeds, ITC Limited Agri Business Divisions - Sustainability Cell as conceptualized a novel method of seedling production unit for farmers in West Godavari District of Andhra Pradesh. The “Green House based Float Seedling" methodology aims at a protected cultivation technique wherein the micro climate surrounding the plant/seedling body is controlled partially or fully as per the requirement of the species. This paper reports on the techno economic evaluation of green house for cultivation of float based seedling production with experimental results that was attained from the pilot implementation in West Godavari District, Rajahmundry region of India.Keywords: Economic Assessment, Float Seedling, Green House, ITC Limited, Payback period.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4203220 Morphological and Electrical Characterization of Polyacrylonitrile Nanofibers Synthesized Using Electrospinning Method for Electrical Application
Authors: Divyanka Sontakke, Arpit Thakre, D. K Shinde, Sujata Parmeshwaran
Abstract:
Electrospinning is the most widely utilized method to create nanofibers because of the direct setup, the capacity to mass-deliver consistent nanofibers from different polymers, and the ability to produce ultrathin fibers with controllable diameters. Smooth and much arranged ultrafine Polyacrylonitrile (PAN) nanofibers with diameters going from submicron to nanometer were delivered utilizing Electrospinning technique. PAN powder was used as a precursor to prepare the solution utilized as a part of this process. At the point when the electrostatic repulsion contradicted surface tension, a charged stream of polymer solution was shot out from the head of the spinneret and along these lines ultrathin nonwoven fibers were created. The effect of electrospinning parameter such as applied voltage, feed rate, concentration of polymer solution and tip to collector distance on the morphology of electrospun PAN nanofibers were investigated. The nanofibers were heat treated for carbonization to examine the changes in properties and composition to make for electrical application. Scanning Electron Microscopy (SEM) was performed before and after carbonization to study electrical conductivity and morphological characterization. The SEM images have shown the uniform fiber diameter and no beads formation. The average diameter of the PAN fiber observed 365nm and 280nm for flat plat and rotating drum collector respectively. The four probe strategy was utilized to inspect the electrical conductivity of the nanofibers and the electrical conductivity is significantly improved with increase in oxidation temperature exposed.
Keywords: Electrospinning, polyacrylonitrile carbon nanofibres, heat treatment, electrical conductivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 688219 Thermal Treatments and Characteristics Study On Unalloyed Structural (AISI 1140) Steel
Authors: S. S. Sharma, P. R. Prabhu, Rajagopal Chadaga
Abstract:
The main emphasis of metallurgists has been to process the materials to obtain the balanced mechanical properties for the given application. One of the processing routes to alter the properties is heat treatment. Nearly 90% of the structural applications are related to the medium carbon an alloyed steels and hence are regarded as structural steels. The major requirement in the conventional steel is to improve workability, toughness, hardness and grain refinement. In this view, it is proposed to study the mechanical and tribological properties of unalloyed structural (AISI 1140) steel with different thermal (heat) treatments like annealing, normalizing, tempering and hardening and compared with as brought (cold worked) specimen. All heat treatments are carried out in atmospheric condition. Hardening treatment improves hardness of the material, a marginal decrease in hardness value with improved ductility is observed in tempering. Annealing and normalizing improve ductility of the specimen. Normalized specimen shows ultimate ductility. Hardened specimen shows highest wear resistance in the initial period of slide wear where as above 25KM of sliding distance, as brought steel dominates the hardened specimen. Both mild and severe wear regions are observed. Microstructural analysis shows the existence of pearlitic structure in normalized specimen, lath martensitic structure in hardened, pearlitic, ferritic structure in annealed specimen.
Keywords: Annealing, hardness, heat treatment, normalizing, wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2113218 Upgraded Rough Clustering and Outlier Detection Method on Yeast Dataset by Entropy Rough K-Means Method
Authors: P. Ashok, G. M. Kadhar Nawaz
Abstract:
Rough set theory is used to handle uncertainty and incomplete information by applying two accurate sets, Lower approximation and Upper approximation. In this paper, the rough clustering algorithms are improved by adopting the Similarity, Dissimilarity–Similarity and Entropy based initial centroids selection method on three different clustering algorithms namely Entropy based Rough K-Means (ERKM), Similarity based Rough K-Means (SRKM) and Dissimilarity-Similarity based Rough K-Means (DSRKM) were developed and executed by yeast dataset. The rough clustering algorithms are validated by cluster validity indexes namely Rand and Adjusted Rand indexes. An experimental result shows that the ERKM clustering algorithm perform effectively and delivers better results than other clustering methods. Outlier detection is an important task in data mining and very much different from the rest of the objects in the clusters. Entropy based Rough Outlier Factor (EROF) method is seemly to detect outlier effectively for yeast dataset. In rough K-Means method, by tuning the epsilon (ᶓ) value from 0.8 to 1.08 can detect outliers on boundary region and the RKM algorithm delivers better results, when choosing the value of epsilon (ᶓ) in the specified range. An experimental result shows that the EROF method on clustering algorithm performed very well and suitable for detecting outlier effectively for all datasets. Further, experimental readings show that the ERKM clustering method outperformed the other methods.
