Search results for: regression test.
1841 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks
Authors: Yong Zhao, Jian He, Cheng Zhang
Abstract:
Cardiovascular disease resulting from hypertension poses a significant threat to human health, and early detection of hypertension can potentially save numerous lives. Traditional methods for detecting hypertension require specialized equipment and are often incapable of capturing continuous blood pressure fluctuations. To address this issue, this study starts by analyzing the principle of heart rate variability (HRV) and introduces the utilization of sliding window and power spectral density (PSD) techniques to analyze both temporal and frequency domain features of HRV. Subsequently, a hypertension prediction network that relies on HRV is proposed, combining Resnet, attention mechanisms, and a multi-layer perceptron. The network leverages a modified ResNet18 to extract frequency domain features, while employing an attention mechanism to integrate temporal domain features, thus enabling auxiliary hypertension prediction through the multi-layer perceptron. The proposed network is trained and tested using the publicly available SHAREE dataset from PhysioNet. The results demonstrate that the network achieves a high prediction accuracy of 92.06% for hypertension, surpassing traditional models such as K Near Neighbor (KNN), Bayes, Logistic regression, and traditional Convolutional Neural Network (CNN).
Keywords: Feature extraction, heart rate variability, hypertension, residual networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941840 Osmotic Dehydration of Beetroot in Salt Solution: Optimization of Parameters through Statistical Experimental Design
Authors: P. Manivannan, M. Rajasimman
Abstract:
Response surface methodology was used for quantitative investigation of water and solids transfer during osmotic dehydration of beetroot in aqueous solution of salt. Effects of temperature (25 – 45oC), processing time (30–150 min), salt concentration (5–25%, w/w) and solution to sample ratio (5:1 – 25:1) on osmotic dehydration of beetroot were estimated. Quadratic regression equations describing the effects of these factors on the water loss and solids gain were developed. It was found that effects of temperature and salt concentrations were more significant on the water loss than the effects of processing time and solution to sample ratio. As for solids gain processing time and salt concentration were the most significant factors. The osmotic dehydration process was optimized for water loss, solute gain, and weight reduction. The optimum conditions were found to be: temperature – 35oC, processing time – 90 min, salt concentration – 14.31% and solution to sample ratio 8.5:1. At these optimum values, water loss, solid gain and weight reduction were found to be 30.86 (g/100 g initial sample), 9.43 (g/100 g initial sample) and 21.43 (g/100 g initial sample) respectively.Keywords: Optimization, Osmotic dehydration, Beetroot, saltsolution, response surface methodology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34571839 An Educational Data Mining System for Advising Higher Education Students
Authors: Heba Mohammed Nagy, Walid Mohamed Aly, Osama Fathy Hegazy
Abstract:
Educational data mining is a specific data mining field applied to data originating from educational environments, it relies on different approaches to discover hidden knowledge from the available data. Among these approaches are machine learning techniques which are used to build a system that acquires learning from previous data. Machine learning can be applied to solve different regression, classification, clustering and optimization problems.
In our research, we propose a “Student Advisory Framework” that utilizes classification and clustering to build an intelligent system. This system can be used to provide pieces of consultations to a first year university student to pursue a certain education track where he/she will likely succeed in, aiming to decrease the high rate of academic failure among these students. A real case study in Cairo Higher Institute for Engineering, Computer Science and Management is presented using real dataset collected from 2000−2012.The dataset has two main components: pre-higher education dataset and first year courses results dataset. Results have proved the efficiency of the suggested framework.
