Search results for: heat exchange
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1735

Search results for: heat exchange

55 Microstructural Evolution of an Interface Region in a Nickel-Based Superalloy Joint Produced by Direct Energy Deposition

Authors: M. Ferguson, T. Konkova, I. Violatos

Abstract:

Microstructure analysis of additively manufactured (AM) materials is an important step in understanding the interrelationship between mechanical properties and materials performance. Literature on the effect of a laser-based AM process parameters on the microstructure in the substrate-deposit interface is limited. The interface region, the adjoining area of substrate and deposit, is characterized by the presence of the fusion zone (FZ) and heat affected zone (HAZ) experiencing rapid thermal gyrations resulting in thermal induced transformations. Inconel 718 was utilized as a work material for both the substrate and deposit. Three blocks of Inconel 718 material were deposited by Direct Energy Deposition (DED) using three different laser powers, 550W, 750W and 950W, respectively. A coupled thermo-mechanical transient approach was utilized to correlate temperature history to the evolution of microstructure. Thermal history of the deposition process was monitored with the thermocouples installed inside the substrate material. Interface region of the blocks were analysed with Optical Microscopy (OM) and Scanning Electron Microscopy (SEM) including electron back-scattered diffraction (EBSD) technique. Laser power was found to influence the dissolution of intermetallic precipitated phases in the substrate and grain growth in the interface region. Microstructure and thermal history data were utilized to draw conclusive comparisons between the investigated process parameters.

Keywords: Additive manufacturing, direct energy deposition, electron back-scatter diffraction, finite element analysis, Inconel 718, microstructure, optical microscopy, scanning electron microscopy, substrate-deposit interface region.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 501
54 Engineering Topology of Construction Ecology for Dynamic Integration of Sustainability Outcomes to Functions in Urban Environments: Spatial Modeling

Authors: Moustafa Osman Mohammed

Abstract:

Integration sustainability outcomes give attention to construction ecology in the design review of urban environments to comply with Earth’s System that is composed of integral parts of the (i.e., physical, chemical and biological components). Naturally, exchange patterns of industrial ecology have consistent and periodic cycles to preserve energy flows and materials in Earth’s System. When engineering topology is affecting internal and external processes in system networks, it postulated the valence of the first-level spatial outcome (i.e., project compatibility success). These instrumentalities are dependent on relating the second-level outcome (i.e., participant security satisfaction). The construction ecology-based topology (i.e., as feedback energy system) flows from biotic and abiotic resources in the entire Earth’s ecosystems. These spatial outcomes are providing an innovation, as entails a wide range of interactions to state, regulate and feedback “topology” to flow as “interdisciplinary equilibrium” of ecosystems. The interrelation dynamics of ecosystems are performing a process in a certain location within an appropriate time for characterizing their unique structure in “equilibrium patterns”, such as biosphere and collecting a composite structure of many distributed feedback flows. These interdisciplinary systems regulate their dynamics within complex structures. These dynamic mechanisms of the ecosystem regulate physical and chemical properties to enable a gradual and prolonged incremental pattern to develop a stable structure. The engineering topology of construction ecology for integration sustainability outcomes offers an interesting tool for ecologists and engineers in the simulation paradigm as an initial form of development structure within compatible computer software. This approach argues from ecology, resource savings, static load design, financial other pragmatic reasons, while an artistic/architectural perspective, these are not decisive. The paper described an attempt to unify analytic and analogical spatial modeling in developing urban environments as a relational setting, using optimization software and applied as an example of integrated industrial ecology where the construction process is based on a topology optimization approach.

Keywords: Construction ecology, industrial ecology, urban topology, environmental planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 637
53 Optimization of R507A-R23 Cascade Refrigeration System using Genetic Algorithm

Authors: A. D. Parekh, P. R. Tailor, H.R Jivanramajiwala

Abstract:

The present work deals with optimization of cascade refrigeration system using eco friendly refrigerants pair R507A and R23. R507A is azeotropic mixture composed of HFC refrigerants R125/R143a (50%/50% by wt.). R23 is a single component HFC refrigerant used as replacement to CFC refrigerant R13 in low temperature applications. These refrigerants have zero ozone depletion potential and are non-flammable. Optimization of R507AR23 cascade refrigeration system performance parameters such as minimum work required, refrigeration effect, coefficient of performance and exergetic efficiency was carried out in terms of eight operating parameters- combinations using Genetic Algorithm tool. The eight operating parameters include (1) low side evaporator temperature (2) high side condenser temperature (3) temperature difference in the cascade heat exchanger (4) low side condenser temperature (5) low side degree of subcooling (6) high side degree of subcooling (7) low side degree of superheating (8) high side degree of superheating. Results show that for minimum work system should operate at high temperature in low side evaporator, low temperature in high side condenser, low temperature difference in cascade condenser, high temperature in low side condenser and low degree of subcooling and superheating in both side. For maximum refrigeration effect system should operate at high temperature in low side evaporator, high temperature in high side condenser, high temperature difference in cascade condenser, low temperature in low side condenser and higher degree of subcooling in LT and HT side. For maximum coefficient of performance and exergetic efficiency, system should operate at high temperature in low side evaporator, low temperature in high side condenser, low temperature difference in cascade condenser, high temperature in low side condenser and higher degree of subcooling and superheating in low side of the system.

Keywords: Cascade refrigeration system, Genetic Algorithm, R507A, R23,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134
52 An Investigation to Effective Parameters on the Damage of Dual Phase Steels by Acoustic Emission Using Energy Ratio

Authors: A. Fallahi, R. Khamedi

Abstract:

Dual phase steels (DPS)s have a microstructure consisting of a hard second phase called Martensite in the soft Ferrite matrix. In recent years, there has been interest in dual-phase steels, because the application of these materials has made significant usage; particularly in the automotive sector Composite microstructure of (DPS)s exhibit interesting characteristic mechanical properties such as continuous yielding, low yield stress to tensile strength ratios(YS/UTS), and relatively high formability; which offer advantages compared with conventional high strength low alloy steels(HSLAS). The research dealt with the characterization of damage in (DPS)s. In this study by review the mechanisms of failure due to volume fraction of martensite second phase; a new method is introduced to identifying the mechanisms of failure in the various phases of these types of steels. In this method the acoustic emission (AE) technique was used to detect damage progression. These failure mechanisms consist of Ferrite-Martensite interface decohesion and/or martensite phase fracture. For this aim, dual phase steels with different volume fraction of martensite second phase has provided by various heat treatment methods on a low carbon steel (0.1% C), and then AE monitoring is used during tensile test of these DPSs. From AE measurements and an energy ratio curve elaborated from the value of AE energy (it was obtained as the ratio between the strain energy to the acoustic energy), that allows detecting important events, corresponding to the sudden drops. These AE signals events associated with various failure mechanisms are classified for ferrite and (DPS)s with various amount of Vm and different martensite morphology. It is found that AE energy increase with increasing Vm. This increasing of AE energy is because of more contribution of martensite fracture in the failure of samples with higher Vm. Final results show a good relationship between the AE signals and the mechanisms of failure.

