Search results for: Cold Formed Steel Shear Wall Panel
829 On Asymptotic Laws and Transfer Processes Enhancement in Complex Turbulent Flows
Authors: A. Gorin
Abstract:
The lecture represents significant advances in understanding of the transfer processes mechanism in turbulent separated flows. Based upon experimental data suggesting the governing role of generated local pressure gradient that takes place in the immediate vicinity of the wall in separated flow as a result of intense instantaneous accelerations induced by large-scale vortex flow structures similarity laws for mean velocity and temperature and spectral characteristics and heat and mass transfer law for turbulent separated flows have been developed. These laws are confirmed by available experimental data. The results obtained were employed for analysis of heat and mass transfer in some very complex processes occurring in technological applications such as impinging jets, heat transfer of cylinders in cross flow and in tube banks, packed beds where processes manifest distinct properties which allow them to be classified under turbulent separated flows. Many facts have got an explanation for the first time.Keywords: impinging jets, packed beds, turbulent separatedflows, 'two-thirds power law'
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852828 Numerical Analysis and Sensitivity Study of Non-Premixed Combustion Using LES
Authors: J. Dumrongsak, A. M. Savill
Abstract:
Non-premixed turbulent combustion Computational Fluid Dynamics (CFD) has been carried out in a simplified methanefuelled coaxial jet combustor employing Large Eddy Simulation (LES). The objective of this study is to evaluate the performance of LES in modelling non-premixed combustion using a commercial software, FLUENT, and investigate the effects of the grid density and chemistry models employed on the accuracy of the simulation results. A comparison has also been made between LES and Reynolds Averaged Navier-Stokes (RANS) predictions. For LES grid sensitivity test, 2.3 and 6.2 million cell grids are employed with the equilibrium model. The chemistry model sensitivity analysis is achieved by comparing the simulation results from the equilibrium chemistry and steady flamelet models. The predictions of the mixture fraction, axial velocity, species mass fraction and temperature by LES are in good agreement with the experimental data. The LES results are similar for the two chemistry models but influenced considerably by the grid resolution in the inner flame and near-wall regions.
Keywords: Coaxial jet, reacting LES, non-premixed combustion, turbulent flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2843827 Effect of Base Coarse Layer on Load-Settlement Characteristics of Sandy Subgrade Using Plate Load Test
Authors: A. Nazeri, R. Ziaie Moayed, H. Ghiasinejad
Abstract:
The present research has been performed to investigate the effect of base course application on load-settlement characteristics of sandy subgrade using plate load test. The main parameter investigated in this study was the subgrade reaction coefficient. The model tests were conducted in a 1.35 m long, 1 m wide, and 1 m deep steel test box of Imam Khomeini International University (IKIU Calibration Chamber). The base courses used in this research were in three different thicknesses of 15 cm, 20 cm, and 30 cm. The test results indicated that in the case of using base course over loose sandy subgrade, the values of subgrade reaction coefficient can be increased from 7 to 132 , 224 , and 396 in presence of 15 cm, 20 cm, and 30 cm base course, respectively.
Keywords: Base course, calibration chamber, plate load test, loose sand, subgrade reaction coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1180826 Critical Heights of Sloped Unsupported Trenches in Unsaturated Sand
Authors: Won Taek Oh, Adin Richard
Abstract:
Workers are often required to enter unsupported trenches during the construction process, which may present serious risks. Trench failures can result in death or damage to adjacent properties, therefore trenches should be excavated with extreme precaution. Excavation work is often done in unsaturated soils, where the critical height (i.e. maximum depth that can be excavated without failure) of unsupported trenches can be more reliably estimated by considering the influence of matric suction. In this study, coupled stress/pore-water pressure analyses are conducted to investigate the critical height of sloped unsupported trenches considering the influence of pore-water pressure redistribution caused by excavating. Four different wall slopes (1.5V:1H, 2V:1H, 3V:1H, and 90°) and a vertical trench with the top 0.3 m sloped 1:1 were considered in the analyses with multiple depths of the ground water table in a sand. For comparison, the critical heights were also estimated using the limit equilibrium method for the same excavation scenarios used in the coupled analyses.