Keywords: Classification, Clustering, Educational Data Mining (EDM), Machine Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52121838 PSO-Based Planning of Distribution Systems with Distributed Generations
Authors: Amin Hajizadeh, Ehsan Hajizadeh
Abstract:
This paper presents a multi-objective formulation for optimal siting and sizing of distributed generation (DG) resources in distribution systems in order to minimize the cost of power losses and energy not supplied. The implemented technique is based on particle swarm optimization (PSO) and weight method that employed to obtain the best compromise between these costs. Simulation results on 33-bus distribution test system are presented to demonstrate the effectiveness of the proposed procedure.Keywords: Distributed generation, distribution networks, particle swarm optimization, reliability, weight method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20451837 Understanding Innovation by Analyzing the Pillars of the Global Competitiveness Index
Authors: Ujjwala Bhand, Mridula Goel
Abstract:
Global Competitiveness Index (GCI) prepared by World Economic Forum has become a benchmark in studying the competitiveness of countries and for understanding the factors that enable competitiveness. Innovation is a key pillar in competitiveness and has the unique property of enabling exponential economic growth. This paper attempts to analyze how the pillars comprising the Global Competitiveness Index affect innovation and whether GDP growth can directly affect innovation outcomes for a country. The key objective of the study is to identify areas on which governments of developing countries can focus policies and programs to improve their country’s innovativeness. We have compiled a panel data set for top innovating countries and large emerging economies called BRICS from 2007-08 to 2014-15 in order to find the significant factors that affect innovation. The results of the regression analysis suggest that government should make policies to improve labor market efficiency, establish sophisticated business networks, provide basic health and primary education to its people and strengthen the quality of higher education and training services in the economy. The achievements of smaller economies on innovation suggest that concerted efforts by governments can counter any size related disadvantage, and in fact can provide greater flexibility and speed in encouraging innovation.Keywords: Innovation, Global Competitiveness Index, BRICS, economic growth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10541836 Air Pollution and Respiratory-Related Restricted Activity Days in Tunisia
Authors: Mokhtar Kouki Inès Rekik
Abstract:
This paper focuses on the assessment of the air pollution and morbidity relationship in Tunisia. Air pollution is measured by ozone air concentration and the morbidity is measured by the number of respiratory-related restricted activity days during the 2-week period prior to the interview. Socioeconomic data are also collected in order to adjust for any confounding covariates. Our sample is composed by 407 Tunisian respondents; 44.7% are women, the average age is 35.2, near 69% are living in a house built after 1980, and 27.8% have reported at least one day of respiratory-related restricted activity. The model consists on the regression of the number of respiratory-related restricted activity days on the air quality measure and the socioeconomic covariates. In order to correct for zero-inflation and heterogeneity, we estimate several models (Poisson, negative binomial, zero inflated Poisson, Poisson hurdle, negative binomial hurdle and finite mixture Poisson models). Bootstrapping and post-stratification techniques are used in order to correct for any sample bias. According to the Akaike information criteria, the hurdle negative binomial model has the greatest goodness of fit. The main result indicates that, after adjusting for socioeconomic data, the ozone concentration increases the probability of positive number of restricted activity days.
Keywords: Bootstrapping, hurdle negbin model, overdispersion, ozone concentration, respiratory-related restricted activity days.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21351835 Analysis of Surface Spalling on a First Intermediate Roll in Sendzirmir Mills
Authors: Shiang-Cheng Jeng, Horng-Shing Chiou
Abstract:
A first intermediate roll of Sendzirmir mills was failure by surface spalling during operation. After analyzing by visual, stereo microscope, optical microscope, scanning electron microscope, glow-discharged spectrometer and hardness test, respectively, the results show that some voids and cracks existed on the contact surface as well as subsurface. Further examination verified inadequate hardness and inclusions were responsible for the failure of surface spalling.Keywords: Sendzirmir mills; surface spalling; fatigue failure;inclusion; contact stress
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22921834 The Effects of Negative Electronic Word-of-Mouth and Webcare on Thai Online Consumer Behavior
Authors: Pongsatorn Tantrabundit, Lersak Phothong, Ong-art Chanprasitchai
Abstract:
Due to the emergence of the Internet, it has extended the traditional Word-of-Mouth (WOM) to a new form called “Electronic Word-of-Mouth (eWOM).” Unlike traditional WOM, eWOM is able to present information in various ways by applying different components. Each eWOM component generates different effects on online consumer behavior. This research investigates the effects of Webcare (responding message) from product/ service providers on negative eWOM by applying two types of products (search and experience). The proposed conceptual model was developed based on the combination of the stages in consumer decision-making process, theory of reasoned action (TRA), theory of planned behavior (TPB), the technology acceptance model (TAM), the information integration theory and the elaboration likelihood model. The methodology techniques used in this study included multivariate analysis of variance (MANOVA) and multiple regression analysis. The results suggest that Webcare does slightly increase Thai online consumer’s perceptions on perceived eWOM trustworthiness, information diagnosticity and quality. For negative eWOM, we also found that perceived eWOM Trustworthiness, perceived eWOM diagnosticity and quality have a positive relationship with eWOM influence whereas perceived valence has a negative relationship with eWOM influence in Thai online consumers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13991833 Comparative Analysis of Two Modeling Approaches for Optimizing Plate Heat Exchangers
Authors: Fábio A. S. Mota, Mauro A. S. S. Ravagnani, E. P. Carvalho
Abstract:
In the present paper the design of plate heat exchangers is formulated as an optimization problem considering two mathematical modelling. The number of plates is the objective function to be minimized, considering implicitly some parameters configuration. Screening is the optimization method used to solve the problem. Thermal and hydraulic constraints are verified, not viable solutions are discarded and the method searches for the convergence to the optimum, case it exists. A case study is presented to test the applicability of the developed algorithm. Results show coherency with the literature.