Keywords: Dual phase steel (DPS)s, Failure mechanisms, Acoustic Emission, Fracture strain energy to the acoustic energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1889
51 Effect of Fire Retardant Painting Product on Smoke Optical Density of Burning Natural Wood Samples

Authors: Abdullah N. Olimat, Ahmad S. Awad, Faisal M. AL-Ghathian

Abstract:

Natural wood is used in many applications in Jordan such as furniture, partitions constructions, and cupboards. Experimental work for smoke produced by the combustion of certain wood samples was studied. Smoke generated from burning of natural wood, is considered as a major cause of death in furniture fires. The critical parameter for life safety in fires is the available time for escape, so the visual obscuration due to smoke release during fire is taken into consideration. The effect of smoke, produced by burning of wood, depends on the amount of smoke released in case of fire. The amount of smoke production, apparently, affects the time available for the occupants to escape. To achieve the protection of life of building occupants during fire growth, fire retardant painting products are tested. The tested samples of natural wood include Beech, Ash, Beech Pine, and white Beech Pine. A smoke density chamber manufactured by fire testing technology has been used to perform measurement of smoke properties. The procedure of test was carried out according to the ISO-5659. A nonflammable vertical radiant heat flux of 25 kW/m2 is exposed to the wood samples in a horizontal orientation. The main objective of the current study is to carry out the experimental tests for samples of natural woods to evaluate the capability to escape in case of fire and the fire safety requirements. Specific optical density, transmittance, thermal conductivity, and mass loss are main measured parameters. Also, comparisons between samples with paint and with no paint are carried out between the selected samples of woods.

Keywords: Optical density, specific optical density, transmittance, visibility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1103
50 The Necessity of Biomass Application for Developing Combined Heat and Power(CHP) with Biogas Fuel: Case Study

Authors: Farnaz Amin Salehi, David Edward.Cotton, Mohammad Ali Abdoli, Kambiz Rezapour

Abstract:

The daily increase of organic waste materials resulting from different activities in the country is one of the main factors for the pollution of environment. Today, with regard to the low level of the output of using traditional methods, the high cost of disposal waste materials and environmental pollutions, the use of modern methods such as anaerobic digestion for the production of biogas has been prevailing. The collected biogas from the process of anaerobic digestion, as a renewable energy source similar to natural gas but with a less methane and heating value is usable. Today, with the help of technologies of filtration and proper preparation, access to biogas with features fully similar to natural gas has become possible. At present biogas is one of the main sources of supplying electrical and thermal energy and also an appropriate option to be used in four stroke engine, diesel engine, sterling engine, gas turbine, gas micro turbine and fuel cell to produce electricity. The use of biogas for different reasons which returns to socio-economic and environmental advantages has been noticed in CHP for the production of energy in the world. The production of biogas from the technology of anaerobic digestion and its application in CHP power plants in Iran can not only supply part of the energy demands in the country, but it can materialize moving in line with the sustainable development. In this article, the necessity of the development of CHP plants with biogas fuels in the country will be dealt based on studies performed from the economic, environmental and social aspects. Also to prove the importance of the establishment of these kinds of power plants from the economic point of view, necessary calculations has been done as a case study for a CHP power plant with a biogas fuel.

Keywords: Anaerobic Digestion, Biogas, CHP, Organic Wastes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
49 Alcoholic Extract of Terminalia Arjuna Protects Rabbit Heart against Ischemic-Reperfusion Injury: Role of Antioxidant Enzymes and Heat Shock Protein

Authors: K. Gauthaman, T.S. Mohamed Saleem, V. Ravi, Sita Sharan Patel, S. Niranjali Devaraj

Abstract:

The present study was designed to investigate the cardio protective role of chronic oral administration of alcoholic extract of Terminalia arjuna in in-vivo ischemic reperfusion injury and the induction of HSP72. Rabbits, divided into three groups, and were administered with the alcoholic extract of the bark powder of Terminalia arjuna (TAAE) by oral gavage [6.75mg/kg: (T1) and 9.75mg/kg: (T2), 6 days /week for 12 weeks]. In open-chest Ketamine pentobarbitone anaesthetized rabbits, the left anterior descending coronary artery was occluded for 15 min of ischemia followed by 60 min of reperfusion. In the vehicle-treated group, ischemic-reperfusion injury (IRI) was evidenced by depression of global hemodynamic function (MAP, HR, LVEDP, peak LV (+) & (- ) (dP/dt) along with depletion of HEP compounds. Oxidative stress in IRI was evidenced by, raised levels of myocardial TBARS and depletion of endogenous myocardial antioxidants GSH, SOD and catalase. Western blot analysis showed a single band corresponding to 72 kDa in homogenates of hearts from rabbits treated with both the doses. In the alcoholic extract of the bark powder of Terminalia arjuna treatment groups, both the doses had better recovery of myocardial hemodynamic function, with significant reduction in TBARS, and rise in SOD, GSH, catalase were observed. The results of the present study suggest that the alcoholic extract of the bark powder of Terminalia arjuna in rabbit induces myocardial HSP 72 and augments myocardial endogenous antioxidants, without causing any cellular injury and offered better cardioprotection against oxidative stress associated with myocardial IR injury.

Keywords: Antioxidants, HSP72, Ischemic reperfusion injury, Terminalia arjuna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301
48 Studies on the Characterization and Machinability of Duplex Stainless Steel 2205 during Dry Turning

Authors: Gaurav D. Sonawane, Vikas G. Sargade

Abstract:

The present investigation is a study of the effect of advanced Physical Vapor Deposition (PVD) coatings on cutting temperature residual stresses and surface roughness during Duplex Stainless Steel (DSS) 2205 turning. Austenite stabilizers like nickel, manganese, and molybdenum reduced the cost of DSS. Surface Integrity (SI) plays an important role in determining corrosion resistance and fatigue life. Resistance to various types of corrosion makes DSS suitable for applications with critical environments like Heat exchangers, Desalination plants, Seawater pipes and Marine components. However, lower thermal conductivity, poor chip control and non-uniform tool wear make DSS very difficult to machine. Cemented carbide tools (M grade) were used to turn DSS in a dry environment. AlTiN and AlTiCrN coatings were deposited using advanced PVD High Pulse Impulse Magnetron Sputtering (HiPIMS) technique. Experiments were conducted with cutting speed of 100 m/min, 140 m/min and 180 m/min. A constant feed and depth of cut of 0.18 mm/rev and 0.8 mm were used, respectively. AlTiCrN coated tools followed by AlTiN coated tools outperformed uncoated tools due to properties like lower thermal conductivity, higher adhesion strength and hardness. Residual stresses were found to be compressive for all the tools used for dry turning, increasing the fatigue life of the machined component. Higher cutting temperatures were observed for coated tools due to its lower thermal conductivity, which results in very less tool wear than uncoated tools. Surface roughness with uncoated tools was found to be three times higher than coated tools due to lower coefficient of friction of coating used.