Keywords: Critical height, matric suction, unsaturated soil, unsupported trench.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1062825 Unsupervised Text Mining Approach to Early Warning System
Authors: Ichihan Tai, Bill Olson, Paul Blessner
Abstract:
Traditional early warning systems that alarm against crisis are generally based on structured or numerical data; therefore, a system that can make predictions based on unstructured textual data, an uncorrelated data source, is a great complement to the traditional early warning systems. The Chicago Board Options Exchange (CBOE) Volatility Index (VIX), commonly referred to as the fear index, measures the cost of insurance against market crash, and spikes in the event of crisis. In this study, news data is consumed for prediction of whether there will be a market-wide crisis by predicting the movement of the fear index, and the historical references to similar events are presented in an unsupervised manner. Topic modeling-based prediction and representation are made based on daily news data between 1990 and 2015 from The Wall Street Journal against VIX index data from CBOE.
Keywords: Early Warning System, Knowledge Management, Topic Modeling, Market Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920824 Cost and Profit Analysis of Markovian Queuing System with Two Priority Classes: A Computational Approach
Authors: S. S. Mishra, D. K. Yadav
Abstract:
This paper focuses on cost and profit analysis of single-server Markovian queuing system with two priority classes. In this paper, functions of total expected cost, revenue and profit of the system are constructed and subjected to optimization with respect to its service rates of lower and higher priority classes. A computing algorithm has been developed on the basis of fast converging numerical method to solve the system of non linear equations formed out of the mathematical analysis. A novel performance measure of cost and profit analysis in view of its economic interpretation for the system with priority classes is attempted to discuss in this paper. On the basis of computed tables observations are also drawn to enlighten the variational-effect of the model on the parameters involved therein.Keywords: Cost and Profit, Computing, Expected Revenue, Priority classes
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2716823 Study of the Effects of Ceramic Nano-Pigments in Cement Mortar Corrosion Caused by Chlorine Ions
Authors: R. Moradpour, S.B. Ahmadi, T. Parhizkar, M. Ghodsian, E. Taheri-Nassaj
Abstract:
Superfine pigments that consist of natural and artificial pigments and are made of mineral soil with special characteristics are used in cementitious materials for various purposes. These pigments can decrease the amount of cement needed without loss of performance and strength and also change the monotonous and turbid colours of concrete into various attractive and light colours. In this study, the mechanical strength and resistance against chloride and halogen attacks of cement mortars containing ceramic nano-pigments in an affected environment are studied. This research suggests utilisation of ceramic nano-pigments between 50 and 1000 nm, obtaining full-depth coloured concrete, preventing chlorine penetration in the concrete up to a certain depth, and controlling corrosion in steel rebar with the Potentiostat (EG&G) apparatus.
Keywords: Nano-structures, Corrosion, Mechanical properties, Nano-pigments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2804822 A Methodology of Testing Beam to Column Connection under Lateral Impact Load
Authors: A. Al-Rifaie, Z. W. Guan, S. W. Jones
Abstract:
Beam to column connection can be considered as the most important structural part that affects the response of buildings to progressive collapse. However, many studies were conducted to investigate the beam to column connection under accidental loads such as fire, blast and impact load to investigate the connection response. The study is a part of a PhD plan to investigate different types of connections under lateral impact load. The conventional test setups, such as cruciform setup, were designed to apply shear forces and bending moment on the connection, whilst, in the lateral impact case, the connection is subjected to combined tension and moment. Hence, a review is presented to introduce the previous test setup that is used to investigate the connection behaviour. Then, the design and fabrication of the novel test setup is presented. Finally, some trial test results to investigate the efficiency of the proposed setup are discussed. The final results indicate that the setup was efficient in terms of the simplicity and strength.