Keywords: Plate heat exchanger, optimization, modeling, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19601832 Effects of Test Environment on the Sliding Wear Behaviour of Cast Iron, Zinc-Aluminium Alloy and Its Composite
Authors: Mohammad M. Khan, Gajendra Dixit
Abstract:
Partially lubricated sliding wear behaviour of a zinc-based alloy reinforced with 10wt% SiC particles has been studied as a function of applied load and solid lubricant particle size and has been compared with that of matrix alloy and conventionally used grey cast iron. The wear tests were conducted at the sliding velocities of 2.1m/sec in various partial lubricated conditions using pin on disc machine as per ASTM G-99-05. Base oil (SAE 20W-40) or mixture of the base oil with 5wt% graphite of particle sizes (7-10 µm) and (100 µm) were used for creating lubricated conditions. The matrix alloy revealed primary dendrites of a and eutectoid a + h and Î phases in the Inter dendritic regions. Similar microstructure has been depicted by the composite with an additional presence of the dispersoid SiC particles. In the case of cast iron, flakes of graphite were observed in the matrix; the latter comprised of (majority of) pearlite and (limited quantity of) ferrite. Results show a large improvement in wear resistance of the zinc-based alloy after reinforcement with SiC particles. The cast iron shows intermediate response between the matrix alloy and composite. The solid lubrication improved the wear resistance and friction behaviour of both the reinforced and base alloy. Moreover, minimum wear rate is obtained in oil+ 5wt % graphite (7-10 µm) lubricated environment for the matrix alloy and composite while for cast iron addition of solid lubricant increases the wear rate and minimum wear rate is obtained in case of oil lubricated environment. The cast iron experienced higher frictional heating than the matrix alloy and composite in all the cases especially at higher load condition. As far as friction coefficient is concerned, a mixed trend of behaviour was noted. The wear rate and frictional heating increased with load while friction coefficient was affected in an opposite manner. Test duration influenced the frictional heating and friction coefficient of the samples in a mixed manner.