Keywords: Cutting temperatures, DSS2205, dry turning, HiPIMS, surface integrity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 886
47 Modeling the Fischer-Tropsch Reaction In a Slurry Bubble Column Reactor

Authors: F. Gholami, M. Torabi Angaji, Z. Gholami

Abstract:

Fischer-Tropsch synthesis is one of the most important catalytic reactions that convert the synthetic gas to light and heavy hydrocarbons. One of the main issues is selecting the type of reactor. The slurry bubble reactor is suitable choice for Fischer- Tropsch synthesis because of its good qualification to transfer heat and mass, high durability of catalyst, low cost maintenance and repair. The more common catalysts for Fischer-Tropsch synthesis are Iron-based and Cobalt-based catalysts, the advantage of these catalysts on each other depends on which type of hydrocarbons we desire to produce. In this study, Fischer-Tropsch synthesis is modeled with Iron and Cobalt catalysts in a slurry bubble reactor considering mass and momentum balance and the hydrodynamic relations effect on the reactor behavior. Profiles of reactant conversion and reactant concentration in gas and liquid phases were determined as the functions of residence time in the reactor. The effects of temperature, pressure, liquid velocity, reactor diameter, catalyst diameter, gasliquid and liquid-solid mass transfer coefficients and kinetic coefficients on the reactant conversion have been studied. With 5% increase of liquid velocity (with Iron catalyst), H2 conversions increase about 6% and CO conversion increase about 4%, With 8% increase of liquid velocity (with Cobalt catalyst), H2 conversions increase about 26% and CO conversion increase about 4%. With 20% increase of gas-liquid mass transfer coefficient (with Iron catalyst), H2 conversions increase about 12% and CO conversion increase about 10% and with Cobalt catalyst H2 conversions increase about 10% and CO conversion increase about 6%. Results show that the process is sensitive to gas-liquid mass transfer coefficient and optimum condition operation occurs in maximum possible liquid velocity. This velocity must be more than minimum fluidization velocity and less than terminal velocity in such a way that avoid catalysts particles from leaving the fluidized bed.

Keywords: Modeling, Fischer-Tropsch Synthesis, Slurry Bubble Column Reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3020
46 Professional Burn out of Teachers: Reasons and Regularities

Authors: Dabyltayeva R. Y., Smatova K.B., Кabekenov G., Toleshova U., Shagyrbayeva M.

Abstract:

In recent years in Kazakhstan, as well as in all countries, we have been talking not only about the professional stress, but also professional Burnout Syndrome of employees. Burnout is essentially a response to chronic emotional stress – manifests itself in the form of chronic fatigue, despondency, unmotivated aggression, anger, and others. This condition is due to mental fatigue among teachers as a sort of payment for overstrain when professional commitments include the impact of “heat your soul", emotional investment. The emergence of professional Burnout among teachers is due to the system of interrelated and mutually reinforcing factors relating to the various levels of the personality: individually-psychological level is psychodynamic special subject characteristics of valuemotivational sphere and formation of skills and habits of selfregulation; the socio-psychological level includes especially the Organization and interpersonal interaction of a teacher. Signs of the Burnout were observed in 15 testees, and virtually a symptom could be observed in every teacher. As a result of the diagnosis 48% of teachers had the signs of stress (phase syndrome), resulting in a sense of anxiety, mood, heightened emotional susceptibility. The following results have also been got:-the fall of General energy potential – 14 pers. -Psychosomatic and psycho vegetative syndrome – 26 pers. -emotional deficit-34 pers. -emotional Burnout Syndrome-6 pers. The problem of professional Burnout of teachers in the current conditions should become not only meaningful, but particularly relevant. The quality of education of the younger generation depends on professional development; teachers- training level, and how “healthy" teachers are. That is why the systematic maintenance of pedagogic-professional development for teachers (including disclosure of professional Burnout Syndrome factors) takes on a special meaning.

Keywords: Professional burnout syndrome, adaptive syndrome, stage of depletion syndrome, symptoms and characteristics of burnout, prophylactic of professional destruction techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2105
45 Data Centers’ Temperature Profile Simulation Optimized by Finite Elements and Discretization Methods

Authors: José Alberto García Fernández, Zhimin Du, Xinqiao Jin

Abstract:

Nowadays, data center industry faces strong challenges for increasing the speed and data processing capacities while at the same time is trying to keep their devices a suitable working temperature without penalizing that capacity. Consequently, the cooling systems of this kind of facilities use a large amount of energy to dissipate the heat generated inside the servers, and developing new cooling techniques or perfecting those already existing would be a great advance in this type of industry. The installation of a temperature sensor matrix distributed in the structure of each server would provide the necessary information for collecting the required data for obtaining a temperature profile instantly inside them. However, the number of temperature probes required to obtain the temperature profiles with sufficient accuracy is very high and expensive. Therefore, other less intrusive techniques are employed where each point that characterizes the server temperature profile is obtained by solving differential equations through simulation methods, simplifying data collection techniques but increasing the time to obtain results. In order to reduce these calculation times, complicated and slow computational fluid dynamics simulations are replaced by simpler and faster finite element method simulations which solve the Burgers‘ equations by backward, forward and central discretization techniques after simplifying the energy and enthalpy conservation differential equations. The discretization methods employed for solving the first and second order derivatives of the obtained Burgers‘ equation after these simplifications are the key for obtaining results with greater or lesser accuracy regardless of the characteristic truncation error.

Keywords: Burgers’ equations, CFD simulation, data center, discretization methods, FEM simulation, temperature profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 516
44 Mathematical Model of Smoking Time Temperature Effect on Ribbed Smoked Sheets Quality

Authors: Rifah Ediati, Jajang

Abstract:

The quality of Ribbed Smoked Sheets (RSS) primarily based on color, dryness, and the presence or absence of fungus and bubbles. This quality is strongly influenced by the drying and fumigation process namely smoking process. Smoking that is held in high temperature long time will result scorched dark brown sheets, whereas if the temperature is too low or slow drying rate would resulted in less mature sheets and growth of fungus. Therefore need to find the time and temperature for optimum quality of sheets. Enhance, unmonitored heat and mass transfer during smoking process lead to high losses of energy balance. This research aims to generate simple empirical mathematical model describing the effect of smoking time and temperature to RSS quality of color, water content, fungus and bubbles. The second goal of study was to analyze energy balance during smoking process. Experimental study was conducted by measuring temperature, residence time and quality parameters of 16 sheets sample in smoking rooms. Data for energy consumption balance such as mass of fuel wood, mass of sheets being smoked, construction temperature, ambient temperature and relative humidity were taken directly along the smoking process. It was found that mathematical model correlating smoking temperature and time with color is Color = -169 - 0.184 T4 - 0.193 T3 - 0.160 0.405 T1 + T2 + 0.388 t1 +3.11 t2 + 3.92t3 + 0.215 t4 with R square 50.8% and with moisture is Moisture = -1.40-0.00123 T4 + 0.00032 T3 + 0.00260 T2 - 0.00292 T1 - 0.0105 t1 + 0.0290 t2 + 0.0452 t3 + 0.00061 t4 with R square of 49.9%. Smoking room energy analysis found useful energy was 27.8%. The energy stored in the material construction 7.3%. Lost of energy in conversion of wood combustion, ventilation and others were 16.6%. The energy flowed out through the contact of material construction with the ambient air was found to be the highest contribution to energy losses, it reached 48.3%.