Keywords: Connections, impact load, drop hammer, testing methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1197821 Investigation of Stoneley Waves in Multilayered Plates
Authors: Bing Li, Tong Lu, Lei Qiang
Abstract:
Stoneley waves are interface waves that propagate at the interface between two solid media. In this study, the dispersion characteristics and wave structures of Stoneley waves in elastic multilayered plates are displayed and investigated. With a perspective of bulk wave, a reasonable assumption of the potential function forms of the expansion wave and shear wave in nth layer medium is adopted, and the characteristic equation of Stoneley waves in a three-layered plate is given in a determinant form. The dispersion curves and wave structures are solved and presented in both numerical and simulation results. It is observed that two Stoneley wave modes exist in a three-layered plate, that conspicuous dispersion occurs on low frequency band, that the velocity of each Stoneley wave mode approaches the corresponding Stoneley wave velocity at interface between two half infinite spaces. The wave structures reveal that the in-plane displacement of Stoneley waves are relatively high at interfaces, which shows great potential for interface defects detection.
Keywords: Characteristic equation, interface waves, dispersion curves, potential function, Stoneley waves, wave structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684820 Development of Maximum Entropy Method for Prediction of Droplet-size Distribution in Primary Breakup Region of Spray
Authors: E. Movahednejad, F. Ommi
Abstract:
Droplet size distributions in the cold spray of a fuel are important in observed combustion behavior. Specification of droplet size and velocity distributions in the immediate downstream of injectors is also essential as boundary conditions for advanced computational fluid dynamics (CFD) and two-phase spray transport calculations. This paper describes the development of a new model to be incorporated into maximum entropy principle (MEP) formalism for prediction of droplet size distribution in droplet formation region. The MEP approach can predict the most likely droplet size and velocity distributions under a set of constraints expressing the available information related to the distribution. In this article, by considering the mechanisms of turbulence generation inside the nozzle and wave growth on jet surface, it is attempted to provide a logical framework coupling the flow inside the nozzle to the resulting atomization process. The purpose of this paper is to describe the formulation of this new model and to incorporate it into the maximum entropy principle (MEP) by coupling sub-models together using source terms of momentum and energy. Comparison between the model prediction and experimental data for a gas turbine swirling nozzle and an annular spray indicate good agreement between model and experiment.Keywords: Droplet, instability, Size Distribution, Turbulence, Maximum Entropy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2580819 Design Improvement of Dental Implant-Based on Bone Remodelling
Authors: Solehuddin Shuib, Koay Boon Aik, Zainul Ahmad Rajion
Abstract:
There are many types of mechanical failure on the dental implant. In this project, the failure that needs to take into consideration is the bone resorption on the dental implant. Human bone has its ability to remodel after the implantation. As the dental implant is installed into the bone, the bone will detect and change the bone structure to achieve new biomechanical environment. This phenomenon is known as bone remodeling. The objective of the project is to improve the performance of dental implant by using different types of design. These designs are used to analyze and predict the failure of the dental implant by using finite element analysis (FEA) namely ANSYS. The bone is assumed to be fully attached to the implant or cement. Hence, results are then compared with other researchers. The results were presented in the form of Von Mises stress, normal stress, shear stress analysis, and displacement. The selected design will be analyzed further based on a theoretical calculation of bone remodeling on the dental implant. The results have shown that the design constructed passed the failure analysis. Therefore, the selected design is proven to have a stable performance at the recovery stage.Keywords: Dental implant, FEA, bone remodeling, osseointegration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1053818 Soil Resistivity Structure and Its Implication on the Pole Grid Resistance for Transmission Lines
Authors: M. Nassereddine, J. Rizk, G. Nasserddine
Abstract:
High Voltage (HV) transmission lines are widely spread around residential places. They take all forms of shapes: concrete, steel, and timber poles. Earth grid always form part of the HV transmission structure, whereat soil resistivity value is one of the main inputs when it comes to determining the earth grid requirements. In this paper, the soil structure and its implication on the electrode resistance of HV transmission poles will be explored. In Addition, this paper will present simulation for various soil structures using IEEE and Australian standards to verify the computation with CDEGS software. Furthermore, the split factor behavior under different soil resistivity structure will be presented using CDEGS simulations.Keywords: Earth Grid, EPR, High Voltage, Soil Resistivity Structure, Split Factor, Step Voltage, Touch Voltage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3282817 Research on the Impact on Building Temperature and Ventilation by Outdoor Shading Devices in Hot-Humid Area: Through Measurement and Simulation on an Office Building in Guangzhou
Authors: Hankun Lin, Yiqiang Xiao, Qiaosheng Zhan
Abstract:
Shading devices (SDs) are widely used in buildings in the hot-humid climate areas for reducing cooling energy consumption for interior temperature, as the result of reducing the solar radiation directly. Contrasting the surface temperature of materials of SDs to the glass on the building façade could give more analysis for the shading effect. On the other side, SDs are much more used as the independence system on building façade in hot-humid area. This typical construction could have some impacts on building ventilation as well. This paper discusses the outdoor SDs’ effects on the building thermal environment and ventilation, through a set of measurements on a 2-floors office building in Guangzhou, China, which install a dynamic aluminum SD-system around the façade on 2nd-floor. The measurements recorded the in/outdoor temperature, relative humidity, velocity, and the surface temperature of the aluminum panel and the glaze. After that, a CFD simulation was conducted for deeper discussion of ventilation. In conclusion, this paper reveals the temperature differences on the different material of the façade, and finds that the velocity of indoor environment could be reduced by the outdoor SDs.
Keywords: Outdoor shading devices, hot-humid area, temperature, ventilation, measurement, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1026816 Identification of Differentially Expressed Gene(DEG) in Atherosclerotic Lesion by Annealing Control Primer (ACP)-Based Genefishing™ PCR
Authors: M. Maimunah, G. A. Froemming, H. Nawawi, M. I. Nafeeza, O. Effat, M. Y. Rosmadi, M. S. Mohamed Saifulaman
Abstract:
Atherosclerosis was identified as a chronic inflammatory process resulting from interactions between plasma lipoproteins, cellular components (monocyte, macrophages, T lymphocytes, endothelial cells and smooth muscle cells) and the extracellular matrix of the arterial wall. Several types of genes were known to express during formation of atherosclerosis. This study is carried out to identify unknown differentially expressed gene (DEG) in atherogenesis. Rabbit’s aorta tissues were stained by H&E for histomorphology. GeneFishing™ PCR analysis was performed from total RNA extracted from the aorta tissues. The DNA fragment from DEG was cloned, sequenced and validated by Real-time PCR. Histomorphology showed intimal thickening in the aorta. DEG detected from ACP-41 was identified as cathepsin B gene and showed upregulation at week-8 and week-12 of atherogenesis. Therefore, ACP-based GeneFishing™ PCR facilitated identification of cathepsin B gene which was differentially expressed during development of atherosclerosis.
Keywords: Atherosclerosis, GeneFishing™ PCR, cathepsin B gene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956815 Analysis of Different Resins in Web-to-Flange Joints
Authors: W. F. Ribeiro, J. L. N. Góes
Abstract:
The industrial process adds to engineering wood products features absent in solid wood, with homogeneous structure and reduced defects, improved physical and mechanical properties, bio-deterioration, resistance and better dimensional stability, improving quality and increasing the reliability of structures wood. These features combined with using fast-growing trees, make them environmentally ecological products, ensuring a strong consumer market. The wood I-joists are manufactured by the industrial profiles bonding flange and web, an important aspect of the production of wooden I-beams is the adhesive joint that bonds the web to the flange. Adhesives can effectively transfer and distribute stresses, thereby increasing the strength and stiffness of the composite. The objective of this study is to evaluate different resins in a shear strain specimens with the aim of analyzing the most efficient resin and possibility of using national products, reducing the manufacturing cost. First was conducted a literature review, where established the geometry and materials generally used, then established and analyzed 8 national resins and produced six specimens for each.