Keywords: Solid lubricant, sliding wear grey cast iron, zinc based metal matrix composites.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14271831 Pose-Dependency of Machine Tool Structures: Appearance, Consequences, and Challenges for Lightweight Large-Scale Machines
Authors: S. Apprich, F. Wulle, A. Lechler, A. Pott, A. Verl
Abstract:
Large-scale machine tools for the manufacturing of large work pieces, e.g. blades, casings or gears for wind turbines, feature pose-dependent dynamic behavior. Small structural damping coefficients lead to long decay times for structural vibrations that have negative impacts on the production process. Typically, these vibrations are handled by increasing the stiffness of the structure by adding mass. This is counterproductive to the needs of sustainable manufacturing as it leads to higher resource consumption both in material and in energy. Recent research activities have led to higher resource efficiency by radical mass reduction that is based on controlintegrated active vibration avoidance and damping methods. These control methods depend on information describing the dynamic behavior of the controlled machine tools in order to tune the avoidance or reduction method parameters according to the current state of the machine. This paper presents the appearance, consequences and challenges of the pose-dependent dynamic behavior of lightweight large-scale machine tool structures in production. It starts with the theoretical introduction of the challenges of lightweight machine tool structures resulting from reduced stiffness. The statement of the pose-dependent dynamic behavior is corroborated by the results of the experimental modal analysis of a lightweight test structure. Afterwards, the consequences of the pose-dependent dynamic behavior of lightweight machine tool structures for the use of active control and vibration reduction methods are explained. Based on the state of the art of pose-dependent dynamic machine tool models and the modal investigation of an FE-model of the lightweight test structure, the criteria for a pose-dependent model for use in vibration reduction are derived. The description of the approach for a general posedependent model of the dynamic behavior of large lightweight machine tools that provides the necessary input to the aforementioned vibration avoidance and reduction methods to properly tackle machine vibrations is the outlook of the paper.Keywords: Dynamic behavior, lightweight, machine tool, pose-dependency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28431830 Self-efficacy, Self-reliance, and Motivation inan Asynchronous Learning Environment
Authors: Linda H. Meyer, Carol S. Sternberger
Abstract:
Self-efficacy, self-reliance, and motivation were examined in a quasi-experimental study with 178 sophomore university students. Participants used an interactive cardiovascular anatomy and physiology CD-ROM, and completed a 15-item questionnaire. Reliability of the questionnaire was established using Cronbach-s alpha. Post-tests and course grades were examined using a t-test, demonstrating no significance. Results of an item-to-item analysis of the questionnaire showed overall satisfaction with the teaching methodology and varied results for self-efficacy, selfreliance, and motivation. Kendall-s Tau was calculated for all items in the questionnaire.Keywords: Asynchronous learning environments, motivation, self-efficacy, self-reliance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36571829 Statistical Analysis of Parameters Effects on Maximum Strain and Torsion Angle of FRP Honeycomb Sandwich Panels Subjected to Torsion
Authors: Mehdi Modabberifar, Milad Roodi, Ehsan Souri
Abstract:
In recent years, honeycomb fiber reinforced plastic (FRP) sandwich panels have been increasingly used in various industries. Low weight, low price and high mechanical strength are the benefits of these structures. However, their mechanical properties and behavior have not been fully explored. The objective of this study is to conduct a combined numerical-statistical investigation of honeycomb FRP sandwich beams subject to torsion load. In this paper, the effect of geometric parameters of sandwich panel on maximum shear strain in both face and core and angle of torsion in a honeycomb FRP sandwich structures in torsion is investigated. The effect of Parameters including core thickness, face skin thickness, cell shape, cell size, and cell thickness on mechanical behavior of the structure were numerically investigated. Main effects of factors were considered in this paper and regression equations were derived. Taguchi method was employed as experimental design and an optimum parameter combination for the maximum structure stiffness has been obtained. The results showed that cell size and face skin thickness have the most significant impacts on torsion angle, maximum shear strain in face and core.Keywords: Finite element, honeycomb FRP sandwich panel, torsion, civil engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26181828 Comparative Effect of Self-Myofascial Release as a Warm-Up Exercise on Functional Fitness of Young Adults
Authors: Gopal Chandra Saha, Sumanta Daw
Abstract:
Warm-up is an essential component for optimizing performance in various sports before a physical fitness training session. This study investigated the immediate comparative effect of Self-Myofascial Release through vibration rolling (VR), non-vibration rolling (NVR), and static stretching as a part of a warm-up treatment on the functional fitness of young adults. Functional fitness is a classification of training that prepares the body for real-life movements and activities. For the present study 20male physical education students were selected as subjects. The age of the subjects was ranged from 20-25 years. The functional fitness variables undertaken in the present study were flexibility, muscle strength, agility, static and dynamic balance of the lower extremity. Each of the three warm-up protocol was administered on consecutive days, i.e. 24 hr time gap and all tests were administered in the morning. The mean and SD were used as descriptive statistics. The significance of statistical differences among the groups was measured by applying ‘F’-test, and to find out the exact location of difference, Post Hoc Test (Least Significant Difference) was applied. It was found from the study that only flexibility showed significant difference among three types of warm-up exercise. The observed result depicted that VR has more impact on myofascial release in flexibility in comparison with NVR and stretching as a part of warm-up exercise as ‘p’ value was less than 0.05. In the present study, within the three means of warm-up exercises, vibration roller showed better mean difference in terms of NVR, and static stretching exercise on functional fitness of young physical education practitioners, although the results were found insignificant in case of muscle strength, agility, static and dynamic balance of the lower extremity. These findings suggest that sports professionals and coaches may take VR into account for designing more efficient and effective pre-performance routine for long term to improve exercise performances. VR has high potential to interpret into an on-field practical application means.