Keywords: RSS quality, temperature, time, smoking room, energy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2758
43 Bronchospasm Analysis Following the Implementation of a Program of Maximum Aerobic Exercise in Active Men

Authors: Sajjad Shojaeidoust, Mohsen Ghanbarzadeh, Abdolhamid Habibi

Abstract:

Exercise-induced bronchospasm (EIB) is a transitory condition of airflow obstruction that is associated with physical activities. It is noted that high ventilation can lead to an increase in the heat and reduce in the moisture in airways resistance of trachea. Also causes of pathophysiological mechanism are EIB. Accordingly, studying some parameters of pulmonary function (FVC, FEV1) among active people seems quintessential. The aim of this study was to analyze bronchospasm following the implementation of a program of maximum aerobic exercise in active men at Chamran University of Ahwaz. Method: In this quasi-experimental study, the population consisted of all students at Chamran University. Among from 55 participants, of which, 15 were randomly selected as the experimental group. In this study, the size of the maximum oxygen consumption was initially measured, and then, based on the maximum oxygen consumed, the active individuals were identified. After five minutes’ warm-up, Strand treadmill exercise test was taken (one session) and pulmonary parameters were measured at both pre- and post-tests (spirometer). After data normalization using KS and non-normality of the data, the Wilcoxon test was used to analyze the data. The significance level for all statistical surveys was considered p≤0/05. Results: The results showed that the ventilation factors and bronchospasm (FVC, FEV1) in the pre-test and post-test resulted in no significant difference among the active people (p≥0/05). Discussion and conclusion: Based on the results observed in this study, it appears that pulmonary indices in active individuals increased after aerobic test. The increase in this indicator in active people is due to increased volume and elasticity of the lungs as well. In other words, pulmonary index is affected by rib muscles. It is considered that progress over respiratory muscle strength and endurance has raised FEV1 in the active cases.

Keywords: Bronchospasm, aerobic active maximum, pulmonary function, spirometer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1137
42 Multi-Objective Optimization of Gas Turbine Power Cycle

Authors: Mohsen Nikaein

Abstract:

Because of importance of energy, optimization of power generation systems is necessary. Gas turbine cycles are suitable manner for fast power generation, but their efficiency is partly low. In order to achieving higher efficiencies, some propositions are preferred such as recovery of heat from exhaust gases in a regenerator, utilization of intercooler in a multistage compressor, steam injection to combustion chamber and etc. However thermodynamic optimization of gas turbine cycle, even with above components, is necessary. In this article multi-objective genetic algorithms are employed for Pareto approach optimization of Regenerative-Intercooling-Gas Turbine (RIGT) cycle. In the multiobjective optimization a number of conflicting objective functions are to be optimized simultaneously. The important objective functions that have been considered for optimization are entropy generation of RIGT cycle (Ns) derives using Exergy Analysis and Gouy-Stodola theorem, thermal efficiency and the net output power of RIGT Cycle. These objectives are usually conflicting with each other. The design variables consist of thermodynamic parameters such as compressor pressure ratio (Rp), excess air in combustion (EA), turbine inlet temperature (TIT) and inlet air temperature (T0). At the first stage single objective optimization has been investigated and the method of Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used for multi-objective optimization. Optimization procedures are performed for two and three objective functions and the results are compared for RIGT Cycle. In order to investigate the optimal thermodynamic behavior of two objectives, different set, each including two objectives of output parameters, are considered individually. For each set Pareto front are depicted. The sets of selected decision variables based on this Pareto front, will cause the best possible combination of corresponding objective functions. There is no superiority for the points on the Pareto front figure, but they are superior to any other point. In the case of three objective optimization the results are given in tables.

Keywords: Exergy, Entropy Generation, Brayton Cycle, DesignParameters, Optimization, Genetic Algorithm, Multi-Objective.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2524
41 Three-Phase High Frequency AC Conversion Circuit with Dual Mode PWM/PDM Control Strategy for High Power IH Applications

Authors: Nabil A. Ahmed

Abstract:

This paper presents a novel three-phase utility frequency to high frequency soft switching power conversion circuit with dual mode pulse width modulation and pulse density modulation for high power induction heating applications as melting of steel and non ferrous metals, annealing of metals, surface hardening of steel and cast iron work pieces and hot water producers, steamers and super heated steamers. This high frequency power conversion circuit can operate from three-phase systems to produce high current for high power induction heating applications under the principles of ZVS and it can regulate its ac output power from the rated value to a low power level. A dual mode modulation control scheme based on high frequency PWM in synchronization with the utility frequency positive and negative half cycles for the proposed high frequency conversion circuit and utility frequency pulse density modulation is produced to extend its soft switching operating range for wide ac output power regulation. A dual packs heat exchanger assembly is designed to be used in consumer and industrial fluid pipeline systems and it is proved to be suitable for the hot water, steam and super heated steam producers. Experiment and simulation results are given in this paper to verify the operation principles of the proposed ac conversion circuit and to evaluate its power regulation and conversion efficiency. Also, the paper presents a mutual coupling model of the induction heating load instead of equivalent transformer circuit model.

Keywords: Induction heating, three-phase, conversion circuit, pulse width modulation, pulse density modulation, high frequency, soft switching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2178
40 Encouraging Collaboration and Innovation: The New Engineering Oriented Educational Reform in Urban Planning, Tianjin University, China

Authors: Tianjie Zhang, Bingqian Cheng, Peng Zeng

Abstract:

Engineering science and technology progress and innovation have become an important engine to promote social development. The reform exploration of "new engineering" in China has drawn extensive attention around the world, with its connotation as "to cultivate future diversified, innovative and outstanding engineering talents by taking ‘fostering character and civic virtue’ as the guide, responding to changes and shaping the future as the construction concept, and inheritance and innovation, crossover and fusion, coordination and sharing as the principal approach". In this context, Tianjin University, as a traditional Chinese university with advantages in engineering, further launched the CCII (Coherent-Collaborative-Interdisciplinary-Innovation) program, raising the cultivation idea of integrating new liberal arts education, multidisciplinary engineering education and personalized professional education. As urban planning practice in China has undergone the evolution of "physical planning -- comprehensive strategic planning -- resource management-oriented planning", planning education has also experienced the transmutation process of "building foundation -- urban scientific foundation -- multi-disciplinary integration". As a characteristic and advantageous discipline of Tianjin University, the major of Urban and Rural Planning, in accordance with the "CCII Program of Tianjin University", aims to build China's top and world-class major, and implements the following educational reform measures: 1. Adding corresponding English courses, such as advanced course on GIS Analysis, courses on comparative studies in international planning involving ecological resources and the sociology of the humanities, etc. 2. Holding "Academician Forum", inviting international academicians to give lectures or seminars to track international frontier scientific research issues. 3. Organizing "International Joint Workshop" to provide students with international exchange and design practice platform. 4. Setting up a business practice base, so that students can find problems from practice and solve them in an innovative way. Through these measures, the Urban and Rural Planning major of Tianjin University has formed a talent training system with multi-disciplinary cross integration and orienting to the future science and technology.