Keywords: Clustering, Entropy, Outlier, Rough K-Means, validity index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412217 A Robust and Efficient Segmentation Method Applied for Cardiac Left Ventricle with Abnormal Shapes
Authors: Peifei Zhu, Zisheng Li, Yasuki Kakishita, Mayumi Suzuki, Tomoaki Chono
Abstract:
Segmentation of left ventricle (LV) from cardiac ultrasound images provides a quantitative functional analysis of the heart to diagnose disease. Active Shape Model (ASM) is widely used for LV segmentation, but it suffers from the drawback that initialization of the shape model is not sufficiently close to the target, especially when dealing with abnormal shapes in disease. In this work, a two-step framework is improved to achieve a fast and efficient LV segmentation. First, a robust and efficient detection based on Hough forest localizes cardiac feature points. Such feature points are used to predict the initial fitting of the LV shape model. Second, ASM is applied to further fit the LV shape model to the cardiac ultrasound image. With the robust initialization, ASM is able to achieve more accurate segmentation. The performance of the proposed method is evaluated on a dataset of 810 cardiac ultrasound images that are mostly abnormal shapes. This proposed method is compared with several combinations of ASM and existing initialization methods. Our experiment results demonstrate that accuracy of the proposed method for feature point detection for initialization was 40% higher than the existing methods. Moreover, the proposed method significantly reduces the number of necessary ASM fitting loops and thus speeds up the whole segmentation process. Therefore, the proposed method is able to achieve more accurate and efficient segmentation results and is applicable to unusual shapes of heart with cardiac diseases, such as left atrial enlargement.Keywords: Hough forest, active shape model, segmentation, cardiac left ventricle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504216 The DAQ Debugger for iFDAQ of the COMPASS Experiment
Authors: Y. Bai, M. Bodlak, V. Frolov, S. Huber, V. Jary, I. Konorov, D. Levit, J. Novy, D. Steffen, O. Subrt, M. Virius
Abstract:
In general, state-of-the-art Data Acquisition Systems (DAQ) in high energy physics experiments must satisfy high requirements in terms of reliability, efficiency and data rate capability. This paper presents the development and deployment of a debugging tool named DAQ Debugger for the intelligent, FPGA-based Data Acquisition System (iFDAQ) of the COMPASS experiment at CERN. Utilizing a hardware event builder, the iFDAQ is designed to be able to readout data at the average maximum rate of 1.5 GB/s of the experiment. In complex softwares, such as the iFDAQ, having thousands of lines of code, the debugging process is absolutely essential to reveal all software issues. Unfortunately, conventional debugging of the iFDAQ is not possible during the real data taking. The DAQ Debugger is a tool for identifying a problem, isolating the source of the problem, and then either correcting the problem or determining a way to work around it. It provides the layer for an easy integration to any process and has no impact on the process performance. Based on handling of system signals, the DAQ Debugger represents an alternative to conventional debuggers provided by most integrated development environments. Whenever problem occurs, it generates reports containing all necessary information important for a deeper investigation and analysis. The DAQ Debugger was fully incorporated to all processes in the iFDAQ during the run 2016. It helped to reveal remaining software issues and improved significantly the stability of the system in comparison with the previous run. In the paper, we present the DAQ Debugger from several insights and discuss it in a detailed way.Keywords: DAQ debugger, data acquisition system, FPGA, system signals, Qt framework.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 893215 Investigating the Effect of Using Capacitors in the Pumping Station on the Harmonic Contents (Case Study: Kafr El - Shikh Governorate, Egypt)
Authors: Khaled M. Fetyan
Abstract:
Power Factor (PF) is one of the most important parameters in the electrical systems, especially in the water pumping station. The low power factor value of the water pumping stations causes penalty for the electrical bill. There are many methods use for power factor improvement. Each one of them uses a capacitor on the electrical power network. The position of the capacitors is varied depends on many factors such as; voltage level and capacitors rating. Adding capacitors on the motor terminals increase the supply power factor from 0.8 to more than 0.9 but these capacitors cause some problems for the electrical grid network, such as increasing the harmonic contents of the grid line voltage. In this paper the effects of using capacitors in the water pumping stations to improve the power factor value on the harmonic contents of the electrical grid network are studied. One of large water pumping stations in Kafr El-Shikh Governorate in Egypt was used, as a case study. The effect of capacitors on the line voltage harmonic contents is measured. The station uses capacitors to improve the PF values at the 1 lkv grid network. The power supply harmonics values are measured by a power quality analyzer at different loading conditions. The results showed that; the capacitors improved the power factor value of the feeder and its value increased than 0.9. But the THD values are increased by adding these capacitors. The harmonic analysis showed that; the 13th, 17th, and 19th harmonics orders are increased also by adding the capacitors.