Keywords: Self-myofascial release, functional fitness, foam roller, physical education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7551827 Use of Short Piles for Stabilizing the Side Slope of the Road Embankment along the Canal
Authors: Monapat Sasingha, Suttisak Soralump
Abstract:
This research presents the behavior of slope of the road along the canal stabilized by short piles. In this investigation, the centrifuge machine was used, modelling the condition of the water levels in the canal. The centrifuge tests were performed at 35 g. To observe the movement of the soil, visual analysis was performed to evaluate the failure behavior. Conclusively, the use of short piles to stabilize the canal slope proved to be an effective solution. However, the certain amount of settlement was found behind the short pile rows.
Keywords: Centrifuge test, slope failure, embankment, stability of slope.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10261826 A Novel SVM-Based OOK Detector in Low SNR Infrared Channels
Authors: J. P. Dubois, O. M. Abdul-Latif
Abstract:
Support Vector Machine (SVM) is a recent class of statistical classification and regression techniques playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM is applied to an infrared (IR) binary communication system with different types of channel models including Ricean multipath fading and partially developed scattering channel with additive white Gaussian noise (AWGN) at the receiver. The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these channel stochastic models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to classical binary signal maximum likelihood detection using a matched filter driven by On-Off keying (OOK) modulation. We found that the performance of SVM is superior to that of the traditional optimal detection schemes used in statistical communication, especially for very low signal-to-noise ratio (SNR) ranges. For large SNR, the performance of the SVM is similar to that of the classical detectors. The implication of these results is that SVM can prove very beneficial to IR communication systems that notoriously suffer from low SNR at the cost of increased computational complexity.
Keywords: Least square-support vector machine, on-off keying, matched filter, maximum likelihood detector, wireless infrared communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19511825 Simulation of Hydrogenated Boron Nitride Nanotube’s Mechanical Properties for Radiation Shielding Applications
Authors: Joseph E. Estevez, Mahdi Ghazizadeh, James G. Ryan, Ajit D. Kelkar
Abstract:
Radiation shielding is an obstacle in long duration space exploration. Boron Nitride Nanotubes (BNNTs) have attracted attention as an additive to radiation shielding material due to B10’s large neutron capture cross section. The B10 has an effective neutron capture cross section suitable for low energy neutrons ranging from 10-5 to 104 eV and hydrogen is effective at slowing down high energy neutrons. Hydrogenated BNNTs are potentially an ideal nanofiller for radiation shielding composites. We use Molecular Dynamics (MD) Simulation via Material Studios Accelrys 6.0 to model the Young’s Modulus of Hydrogenated BNNTs. An extrapolation technique was employed to determine the Young’s Modulus due to the deformation of the nanostructure at its theoretical density. A linear regression was used to extrapolate the data to the theoretical density of 2.62g/cm3. Simulation data shows that the hydrogenated BNNTs will experience a 11% decrease in the Young’s Modulus for (6,6) BNNTs and 8.5% decrease for (8,8) BNNTs compared to non-hydrogenated BNNT’s. Hydrogenated BNNTs are a viable option as a nanofiller for radiation shielding nanocomposite materials for long range and long duration space exploration.