Keywords: China, higher education reform, innovation, new engineering education, rural and urban planning, Tianjin University.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 812
39 Optimal Design of a PV/Diesel Hybrid System for Decentralized Areas through Economic Criteria

Authors: D. Tsuanyo, D. Aussel, Y. Azoumah, P. Neveu

Abstract:

An innovative concept called “Flexy-Energy” is developing at 2iE. This concept aims to produce electricity at lower cost by smartly mix different available energy sources in accordance to the load profile of the region. With a higher solar irradiation and due to the fact that Diesel generator are massively used in sub-Saharan rural areas, PV/Diesel hybrid systems could be a good application of this concept and a good solution to electrify this region, provided they are reliable, cost effective and economically attractive to investors. Presentation of the developed approach is the aims of this paper. The PV/Diesel hybrid system designed consists to produce electricity and/or heat from a coupling between Diesel Diesel generators and PV panels without batteries storage, while ensuring the substitution of gasoil by bio-fuels available in the area where the system will be installed. The optimal design of this system is based on his technical performances; the Life Cycle Cost (LCC) and Levelized Cost of Energy are developed and use as economic criteria. The Net Present Value (NPV), the internal rate of return (IRR) and the discounted payback (DPB) are also evaluated according to dual electricity pricing (in sunny and unsunny hours). The PV/Diesel hybrid system obtained is compared to the standalone Diesel Diesel generators. The approach carried out in this paper has been applied to Siby village in Mali (Latitude 12 ° 23'N 8 ° 20'W) with 295 kWh as daily demand.This approach provides optimal physical characteristics (size of the components, number of component) and dynamical characteristics in real time (number of Diesel generator on, their load rate, fuel specific consumptions, and PV penetration rate) of the system. The system obtained is slightly cost effective; but could be improved with optimized tariffing strategies.

Keywords: Investments criteria, Optimization, PV hybrid, Sizing, Rural electrification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053
38 How Virtualization, Decentralization and Network Building Change the Manufacturing Landscape: An Industry 4.0 Perspective

Authors: Malte Brettel, Niklas Friederichsen, Michael Keller, Marius Rosenberg

Abstract:

The German manufacturing industry has to withstand an increasing global competition on product quality and production costs. As labor costs are high, several industries have suffered severely under the relocation of production facilities towards aspiring countries, which have managed to close the productivity and quality gap substantially. Established manufacturing companies have recognized that customers are not willing to pay large price premiums for incremental quality improvements. As a consequence, many companies from the German manufacturing industry adjust their production focusing on customized products and fast time to market. Leveraging the advantages of novel production strategies such as Agile Manufacturing and Mass Customization, manufacturing companies transform into integrated networks, in which companies unite their core competencies. Hereby, virtualization of the process- and supply-chain ensures smooth inter-company operations providing real-time access to relevant product and production information for all participating entities. Boundaries of companies deteriorate, as autonomous systems exchange data, gained by embedded systems throughout the entire value chain. By including Cyber-Physical-Systems, advanced communication between machines is tantamount to their dialogue with humans. The increasing utilization of information and communication technology allows digital engineering of products and production processes alike. Modular simulation and modeling techniques allow decentralized units to flexibly alter products and thereby enable rapid product innovation. The present article describes the developments of Industry 4.0 within the literature and reviews the associated research streams. Hereby, we analyze eight scientific journals with regards to the following research fields: Individualized production, end-to-end engineering in a virtual process chain and production networks. We employ cluster analysis to assign sub-topics into the respective research field. To assess the practical implications, we conducted face-to-face interviews with managers from the industry as well as from the consulting business using a structured interview guideline. The results reveal reasons for the adaption and refusal of Industry 4.0 practices from a managerial point of view. Our findings contribute to the upcoming research stream of Industry 4.0 and support decision-makers to assess their need for transformation towards Industry 4.0 practices. 

Keywords: Industry 4.0., Mass Customization, Production networks, Virtual Process-Chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31737
37 Producing and Mechanical Testing of Urea-Formaldehyde Resin Foams Reinforced by Waste Phosphogypsum

Authors: Krasimira Georgieva, Yordan Denev

Abstract:

Many of thermosetting resins have application only in filled state, reinforced with different mineral fillers. The co-filling of polymers with mineral filler and gases creates a possibility for production of polymer composites materials with low density. This processing leads to forming of new materials – gas-filled plastics (polymer foams). The properties of these materials are determined mainly by the shape and size of internal structural elements (pores). The interactions on the phase boundaries have influence on the materials properties too. In the present work, the gas-filled urea-formaldehyde resins were reinforced by waste phosphogypsum. The waste phosphogypsum (CaSO4.2H2O) is a solid by-product in wet phosphoric acid production processes. The values of the interactions polymer-filler were increased by using two modifying agents: polyvinyl acetate for polymer matrix and sodium metasilicate for filler. Technological methods for gas-filling and recipes of urea-formaldehyde based materials with apparent density 20-120 kg/m3 were developed. The heat conductivity of the samples is between 0.024 and 0.029 W/moK. Tensile analyses were carried out at 10 and 50% deformation and show values 0.01-0.14 MPa and 0.01-0.09 MPa, respectively. The apparent density of obtained materials is between 20 and 92 kg/m3. The changes in the tensile properties and density of these materials according to sodium metasilicate content were studied too. The mechanism of phosphogypsum adsorption modification was studied using methods of FT-IR spectroscopy. The structure of the gas-filled urea-formaldehyde resins was described by results of electron scanning microscopy at three different magnification ratios – x50, x150 and x 500. The aim of present work is to study the possibility of the usage of phosphogypsum as mineral filler for urea-formaldehyde resins and development of a technology for the production of gas-filled reinforced polymer composite materials. The structure and the properties of obtained composite materials are suitable for thermal and sound insulation applications.