Keywords: Water pumping stations, power factor improvement, total harmonic distortions (THD), power quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2739214 Improvement of Short Channel Effects in Cylindrical Strained Silicon Nanowire Transistor
Authors: Fatemeh Karimi, Morteza Fathipour, Hamdam Ghanatian, Vala Fathipour
Abstract:
In this paper we investigate the electrical characteristics of a new structure of gate all around strained silicon nanowire field effect transistors (FETs) with dual dielectrics by changing the radius (RSiGe) of silicon-germanium (SiGe) wire and gate dielectric. Indeed the effect of high-κ dielectric on Field Induced Barrier Lowering (FIBL) has been studied. Due to the higher electron mobility in tensile strained silicon, the n-type FETs with strained silicon channel have better drain current compare with the pure Si one. In this structure gate dielectric divided in two parts, we have used high-κ dielectric near the source and low-κ dielectric near the drain to reduce the short channel effects. By this structure short channel effects such as FIBL will be reduced indeed by increasing the RSiGe, ID-VD characteristics will be improved. The leakage current and transfer characteristics, the threshold-voltage (Vt), the drain induced barrier height lowering (DIBL), are estimated with respect to, gate bias (VG), RSiGe and different gate dielectrics. For short channel effects, such as DIBL, gate all around strained silicon nanowire FET have similar characteristics with the pure Si one while dual dielectrics can improve short channel effects in this structure.Keywords: SNWT (silicon nanowire transistor), Tensile Strain, high-κ dielectric, Field Induced Barrier Lowering (FIBL), cylindricalnano wire (CW), drain induced barrier lowering (DIBL).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2008213 A Study on Integrated Performance of Tap-Changing Transformer and SVC in Association with Power System Voltage Stability
Authors: Mahmood Reza Shakarami, Reza Sedaghati
Abstract:
Electricity market activities and a growing demand for electricity have led to heavily stressed power systems. This requires operation of the networks closer to their stability limits. Power system operation is affected by stability related problems, leading to unpredictable system behavior. Voltage stability refers to the ability of a power system to sustain appropriate voltage levels through large and small disturbances. Steady-state voltage stability is concerned with limits on the existence of steady-state operating points for the network. FACTS devices can be utilized to increase the transmission capacity, the stability margin and dynamic behavior or serve to ensure improved power quality. Their main capabilities are reactive power compensation, voltage control and power flow control. Among the FACTS controllers, Static Var Compensator (SVC) provides fast acting dynamic reactive compensation for voltage support during contingency events. In this paper, voltage stability assessment with appropriate representations of tap-changer transformers and SVC is investigated. Integrating both of these devices is the main topic of this paper. Effect of the presence of tap-changing transformers on static VAR compensator controller parameters and ratings necessary to stabilize load voltages at certain values are highlighted. The interrelation between transformer off nominal tap ratios and the SVC controller gains and droop slopes and the SVC rating are found. P-V curves are constructed to calculate loadability margins.