Keywords: Engineered wood products, structural resin, wood i-joist.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2316814 An Examination of Backing Effects on Ratings for Masonry Arch Bridges
Authors: Muhammad E. Rahman, Paul J. Fanning
Abstract:
Many single or multispan arch bridges are strengthened with the addition of some kind of structural support between adjacent arches of multispan or beside the arch barrel of a single span to increase the strength of the overall structure. It was traditionally formed by either placing loose rubble masonry blocks between the arches and beside the arches or using mortar or concrete to construct a more substantial structural bond between the spans. On the other hand backing materials are present in some existing bridges. Existing arch assessment procedures generally ignore the effects of backing materials. In this paper an investigation of the effects of backing on ratings for masonry arch bridges is carried out. It is observed that increasing the overall lateral stability of the arch system through the inclusion of structural backing results in an enhanced failure load by reducing the likelihood of any tension occurring at the top of the arch.Keywords: Arch, Backing, Bridge, Masonry
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2239813 An Improved Single Point Closure Model Based on Dissipation Anisotropy for Geophysical Turbulent Flows
Authors: A. P. Joshi, H. V. Warrior, J. P. Panda
Abstract:
This paper is a continuation of the work carried out by various turbulence modelers in Oceanography on the topic of oceanic turbulent mixing. It evaluates the evolution of ocean water temperature and salinity by the appropriate modeling of turbulent mixing utilizing proper prescription of eddy viscosity. Many modelers in past have suggested including terms like shear, buoyancy and vorticity to be the parameters that decide the slow pressure strain correlation. We add to it the fact that dissipation anisotropy also modifies the correlation through eddy viscosity parameterization. This recalibrates the established correlation constants slightly and gives improved results. This anisotropization of dissipation implies that the critical Richardson’s number increases much beyond unity (to 1.66) to accommodate enhanced mixing, as is seen in reality. The model is run for a couple of test cases in the General Ocean Turbulence Model (GOTM) and the results are presented here.
Keywords: Anisotropy, GOTM, pressure-strain correlation, Richardson Critical number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 949812 Multiple Peaks Tracking Algorithm using Particle Swarm Optimization Incorporated with Artificial Neural Network
Authors: Mei Shan Ngan, Chee Wei Tan
Abstract:
Due to the non-linear characteristics of photovoltaic (PV) array, PV systems typically are equipped with the capability of maximum power point tracking (MPPT) feature. Moreover, in the case of PV array under partially shaded conditions, hotspot problem will occur which could damage the PV cells. Partial shading causes multiple peaks in the P-V characteristic curves. This paper presents a hybrid algorithm of Particle Swarm Optimization (PSO) and Artificial Neural Network (ANN) MPPT algorithm for the detection of global peak among the multiple peaks in order to extract the true maximum energy from PV panel. The PV system consists of PV array, dc-dc boost converter controlled by the proposed MPPT algorithm and a resistive load. The system was simulated using MATLAB/Simulink package. The simulation results show that the proposed algorithm performs well to detect the true global peak power. The results of the simulations are analyzed and discussed.Keywords: Photovoltaic (PV), Partial Shading, Maximum Power Point Tracking (MPPT), Particle Swarm Optimization (PSO) and Artificial Neural Network (ANN)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3756811 Nanosize Structure Phase States in the Titanium Surface Layers after Electroexplosive Carburizing and Subsequent Electron Beam Treatment
Authors: Victor E. Gromov, Evgenii A. Budovskikh, Ludmila P. Bashchenko, Yurii F. Ivanov, Anna V. Ionina, Nina A. Soskova, Guoyi Tang
Abstract:
The peculiarities of the nanoscale structure-phase states formed after electroexplosive carburizing and subsequent electron-beam treatment of technically pure titanium surface in different regimes are established by methods of transmission electron diffraction microscopy and physical mechanisms are discussed. Electroexplosive carburizing leads to surface layer formation (40 m thickness) with increased (in 3.5 times) microhardness. It consists of β-titanium, graphite (monocrystals 100-150 nm, polycrystals 5-10 nm, amorphous particles 3-5nm), TiC (5-10 nm), β-Ti02 (2-20nm). After electron-beam treatment additionally increasing the microhardness the surface layer consists of TiC.Keywords: nanoscale, phase, structure, titanium
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623810 Influence of Wind Induced Fatigue Damage in the Reliability of Wind Turbines
Authors: Emilio A. Berny-Brandt, Sonia E. Ruiz
Abstract:
Steel tubular towers serving as support structures for large wind turbines are subjected to several hundred million stress cycles caused by the turbulent nature of the wind. This causes highcycle fatigue, which could govern the design of the tower. Maintaining the support structure after the wind turbines reach its typical 20-year design life has become a common practice; however, quantifying the changes in the reliability on the tower is not usual. In this paper the effect of fatigue damage in the wind turbine structure is studied whit the use of fracture mechanics, and a method to estimate the reliability over time of the structure is proposed. A representative wind turbine located in Oaxaca, Mexico is then studied. It is found that the system reliability is significantly affected by the accumulation of fatigue damage.