Keywords: Gas-filled thermosets, mechanical properties, phosphogypsum, urea-formaldehyde resins.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713
36 Two-Level Identification of HVAC Consumers for Demand Response Potential Estimation Based on Setpoint Change

Authors: M. Naserian, M. Jooshaki, M. Fotuhi-Firuzabad, M. Hossein Mohammadi Sanjani, A. Oraee

Abstract:

In recent years, the development of communication infrastructure and smart meters have facilitated the utilization of demand-side resources which can enhance stability and economic efficiency of power systems. Direct load control programs can play an important role in the utilization of demand-side resources in the residential sector. However, investments required for installing control equipment can be a limiting factor in the development of such demand response programs. Thus, selection of consumers with higher potentials is crucial to the success of a direct load control program. Heating, ventilation, and air conditioning (HVAC) systems, which due to the heat capacity of buildings feature relatively high flexibility, make up a major part of household consumption. Considering that the consumption of HVAC systems depends highly on the ambient temperature and bearing in mind the high investments required for control systems enabling direct load control demand response programs, in this paper, a solution is presented to uncover consumers with high air conditioner demand among a large number of consumers and to measure the demand response potential of such consumers. This can pave the way for estimating the investments needed for the implementation of direct load control programs for residential HVAC systems and for estimating the demand response potentials in a distribution system. In doing so, we first cluster consumers into several groups based on the correlation coefficients between hourly consumption data and hourly temperature data using K-means algorithm. Then, by applying a recent algorithm to the hourly consumption and temperature data, consumers with high air conditioner consumption are identified. Finally, demand response potential of such consumers is estimated based on the equivalent desired temperature setpoint changes.

Keywords: Data-driven analysis, demand response, direct load control, HVAC system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 239
35 Performance, Emission and Combustion Characteristics of a Variable Compression Ratio Diesel Engine Fueled with Karanj Biodiesel and Its Blends

Authors: Ajay V. Kolhe, R. E. Shelke, S. S. Khandare

Abstract:

The use of biodiesel in conventional diesel engines results in substantial reduction of unburned hydrocarbon, carbon monoxide and particulate matters. The performance, emission and combustion characteristics of a single cylinder four stroke variable compression ratio engine when fueled with Karanja (Pongamia) methyl ester and its 10-50 % blends with diesel (on a volume basis) are investigated and compared with standard diesel. The suitability of karanja methyl ester as a biofuel has been established in this study. The useful brake power obtained is similar to diesel fuel for all loads. Experiment has been conducted at a fixed engine speed of 1500 rpm, variable load and at compression ratios of 17.5:1 and 18.5:1. The impact of compression ratio on fuel consumption, combustion pressures and exhaust gas emissions has been investigated and presented. Optimum compression ratio which gives best performance has been identified. The results indicate longer ignition delay, maximum rate of pressure rise, lower heat release rate and higher mass fraction burnt at higher compression ratio for pongamia oil methyl ester when compared to that of diesel. The brake thermal efficiency for pongamia oil methyl ester blends and diesel has been calculated and the blend B20 is found to give maximum thermal efficiency. The blends when used as fuel results in reduction of carbon monoxide, hydrocarbon and increase in nitrogen oxides emissions. PME as an oxygenated fuel generated more complete combustion, which means increased torque and power. This is also supported with higher thermal efficiencies of the PME blends. NOx is slightly increased due to the higher combustion temperature and the presence of fuel oxygen with the blend at full load. PME as a new Biodiesel and its blends can be used in diesel engines without any engine modification.

Keywords: Variable compression ratio CI engine, performance, combustion, emissions, biodiesel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3298
34 A Hygrothermal Analysis and Structural Performance of Wood-Frame Wall Systems with Low-Permeance Exterior Insulation

Authors: Marko Spasojevic, Ying Hei Chui, Yuxiang Chen

Abstract:

Increasing the level of exterior insulation in residential buildings is a popular way for improving the thermal characteristic of building enclosure and reducing heat loss. However, the layout and properties of materials composing the wall have a great effect on moisture accumulation within the wall cavity, long-term durability of a wall as well as the structural performance. A one-dimensional hygrothermal modeling has been performed to investigate moisture condensation risks and the drying capacity of standard 2×4 and 2×6 light wood-frame wall assemblies including exterior low-permeance extruded polystyrene (XPS) insulation. The analysis considered two different wall configurations whereby the rigid insulation board was placed either between Oriented Strand Board (OSB) sheathing and the stud or outboard to the structural sheathing. The thickness of the insulation varied between 0 mm and 50 mm and the analysis has been conducted for eight different locations in Canada, covering climate zone 4 through zone 8. Results show that the wall configuration with low-permeance insulation inserted between the stud and OSB sheathing accumulates more moisture within the stud cavity, compared to the assembly with the same insulation placed exterior to the sheathing. On the other hand, OSB moisture contents of the latter configuration were markedly higher. Consequently, the analysis of hygrothermal performance investigated and compared moisture accumulation in both the OSB and stud cavity. To investigate the structural performance of the wall and the effect of soft insulation layer inserted between the sheathing and framing, forty nail connection specimens were tested. Results have shown that both the connection strength and stiffness experience a significant reduction as the insulation thickness increases. These results will be compared with results from a full-scale shear wall tests in order to investigate if the capacity of shear walls with insulated sheathing would experience a similar reduction in structural capacities.

Keywords: Hygrothermal analysis, insulated sheathing, moisture performance, nail joints, wood shear wall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 638
33 A Coupled Model for Two-Phase Simulation of a Heavy Water Pressure Vessel Reactor

Authors: Damian Ramajo, Santiago Corzo, Norberto Nigro

Abstract:

A Multi-dimensional computational fluid dynamics (CFD) two-phase model was developed with the aim to simulate the in-core coolant circuit of a pressurized heavy water reactor (PHWR) of a commercial nuclear power plant (NPP). Due to the fact that this PHWR is a Reactor Pressure Vessel type (RPV), three-dimensional (3D) detailed modelling of the large reservoirs of the RPV (the upper and lower plenums and the downcomer) were coupled with an in-house finite volume one-dimensional (1D) code in order to model the 451 coolant channels housing the nuclear fuel. Regarding the 1D code, suitable empirical correlations for taking into account the in-channel distributed (friction losses) and concentrated (spacer grids, inlet and outlet throttles) pressure losses were used. A local power distribution at each one of the coolant channels was also taken into account. The heat transfer between the coolant and the surrounding moderator was accurately calculated using a two-dimensional theoretical model. The implementation of subcooled boiling and condensation models in the 1D code along with the use of functions for representing the thermal and dynamic properties of the coolant and moderator (heavy water) allow to have estimations of the in-core steam generation under nominal flow conditions for a generic fission power distribution. The in-core mass flow distribution results for steady state nominal conditions are in agreement with the expected from design, thus getting a first assessment of the coupled 1/3D model. Results for nominal condition were compared with those obtained with a previous 1/3D single-phase model getting more realistic temperature patterns, also allowing visualize low values of void fraction inside the upper plenum. It must be mentioned that the current results were obtained by imposing prescribed fission power functions from literature. Therefore, results are showed with the aim of point out the potentiality of the developed model.