Keywords: SVC, voltage stability, P-V curve, reactive power, tap changing transformer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3022212 ORank: An Ontology Based System for Ranking Documents
Authors: Mehrnoush Shamsfard, Azadeh Nematzadeh, Sarah Motiee
Abstract:
Increasing growth of information volume in the internet causes an increasing need to develop new (semi)automatic methods for retrieval of documents and ranking them according to their relevance to the user query. In this paper, after a brief review on ranking models, a new ontology based approach for ranking HTML documents is proposed and evaluated in various circumstances. Our approach is a combination of conceptual, statistical and linguistic methods. This combination reserves the precision of ranking without loosing the speed. Our approach exploits natural language processing techniques for extracting phrases and stemming words. Then an ontology based conceptual method will be used to annotate documents and expand the query. To expand a query the spread activation algorithm is improved so that the expansion can be done in various aspects. The annotated documents and the expanded query will be processed to compute the relevance degree exploiting statistical methods. The outstanding features of our approach are (1) combining conceptual, statistical and linguistic features of documents, (2) expanding the query with its related concepts before comparing to documents, (3) extracting and using both words and phrases to compute relevance degree, (4) improving the spread activation algorithm to do the expansion based on weighted combination of different conceptual relationships and (5) allowing variable document vector dimensions. A ranking system called ORank is developed to implement and test the proposed model. The test results will be included at the end of the paper.Keywords: Document ranking, Ontology, Spread activation algorithm, Annotation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888211 A Programming Assessment Software Artefact Enhanced with the Help of Learners
Authors: Romeo A. Botes, Imelda Smit
Abstract:
The demands of an ever changing and complex higher education environment, along with the profile of modern learners challenge current approaches to assessment and feedback. More learners enter the education system every year. The younger generation expects immediate feedback. At the same time, feedback should be meaningful. The assessment of practical activities in programming poses a particular problem, since both lecturers and learners in the information and computer science discipline acknowledge that paper-based assessment for programming subjects lacks meaningful real-life testing. At the same time, feedback lacks promptness, consistency, comprehensiveness and individualisation. Most of these aspects may be addressed by modern, technology-assisted assessment. The focus of this paper is the continuous development of an artefact that is used to assist the lecturer in the assessment and feedback of practical programming activities in a senior database programming class. The artefact was developed using three Design Science Research cycles. The first implementation allowed one programming activity submission per assessment intervention. This pilot provided valuable insight into the obstacles regarding the implementation of this type of assessment tool. A second implementation improved the initial version to allow multiple programming activity submissions per assessment. The focus of this version is on providing scaffold feedback to the learner – allowing improvement with each subsequent submission. It also has a built-in capability to provide the lecturer with information regarding the key problem areas of each assessment intervention.
Keywords: Programming, computer-aided assessment, technology-assisted assessment, programming assessment software, design science research, mixed-method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 994210 A Novel Multiple Valued Logic OHRNS Modulo rn Adder Circuit
Authors: Mehdi Hosseinzadeh, Somayyeh Jafarali Jassbi, Keivan Navi
Abstract:
Residue Number System (RNS) is a modular representation and is proved to be an instrumental tool in many digital signal processing (DSP) applications which require high-speed computations. RNS is an integer and non weighted number system; it can support parallel, carry-free, high-speed and low power arithmetic. A very interesting correspondence exists between the concepts of Multiple Valued Logic (MVL) and Residue Number Arithmetic. If the number of levels used to represent MVL signals is chosen to be consistent with the moduli which create the finite rings in the RNS, MVL becomes a very natural representation for the RNS. There are two concerns related to the application of this Number System: reaching the most possible speed and the largest dynamic range. There is a conflict when one wants to resolve both these problem. That is augmenting the dynamic range results in reducing the speed in the same time. For achieving the most performance a method is considere named “One-Hot Residue Number System" in this implementation the propagation is only equal to one transistor delay. The problem with this method is the huge increase in the number of transistors they are increased in order m2 . In real application this is practically impossible. In this paper combining the Multiple Valued Logic and One-Hot Residue Number System we represent a new method to resolve both of these two problems. In this paper we represent a novel design of an OHRNS-based adder circuit. This circuit is useable for Multiple Valued Logic moduli, in comparison to other RNS design; this circuit has considerably improved the number of transistors and power consumption.