Keywords: Crack growth, fatigue, Monte Carlo simulation, structural reliability, wind turbines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2326809 Forming Simulation of Thermoplastic Pre-Impregnated Textile Composite
Authors: Masato Nishi, Tetsushi Kaburagi, Masashi Kurose, Tei Hirashima, Tetsusei Kurasiki
Abstract:
The process of thermoforming a carbon fiber reinforced thermoplastic (CFRTP) has increased its presence in the automotive industry for its wide applicability to the mass production car. A non-isothermal forming for CFRTP can shorten its cycle time to less than 1 minute. In this paper, the textile reinforcement FE model which the authors proposed in a previous work is extended to the CFRTP model for non-isothermal forming simulation. The effect of thermoplastic is given by adding shell elements which consider thermal effect to the textile reinforcement model. By applying Reuss model to the stress calculation of thermoplastic, the proposed model can accurately predict in-plane shear behavior, which is the key deformation mode during forming, in the range of the process temperature. Using the proposed model, thermoforming simulation was conducted and the results are in good agreement with the experimental results.
Keywords: Carbon fiber reinforced thermoplastic (CFRTP), Finite element analysis (FEA), Pre-impregnated textile composite, Non-isothermal forming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3469808 Structural Investigation of Na2O–B2O3–SiO2 Glasses Doped with NdF3
Authors: M. S. Gaafar, S. Y. Marzouk
Abstract:
Sodium borosilicate glasses doped with different content of NdF3 mol % have been prepared by rapid quenching method. Ultrasonic velocities (both longitudinal and shear) measurements have been carried out at room temperature and at ultrasonic frequency of 4 MHz. Elastic moduli, Debye temperature, softening temperature and Poisson's ratio have been obtained as a function of NdF3 modifier content. Results showed that the elastic moduli, Debye temperature, softening temperature and Poisson's ratio have very slight change with the change of NdF3 mol % content. Based on FTIR spectroscopy and theoretical (Bond compression) model, quantitative analysis has been carried out in order to obtain more information about the structure of these glasses. The study indicated that the structure of these glasses is mainly composed of SiO4 units with four bridging oxygens (Q4), and with three bridging and one nonbridging oxygens (Q3).Keywords: Borosilicate glasses, ultrasonic velocity, elastic moduli, FTIR spectroscopy, bond compression model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752807 Evaluation and Analysis of the Secure E-Voting Authentication Preparation Scheme
Authors: Nidal F. Shilbayeh, Reem A. Al-Saidi, Ahmed H. Alsswey
Abstract:
In this paper, we presented an evaluation and analysis of E-Voting Authentication Preparation Scheme (EV-APS). EV-APS applies some modified security aspects that enhance the security measures and adds a strong wall of protection, confidentiality, non-repudiation and authentication requirements. Some of these modified security aspects are Kerberos authentication protocol, PVID scheme, responder certificate validation, and the converted Ferguson e-cash protocol. Authentication and privacy requirements have been evaluated and proved. Authentication guaranteed only eligible and authorized voters were permitted to vote. Also, the privacy guaranteed that all votes will be kept secret. Evaluation and analysis of some of these security requirements have been given. These modified aspects will help in filtering the counter buffer from unauthorized votes by ensuring that only authorized voters are permitted to vote.