Keywords: CFD, PHWR, Thermo-hydraulic, Two-phase flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2710
32 Study of the Energy Efficiency of Buildings under Tropical Climate with a View to Sustainable Development: Choice of Material Adapted to the Protection of the Environment

Authors: Guarry Montrose, Ted Soubdhan

Abstract:

In the context of sustainable development and climate change, the adaptation of buildings to the climatic context in hot climates is a necessity if we want to improve living conditions in housing and reduce the risks to the health and productivity of occupants due to thermal discomfort in buildings. One can find a wide variety of efficient solutions but with high costs. In developing countries, especially tropical countries, we need to appreciate a technology with a very limited cost that is affordable for everyone, energy efficient and protects the environment. Biosourced insulation is a product based on plant fibers, animal products or products from recyclable paper or clothing. Their development meets the objectives of maintaining biodiversity, reducing waste and protecting the environment. In tropical or hot countries, the aim is to protect the building from solar thermal radiation, a source of discomfort. The aim of this work is in line with the logic of energy control and environmental protection, the approach is to make the occupants of buildings comfortable, reduce their carbon dioxide emissions (CO2) and decrease their energy consumption (energy efficiency). We have chosen to study the thermo-physical properties of banana leaves and sawdust, especially their thermal conductivities, direct measurements were made using the flash method and the hot plate method. We also measured the heat flow on both sides of each sample by the hot box method. The results from these different experiences show that these materials are very efficient used as insulation. We have also conducted a building thermal simulation using banana leaves as one of the materials under Design Builder software. Air-conditioning load as well as CO2 release was used as performance indicator. When the air-conditioned building cell is protected on the roof by banana leaves and integrated into the walls with solar protection of the glazing, it saves up to 64.3% of energy and avoids 57% of CO2 emissions.

Keywords: Plant fibers, tropical climates, sustainable development, waste reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 552
31 Simulation of Concrete Wall Subjected to Airblast by Developing an Elastoplastic Spring Model in Modelica Modelling Language

Authors: Leo Laine, Morgan Johansson

Abstract:

To meet the civilizations future needs for safe living and low environmental footprint, the engineers designing the complex systems of tomorrow will need efficient ways to model and optimize these systems for their intended purpose. For example, a civil defence shelter and its subsystem components needs to withstand, e.g. airblast and ground shock from decided design level explosion which detonates with a certain distance from the structure. In addition, the complex civil defence shelter needs to have functioning air filter systems to protect from toxic gases and provide clean air, clean water, heat, and electricity needs to also be available through shock and vibration safe fixtures and connections. Similar complex building systems can be found in any concentrated living or office area. In this paper, the authors use a multidomain modelling language called Modelica to model a concrete wall as a single degree of freedom (SDOF) system with elastoplastic properties with the implemented option of plastic hardening. The elastoplastic model was developed and implemented in the open source tool OpenModelica. The simulation model was tested on the case with a transient equivalent reflected pressure time history representing an airblast from 100 kg TNT detonating 15 meters from the wall. The concrete wall is approximately regarded as a concrete strip of 1.0 m width. This load represents a realistic threat on any building in a city like area. The OpenModelica model results were compared with an Excel implementation of a SDOF model with an elastic-plastic spring using simple fixed timestep central difference solver. The structural displacement results agreed very well with each other when it comes to plastic displacement magnitude, elastic oscillation displacement, and response times.

Keywords: Airblast from explosives, elastoplastic spring model, Modelica modelling language, SDOF, structural response of concrete structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 907
30 Application of Recycled Tungsten Carbide Powder for Fabrication of Iron Based Powder Metallurgy Alloy

Authors: Yukinori Taniguchi, Kazuyoshi Kurita, Kohei Mizuta, Keigo Nishitani, Ryuichi Fukuda

Abstract:

Tungsten carbide is widely used as a tool material in metal manufacturing process. Since tungsten is typical rare metal, establishment of recycle process of tungsten carbide tools and restore into cemented carbide material bring great impact to metal manufacturing industry. Recently, recycle process of tungsten carbide has been developed and established gradually. However, the demands for quality of cemented carbide tool are quite severe because hardness, toughness, anti-wear ability, heat resistance, fatigue strength and so on should be guaranteed for precision machining and tool life. Currently, it is hard to restore the recycled tungsten carbide powder entirely as raw material for new processed cemented carbide tool. In this study, to suggest positive use of recycled tungsten carbide powder, we have tried to fabricate a carbon based sintered steel which shows reinforced mechanical properties with recycled tungsten carbide powder. We have made set of newly designed sintered steels. Compression test of sintered specimen in density ratio of 0.85 (which means 15% porosity inside) has been conducted. As results, at least 1.7 times higher in nominal strength in the amount of 7.0 wt.% was shown in recycled WC powder. The strength reached to over 600 MPa for the Fe-WC-Co-Cu sintered alloy. Wear test has been conducted by using ball-on-disk type friction tester using 5 mm diameter ball with normal force of 2 N in the dry conditions. Wear amount after 1,000 m running distance shows that about 1.5 times longer life was shown in designed sintered alloy. Since results of tensile test showed that same tendency in previous testing, it is concluded that designed sintered alloy can be used for several mechanical parts with special strength and anti-wear ability in relatively low cost due to recycled tungsten carbide powder.

Keywords: Tungsten carbide, recycle process, compression test, powder metallurgy, anti-wear ability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477
29 A Comparative Study of the Techno-Economic Performance of the Linear Fresnel Reflector Using Direct and Indirect Steam Generation: A Case Study under High Direct Normal Irradiance

Authors: Ahmed Aljudaya, Derek Ingham, Lin Ma, Kevin Hughes, Mohammed Pourkashanian

Abstract:

Researchers, power companies, and state politicians have given concentrated solar power (CSP) much attention due to its capacity to generate large amounts of electricity whereas overcoming the intermittent nature of solar resources. The Linear Fresnel Reflector (LFR) is a well-known CSP technology type for being inexpensive, having a low land use factor, and suffering from low optical efficiency. The LFR was considered a cost-effective alternative option to the Parabolic Trough Collector (PTC) because of its simplistic design, and this often outweighs its lower efficiency. The LFR power plants commercially generate steam directly and indirectly in order to produce electricity with high technical efficiency and lower its costs. The purpose of this important analysis is to compare the annual performance of the Direct Steam Generation (DSG) and Indirect Steam Generation (ISG) of LFR power plants using molten salt and other different Heat Transfer Fluids (HTF) to investigate their technical and economic effects. A 50 MWe solar-only system is examined as a case study for both steam production methods in extreme weather conditions. In addition, a parametric analysis is carried out to determine the optimal solar field size that provides the lowest Levelized Cost of Electricity (LCOE) while achieving the highest technical performance. As a result of optimizing the optimum solar field size, the solar multiple (SM) is found to be between 1.2 – 1.5 in order to achieve as low as 9 Cent/KWh for the DSG of the LFR. In addition, the power plant is capable of producing around 141 GWh annually and up to 36% of the capacity factor, whereas the ISG produces less energy at a higher cost. The optimization results show that the DSG’s performance overcomes the ISG in producing around 3% more annual energy, 2% lower LCOE, and 28% less capital cost.