Keywords: Boron Nitride Nanotube, Radiation Shielding, Young Modulus, Atomistic Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66751824 An Exploratory Environment for Concurrency Control Algorithms
Authors: Jinhua Guo
Abstract:
Designing, implementing, and debugging concurrency control algorithms in a real system is a complex, tedious, and errorprone process. Further, understanding concurrency control algorithms and distributed computations is itself a difficult task. Visualization can help with both of these problems. Thus, we have developed an exploratory environment in which people can prototype and test various versions of concurrency control algorithms, study and debug distributed computations, and view performance statistics of distributed systems. In this paper, we describe the exploratory environment and show how it can be used to explore concurrency control algorithms for the interactive steering of distributed computations.Keywords: Consistency, Distributed Computing, InteractiveSteering, Simulation, Visualization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18161823 A Hybrid Neural Network and Traditional Approach for Forecasting Lumpy Demand
Authors: A. Nasiri Pour, B. Rostami Tabar, A.Rahimzadeh
Abstract:
Accurate demand forecasting is one of the most key issues in inventory management of spare parts. The problem of modeling future consumption becomes especially difficult for lumpy patterns, which characterized by intervals in which there is no demand and, periods with actual demand occurrences with large variation in demand levels. However, many of the forecasting methods may perform poorly when demand for an item is lumpy. In this study based on the characteristic of lumpy demand patterns of spare parts a hybrid forecasting approach has been developed, which use a multi-layered perceptron neural network and a traditional recursive method for forecasting future demands. In the described approach the multi-layered perceptron are adapted to forecast occurrences of non-zero demands, and then a conventional recursive method is used to estimate the quantity of non-zero demands. In order to evaluate the performance of the proposed approach, their forecasts were compared to those obtained by using Syntetos & Boylan approximation, recently employed multi-layered perceptron neural network, generalized regression neural network and elman recurrent neural network in this area. The models were applied to forecast future demand of spare parts of Arak Petrochemical Company in Iran, using 30 types of real data sets. The results indicate that the forecasts obtained by using our proposed mode are superior to those obtained by using other methods.Keywords: Lumpy Demand, Neural Network, Forecasting, Hybrid Approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26791822 Profit Optimization for Solar Plant Electricity Production
Authors: Fl. Loury, P. Sablonière
Abstract:
In this paper a stochastic scenario-based model predictive control applied to molten salt storage systems in concentrated solar tower power plant is presented. The main goal of this study is to build up a tool to analyze current and expected future resources for evaluating the weekly power to be advertised on electricity secondary market. This tool will allow plant operator to maximize profits while hedging the impact on the system of stochastic variables such as resources or sunlight shortage.
Solving the problem first requires a mixed logic dynamic modeling of the plant. The two stochastic variables, respectively the sunlight incoming energy and electricity demands from secondary market, are modeled by least square regression. Robustness is achieved by drawing a certain number of random variables realizations and applying the most restrictive one to the system. This scenario approach control technique provides the plant operator a confidence interval containing a given percentage of possible stochastic variable realizations in such a way that robust control is always achieved within its bounds. The results obtained from many trajectory simulations show the existence of a ‘’reliable’’ interval, which experimentally confirms the algorithm robustness.
Keywords: Molten Salt Storage System, Concentrated Solar Tower Power Plant, Robust Stochastic Model Predictive Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19251821 Harmonic Comparison between Fluorescent and WOLED (White Organic LED) Lamps
Authors: Hari Maghfiroh, Fadhila Tresna Nugraha, Harry Prabowo
Abstract:
Fluorescent and WOLED are widely used because it consumes less energy. However, both lamps cause a harmonics because it has semiconductors components. Harmonic is a distorted sinusoidal electric wave and cause excess heat. This study compares the amount of harmonics generated by both lamps. The test shows that both lamps have THDv(Total Harmonics Distortion of Voltage) almost the same with average 2.5% while the average of WOLED's THDi(Total Harmonics Distortion of Current) is lower than fluorescent has. The average WOLED's THDi is 29.10 % and fluorescent's 'THDi is 87. 23 %.Keywords: Fluorescent, harmonic, power factor, WOLED
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18001820 Design of Experiment and Computational Fluid Dynamics Used to Optimize Hydrodynamic Characteristics of the Marine Propeller
Authors: Rohit Suryawanshi
Abstract:
In this study, the commercial Computational Fluid Dynamics (CFD), ANSYS-Fluent, has been used to optimize the marine propeller with the design of experiment (DOE) method. At the initial stage, different propeller parameters ware selected for the three different levels. The four characteristics factors are: no. of the blade, camber value, pitch delta & chord at the hub. Then, CAD modelling is performed by considering the selected factor and level. In this investigation, a total of 9 test models are simulated with the Reynolds-Averaged Navier-Stokes (RANS) equations. The standard, realizable
Keywords: Marine propeller, Computational Fluid Dynamics, optimization, DOE, propeller thrust.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8971819 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets
Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi
Abstract:
Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.