Keywords: E-Voting preparation stage, blind signature protocol, nonce based authentication scheme, Kerberos authentication protocol, pseudo voter identity scheme PVID.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618806 Enhancement of Thermal Performance of Latent Heat Solar Storage System
Authors: Rishindra M. Sarviya, Ashish Agrawal
Abstract:
Solar energy is available abundantly in the world, but it is not continuous and its intensity also varies with time. Due to above reason the acceptability and reliability of solar based thermal system is lower than conventional systems. A properly designed heat storage system increases the reliability of solar thermal systems by bridging the gap between the energy demand and availability. In the present work, two dimensional numerical simulation of the melting of heat storage material is presented in the horizontal annulus of double pipe latent heat storage system. Longitudinal fins were used as a thermal conductivity enhancement. Paraffin wax was used as a heat-storage or phase change material (PCM). Constant wall temperature is applied to heat transfer tube. Presented two-dimensional numerical analysis shows the movement of melting front in the finned cylindrical annulus for analyzing the thermal behavior of the system during melting.
Keywords: Latent heat, numerical study, phase change material, solar energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355805 Application of Smart Temperature Information Material for The Evaluation of Heat Storage Capacity and Insulation Capacity of Exterior Walls
Authors: Chih-Yuan Chang, Jin-Chiuan Chang, San-Shan Hung, Cheng-Jui Hsu
Abstract:
The heat storage capacity of concrete in building shells is a major reason for excessively large electricity consumption induced by indoor air conditioning. In this research, the previously developed Smart Temperature Information Material (STIM) is embedded in two groups of exterior wall specimens (the control group contains reinforced concrete exterior walls and the experimental group consists of tiled exterior walls). Long term temperature measurements within the concrete are taken by the embedded STIM. Temperature differences between the control group and the experimental group in walls facing the four cardinal directions (east, west, south, and north) are evaluated. This study aims to provide a basic reference for the design of exterior walls and the selection of heat insulation materials.
Keywords: building envelope, sensor, energy, thermal insulation, reinforced concrete
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596804 Study of the Cryogenically Cooled Electrode Shape in Electric Discharge Machining Process
Authors: Vineet Srivastava, Pulak M. Pandey
Abstract:
Electrical discharge machining (EDM) is well established machining technique mainly used to machine complex geometries on difficult-to-machine materials and high strength temperature resistant alloys. In the present research, the objective is to study the shape of the electrode and establish the application of liquid nitrogen in reducing distortion of the electrode during electrical discharge machining of M2 grade high speed steel using copper electrodes. Study of roundness was performed on the electrode to observe the shape of the electrode for both conventional EDM and EDM with cryogenically cooled electrode. Scanning Electron Microscope (SEM) has been used to study the shape of electrode tip. The effect of various parameters such as discharge current and pulse on time has been studied to understand the behavior of distortion of electrode. It has been concluded that the shape retention is better in case of liquid nitrogen cooled electrode.Keywords: cryogenic cooling, EDM, electrode shape, out of roundness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367803 The Index of Sustainable Functionality: An Application for Measuring Sustainability
Authors: G.T. Cirella, L. Tao
Abstract:
The index of sustainable functionality (ISF) is an adaptive, multi-criteria technique that is used to measure sustainability; it is a concept that can be transposed to many regions throughout the world. An ISF application of the Southern Regional Organisation of Councils (SouthROC) in South East Queensland (SEQ) – the fastest growing region in Australia – indicated over a 25 year period an increase of over 10% level of functionality from 58.0% to 68.3%. The ISF of SouthROC utilised methodologies that derived from an expert panel based approach. The overall results attained an intermediate level of functionality which amounted to related concerns of economic progress and lack of social awareness. Within the region, a solid basis for future testing by way of measured changes and developed trends can be established. In this regard as management tool, the ISF record offers support for regional sustainability practice and decision making alike. This research adaptively analyses sustainability – a concept that is lacking throughout much of the academic literature and any reciprocal experimentation. This lack of knowledge base has been the emphasis of where future sustainability research can grow from and prove useful in rapidly growing regions. It is the intentions of this research to help further develop the notions of index-based quantitative sustainability.