Keywords: Concentrated Solar Power, Levelized cost of electricity, Linear Fresnel reflectors, Steam generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195
28 Production of Pre-Reduction of Iron Ore Nuggets with Lesser Sulphur Intake by Devolatisation of Boiler Grade Coal

Authors: Chanchal Biswas, Anrin Bhattacharyya, Gopes Chandra Das, Mahua Ghosh Chaudhuri, Rajib Dey

Abstract:

Boiler coals with low fixed carbon and higher ash content have always challenged the metallurgists to develop a suitable method for their utilization. In the present study, an attempt is made to establish an energy effective method for the reduction of iron ore fines in the form of nuggets by using ‘Syngas’. By devolatisation (expulsion of volatile matter by applying heat) of boiler coal, gaseous product (enriched with reducing agents like CO, CO2, H2, and CH4 gases) is generated. Iron ore nuggets are reduced by this syngas. For that reason, there is no direct contact between iron ore nuggets and coal ash. It helps to control the minimization of the sulphur intake of the reduced nuggets. A laboratory scale devolatisation furnace designed with reduction facility is evaluated after in-depth studies and exhaustive experimentations including thermo-gravimetric (TG-DTA) analysis to find out the volatile fraction present in boiler grade coal, gas chromatography (GC) to find out syngas composition in different temperature and furnace temperature gradient measurements to minimize the furnace cost by applying one heating coil. The nuggets are reduced in the devolatisation furnace at three different temperatures and three different times. The pre-reduced nuggets are subjected to analytical weight loss calculations to evaluate the extent of reduction. The phase and surface morphology analysis of pre-reduced samples are characterized using X-ray diffractometry (XRD), energy dispersive x-ray spectrometry (EDX), scanning electron microscopy (SEM), carbon sulphur analyzer and chemical analysis method. Degree of metallization of the reduced nuggets is 78.9% by using boiler grade coal. The pre-reduced nuggets with lesser sulphur content could be used in the blast furnace as raw materials or coolant which would reduce the high quality of coke rate of the furnace due to its pre-reduced character. These can be used in Basic Oxygen Furnace (BOF) as coolant also.

Keywords: Alternative ironmaking, coal devolatisation, extent of reduction, nugget making, syngas based DRI, solid state reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
27 Current Deflecting Wall: A Promising Structure for Minimising Siltation in Semi-Enclosed Docks

Authors: A. A. Purohit, A. Basu, K. A. Chavan, M. D. Kudale

Abstract:

Many estuarine harbours in the world are facing the problem of siltation in docks, channel entrances, etc. The harbours in India are not an exception and require maintenance dredging to achieve navigable depths for keeping them operable. Hence, dredging is inevitable and is a costly affair. The heavy siltation in docks in well mixed tide dominated estuaries is mainly due to settlement of cohesive sediments in suspension. As such there is a need to have a permanent solution for minimising the siltation in such docks to alter the hydrodynamic flow field responsible for siltation by constructing structures outside the dock. One of such docks on the west coast of India, wherein siltation of about 2.5-3 m/annum prevails, was considered to understand the hydrodynamic flow field responsible for siltation. The dock is situated in such a region where macro type of semi-diurnal tide (range of about 5m) prevails. In order to change the flow field responsible for siltation inside the dock, suitability of Current Deflecting Wall (CDW) outside the dock was studied, which will minimise the sediment exchange rate and siltation in the dock. The well calibrated physical tidal model was used to understand the flow field during various phases of tide for the existing dock in Mumbai harbour. At the harbour entrance where the tidal flux exchanges in/out of the dock, measurements on water level and current were made to estimate the sediment transport capacity. The distorted scaled model (1:400 (H) & 1:80 (V)) of Mumbai area was used to study the tidal flow phenomenon, wherein tides are generated by automatic tide generator. Hydraulic model studies carried out under the existing condition (without CDW) reveal that, during initial hours of flood tide, flow hugs the docks breakwater and part of flow which enters the dock forms number of eddies of varying sizes inside the basin, while remaining part of flow bypasses the entrance of dock. During ebb, flow direction reverses, and part of the flow re-enters the dock from outside and creates eddies at its entrance. These eddies do not allow water/sediment-mass to come out and result in settlement of sediments in dock both due to eddies and more retention of sediment. At latter hours, current strength outside the dock entrance reduces and allows the water-mass of dock to come out. In order to improve flow field inside the dockyard, two CDWs of length 300 m and 40 m were proposed outside the dock breakwater and inline to Pier-wall at dock entrance. Model studies reveal that, during flood, major flow gets deflected away from the entrance and no eddies are formed inside the dock, while during ebb flow does not re-enter the dock, and sediment flux immediately starts emptying it during initial hours of ebb. This reduces not only the entry of sediment in dock by about 40% but also the deposition by about 42% due to less retention. Thus, CDW is a promising solution to significantly reduce siltation in dock.

Keywords: Current deflecting wall, eddies, hydraulic model, macro tide, siltation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1266
26 Properties of Adipose Tissue Derived Mesenchymal Stem Cells with Long-Term Cryopreservation

Authors: Jienny Lee, In-Soo Cho, Sang-Ho Cha

Abstract:

Adult mesenchymal stem cells (MSCs) have been investigated using preclinical approaches for tissue regeneration. Porcine MSCs (pMSCs) are capable of growing and attaching to plastic with a fibroblast-like morphology and then differentiating into bone, adipose, and cartilage tissues in vitro. This study was conducted to investigate the proliferating abilities, differentiation potentials, and multipotency of miniature pig adipose tissue-derived MSCs (mpAD-MSCs) with or without long-term cryopreservation, considering that cryostorage has the potential for use in clinical applications. After confirming the characteristics of the mpAD-MSCs, we examined the effect of long-term cryopreservation (> 2 years) on expression of cell surface markers (CD34, CD90 and CD105), proliferating abilities (cumulative population doubling level, doubling time, colony-forming unit, and MTT assay) and differentiation potentials into mesodermal cell lineages. As a result, the expression of cell surface markers is similar between thawed and fresh mpAD-MSCs. However, long-term cryopreservation significantly lowered the differentiation potentials (adipogenic, chondrogenic, and osteogenic) of mpAD-MSCs. When compared with fresh mpAD-MSCs, thawed mpAD-MSCs exhibited lower expression of mesodermal cell lineage-related genes such as peroxisome proliferator-activated receptor-g2, lipoprotein lipase, collagen Type II alpha 1, osteonectin, and osteocalcin. Interestingly, long-term cryostoraged mpAD-MSCs exhibited significantly higher cell viability than the fresh mpAD-MSCs. Long-term cryopreservation induced a 30% increase in the cell viability of mpAD-MSCs when compared with the fresh mpAD-MSCs at 5 days after thawing. However, long-term cryopreservation significantly lowered expression of stemness markers such as Oct3/4, Sox2, and Nanog. Furthermore, long-term cryopreservation negatively affected expression of senescence-associated genes such as telomerase reverse transcriptase and heat shock protein 90 of mpAD-MSCs when compared with the fresh mpAD-MSCs. The results from this study might be important for the successful application of MSCs in clinical trials after long-term cryopreservation.

Keywords: Mesenchymal stem cells, Cryopreservation, Stemness, Senescence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2103