Keywords: Breast cancer, health diagnosis, Machine Learning, biomarker classification, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3171818 Evaluating the Small-Strain Mechanical Properties of Cement-Treated Clayey Soils Based on the Confining Pressure
Authors: M. A. Putera, N. Yasufuku, A. Alowaisy, R. Ishikura, J. G. Hussary, A. Rifa’i
Abstract:
Indonesia’s government has planned a project for a high-speed railway connecting the capital cities, Jakarta and Surabaya, about 700 km. Based on that location, it has been planning construction above the lowland soil region. The lowland soil region comprises cohesive soil with high water content and high compressibility index, which in fact, led to a settlement problem. Among the variety of railway track structures, the adoption of the ballastless track was used effectively to reduce the settlement; it provided a lightweight structure and minimized workspace. Contradictorily, deploying this thin layer structure above the lowland area was compensated with several problems, such as lack of bearing capacity and deflection behavior during traffic loading. It is necessary to combine with ground improvement to assure a settlement behavior on the clayey soil. Reflecting on the assurance of strength increment and working period, those were convinced by adopting methods such as cement-treated soil as the substructure of railway track. Particularly, evaluating mechanical properties in the field has been well known by using the plate load test and cone penetration test. However, observing an increment of mechanical properties has uncertainty, especially for evaluating cement-treated soil on the substructure. The current quality control of cement-treated soils was established by laboratory tests. Moreover, using small strain devices measurement in the laboratory can predict more reliable results that are identical to field measurement tests. Aims of this research are to show an intercorrelation of confining pressure with the initial condition of the Young’s modulus (E0), Poisson ratio (υ0) and Shear modulus (G0) within small strain ranges. Furthermore, discrepancies between those parameters were also investigated. Experimental result confirmed the intercorrelation between cement content and confining pressure with a power function. In addition, higher cement ratios have discrepancies, conversely with low mixing ratios.
Keywords: Cement content, confining pressure, high-speed railway, small strain ranges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4201817 Machine Learning Based Approach for Measuring Promotion Effectiveness in Multiple Parallel Promotions’ Scenarios
Authors: Revoti Prasad Bora, Nikita Katyal
Abstract:
Promotion is a key element in the retail business. Thus, analysis of promotions to quantify their effectiveness in terms of Revenue and/or Margin is an essential activity in the retail industry. However, measuring the sales/revenue uplift is based on estimations, as the actual sales/revenue without the promotion is not present. Further, the presence of Halo and Cannibalization in a multiple parallel promotions’ scenario complicates the problem. Calculating Baseline by considering inter-brand/competitor items or using Halo and Cannibalization's impact on Revenue calculations by considering Baseline as an interpretation of items’ unit sales in neighboring nonpromotional weeks individually may not capture the overall Revenue uplift in the case of multiple parallel promotions. Hence, this paper proposes a Machine Learning based method for calculating the Revenue uplift by considering the Halo and Cannibalization impact on the Baseline and the Revenue. In the first section of the proposed methodology, Baseline of an item is calculated by incorporating the impact of the promotions on its related items. In the later section, the Revenue of an item is calculated by considering both Halo and Cannibalization impacts. Hence, this methodology enables correct calculation of the overall Revenue uplift due a given promotion.