Keywords: Environmental engineering, index of sustainable functionality, sustainability indicators, sustainable development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2379802 Effect of Carbon Amount of Dual-Phase Steels on Deformation Behavior Using Acoustic Emission
Authors: Ramin Khamedi, Isa Ahmadi
Abstract:
In this study acoustic emission (AE) signals obtained during deformation and fracture of two types of ferrite-martensite dual phase steels (DPS) specimens have been analyzed in frequency domain. For this reason two low carbon steels with various amounts of carbon were chosen, and intercritically heat treated. In the introduced method, identifying the mechanisms of failure in the various phases of DPS is done. For this aim, AE monitoring has been used during tensile test of several DPS with various volume fraction of the martensite (VM) and attempted to relate the AE signals and failure mechanisms in these steels. Different signals, which referred to 2-3 micro-mechanisms of failure due to amount of carbon and also VM have been seen. By Fast Fourier Transformation (FFT) of signals in distinct locations, an excellent relationship between peak frequencies in these areas and micro-mechanisms of failure were seen. The results were verified by microscopic observations (SEM).
Keywords: Dual Phase Steel, Deformation, Acoustic Emission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2541801 Large Strain Compression-Tension Behavior of AZ31B Rolled Sheet in the Rolling Direction
Authors: A. Yazdanmehr, H. Jahed
Abstract:
Being made with the lightest commercially available industrial metal, Magnesium (Mg) alloys are of interest for light-weighting. Expanding their application to different material processing methods requires Mg properties at large strains. Several room-temperature processes such as shot and laser peening and hole cold expansion need compressive large strain data. Two methods have been proposed in the literature to obtain the stress-strain curve at high strains: 1) anti-buckling guides and 2) small cubic samples. In this paper, an anti-buckling fixture is used with the help of digital image correlation (DIC) to obtain the compression-tension (C-T) of AZ31B-H24 rolled sheet at large strain values of up to 10.5%. The effect of the anti-bucking fixture on stress-strain curves is evaluated experimentally by comparing the results with those of the compression tests of cubic samples. For testing cubic samples, a new fixture has been designed to increase the accuracy of testing cubic samples with DIC strain measurements. Results show a negligible effect of anti-buckling on stress-strain curves, specifically at high strain values.
Keywords: Large strain, compression-tension, loading-unloading, Mg alloys.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 783800 Thermal Effect on Wave Interaction in Composite Structures
Authors: R. K. Apalowo, D. Chronopoulos, V. Thierry
Abstract:
There exist a wide range of failure modes in composite structures due to the increased usage of the structures especially in aerospace industry. Moreover, temperature dependent wave response of composite and layered structures have been continuously studied, though still limited, in the last decade mainly due to the broad operating temperature range of aerospace structures. A wave finite element (WFE) and finite element (FE) based computational method is presented by which the temperature dependent wave dispersion characteristics and interaction phenomenon in composite structures can be predicted. Initially, the temperature dependent mechanical properties of the panel in the range of -100 ◦C to 150 ◦C are measured experimentally using the Thermal Mechanical Analysis (TMA). Temperature dependent wave dispersion characteristics of each waveguide of the structural system, which is discretized as a system of a number of waveguides coupled by a coupling element, is calculated using the WFE approach. The wave scattering properties, as a function of temperature, is determined by coupling the WFE wave characteristics models of the waveguides with the full FE modelling of the coupling element on which defect is included. Numerical case studies are exhibited for two waveguides coupled through a coupling element.Keywords: Temperature dependent mechanical characteristics, wave propagation properties, damage detection, wave finite element, composite structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1209