Keywords: Computer Arithmetic, Residue Number System, Multiple Valued Logic, One-Hot, VLSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843209 Potentials of Raphia hookeri Wine in Livelihood Sustenance among Rural and Urban Populations in Nigeria
Authors: A. A. Aiyeloja, A.T. Oladele, O. Tumulo
Abstract:
Raphia wine is an important forest product with cultural significance besides its use as medicine and food in southern Nigeria. This work aims to evaluate the profitability of Raphia wine production and marketing in Sapele Local Government Area, Nigeria. Four communities (Sapele, Ogiede, Okuoke and Elume) were randomly selected for data collection via questionnaires among producers and marketers. A total of 50 producers and 34 marketers were randomly selected for interview. Data was analyzed using descriptive statistics, profit margin, multiple regression and rate of returns on investment (RORI). Annual average profit was highest in Okuoke (Producers – N90, 000.00, Marketers - N70, 000.00) and least in Sapele (Producers N50, 000.00, Marketers – N45, 000.00). Calculated RORI for marketers were Elume (40.0%), Okuoke (25.0%), Ogiede (33.3%) and Sapele (50.0%). Regression results showed that location has significant effects (0.000, ρ ≤ 0.05) on profit margins. Male (58.8%) and female (41.2%) invest in Raphia wine marketing, while males (100.0%) dominate production. Results showed that Raphia wine has potentials to generate household income, enhance food security and improve quality of life in rural, semi-urban and urban communities. Improved marketing channels, storage facilities and credit facilities via cooperative groups are recommended for producers and marketers by concerned agencies.
Keywords: Raphia wine, Profit margin, RORI, Livelihood, Nigeria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2426208 Analysis of Maize Yield under Climate Change, Adaptations in Varieties and Planting Date in Northeast China in Recent Thirty Years
Authors: Zhan Fengmei Yao, Hui Li, Jiahua Zhang g
Abstract:
The Northeast China (NEC) was the most important agriculture areas and known as the Golden-Maize-Belt. Based on observed crop data and crop model, we design four simulating experiments and separate relative impacts and contribution under climate change, planting date shift, and varieties change as well change of varieties and planting date. Without planting date and varieties change, maize yields had no significant change trend at Hailun station located in the north of NEC, and presented significant decrease by 0.2 - 0.4 t/10a at two stations, which located in the middle and the south of NEC. With planting date change, yields showed a significant increase by 0.09 - 0.47 t/10a. With varieties change, maize yields had significant increase by 1.8~ 1.9 t/10a at Hailun and Huadian stations, but a non-significant and low increase by 0.2t /10a at Benxi located in the south of NEC. With change of varieties and planting date, yields presented a significant increasing by 0.53- 2.0 t/10a. Their contribution to yields was -25% ~ -55% for climate change, 15% ~ 35% for planting date change, and 20% ~110% for varieties change as well 30% ~135% for varieties with planting date shift. It found that change in varieties and planting date were highest yields and were responsible for significant increases in maize yields, varieties was secondly, and planting date was thirdly. It found that adaptation in varieties and planting date greatly improved maize yields, and increased yields annual variability. The increase of contribution with planting date and varieties change in 2000s was lower than in 1990s. Yields with the varieties change and yields with planting date and varieties change all showed a decreasing trend at Huadian and Benxi since 2002 or so. It indicated that maize yields increasing trend stagnated in the middle and south of NEC, and continued in the north of NEC.Keywords: Climate change, maize yields, varieties, planting date, impacts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165207 Beam Coding with Orthogonal Complementary Golay Codes for Signal to Noise Ratio Improvement in Ultrasound Mammography
Authors: Y. Kumru, K. Enhos, H. Köymen
Abstract:
In this paper, we report the experimental results on using complementary Golay coded signals at 7.5 MHz to detect breast microcalcifications of 50 µm size. Simulations using complementary Golay coded signals show perfect consistence with the experimental results, confirming the improved signal to noise ratio for complementary Golay coded signals. For improving the success on detecting the microcalcifications, orthogonal complementary Golay sequences having cross-correlation for minimum interference are used as coded signals and compared to tone burst pulse of equal energy in terms of resolution under weak signal conditions. The measurements are conducted using an experimental ultrasound research scanner, Digital Phased Array System (DiPhAS) having 256 channels, a phased array transducer with 7.5 MHz center frequency and the results obtained through experiments are validated by Field-II simulation software. In addition, to investigate the superiority of coded signals in terms of resolution, multipurpose tissue equivalent phantom containing series of monofilament nylon targets, 240 µm in diameter, and cyst-like objects with attenuation of 0.5 dB/[MHz x cm] is used in the experiments. We obtained ultrasound images of monofilament nylon targets for the evaluation of resolution. Simulation and experimental results show that it is possible to differentiate closely positioned small targets with increased success by using coded excitation in very weak signal conditions.
Keywords: Coded excitation, complementary Golay codes, DiPhAS, medical ultrasound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 905