Keywords: Halo, cannibalization, promotion, baseline, temporary price reduction, retail, elasticity, cross price elasticity, machine learning, random forest, linear regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13231816 Daily Probability Model of Storm Events in Peninsular Malaysia
Authors: Mohd Aftar Abu Bakar, Noratiqah Mohd Ariff, Abdul Aziz Jemain
Abstract:
Storm Event Analysis (SEA) provides a method to define rainfalls events as storms where each storm has its own amount and duration. By modelling daily probability of different types of storms, the onset, offset and cycle of rainfall seasons can be determined and investigated. Furthermore, researchers from the field of meteorology will be able to study the dynamical characteristics of rainfalls and make predictions for future reference. In this study, four categories of storms; short, intermediate, long and very long storms; are introduced based on the length of storm duration. Daily probability models of storms are built for these four categories of storms in Peninsular Malaysia. The models are constructed by using Bernoulli distribution and by applying linear regression on the first Fourier harmonic equation. From the models obtained, it is found that daily probability of storms at the Eastern part of Peninsular Malaysia shows a unimodal pattern with high probability of rain beginning at the end of the year and lasting until early the next year. This is very likely due to the Northeast monsoon season which occurs from November to March every year. Meanwhile, short and intermediate storms at other regions of Peninsular Malaysia experience a bimodal cycle due to the two inter-monsoon seasons. Overall, these models indicate that Peninsular Malaysia can be divided into four distinct regions based on the daily pattern for the probability of various storm events.
Keywords: Daily probability model, monsoon seasons, regions, storm events.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16311815 Empirical Roughness Progression Models of Heavy Duty Rural Pavements
Authors: Nahla H. Alaswadko, Rayya A. Hassan, Bayar N. Mohammed
Abstract:
Empirical deterministic models have been developed to predict roughness progression of heavy duty spray sealed pavements for a dataset representing rural arterial roads. The dataset provides a good representation of the relevant network and covers a wide range of operating and environmental conditions. A sample with a large size of historical time series data for many pavement sections has been collected and prepared for use in multilevel regression analysis. The modelling parameters include road roughness as performance parameter and traffic loading, time, initial pavement strength, reactivity level of subgrade soil, climate condition, and condition of drainage system as predictor parameters. The purpose of this paper is to report the approaches adopted for models development and validation. The study presents multilevel models that can account for the correlation among time series data of the same section and to capture the effect of unobserved variables. Study results show that the models fit the data very well. The contribution and significance of relevant influencing factors in predicting roughness progression are presented and explained. The paper concludes that the analysis approach used for developing the models confirmed their accuracy and reliability by well-fitting to the validation data.
Keywords: Roughness progression, empirical model, pavement performance, heavy duty pavement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8011814 Design of the Propelling Nozzles for the Launchers and Satellites
Authors: R. Haoui
Abstract:
The aim of this work is to determine the supersonic nozzle profiles used in propulsion, for the launchers or embarked with the satellites. This design has as a role firstly, to give a important propulsion, i.e. with uniform and parallel flow at exit, secondly to find a short length profiles without modification of the flow in the nozzle. The first elaborate program is used to determine the profile of divergent by using the characteristics method for an axisymmetric flow. The second program is conceived by using the finite volume method to determine and test the profile found connected to a convergent.Keywords: Characteristic method, nozzles, supersonic flow, propellers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18511813 Shot Detection Using Modified Dugad Model
Authors: Lenka Krulikovská, Jaroslav Polec
Abstract:
In this paper we present a modification to existed model of threshold for shot cut detection, which is able to adapt itself to the sequence statistics and operate in real time, because it use for calculation only previously evaluated frames. The efficiency of proposed modified adaptive threshold scheme was verified through extensive test experiment with several similarity metrics and achieved results were compared to the results reached by the original model. According to results proposed threshold scheme reached higher accuracy than existed original model.
Keywords: Abrupt cut, shot cut detection, adaptive threshold.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15311812 Toxicity Test of Ag+, Nano-Ag0 and Nano- Ag2O Using Green Algae (Chlorella sp.) and Water Flea (Moina macrocopa)
Authors: M. Yoo-iam, R. Chaichana, T. Satapanaiaru
Abstract:
The research objective was to study the toxicity of silver nanoparticles in aquatic organisms. Three forms of free silver ion nanoparticles (Ag+), silver nano particles (nano-Ag0) and silver oxide nanoparticles (nano Ag2O) were examined for toxic effects with Chlorella sp. and Moina macrocopa. The results showed that the toxicity of three silver ion forms to both organisms was examined
Keywords: Chlorella sp, moina nanomacrocopa, silver nanoparticles, toxicity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844