
 

 

  
Abstract—Radiation shielding is an obstacle in long duration 

space exploration. Boron Nitride Nanotubes (BNNTs) have attracted 
attention as an additive to radiation shielding material due to B10’s 
large neutron capture cross section. The B10 has an effective neutron 
capture cross section suitable for low energy neutrons ranging from 
10-5 to 104 eV and hydrogen is effective at slowing down high energy 
neutrons. Hydrogenated BNNTs are potentially an ideal nanofiller for 
radiation shielding composites. We use Molecular Dynamics (MD) 
Simulation via Material Studios Accelrys 6.0 to model the Young’s 
Modulus of Hydrogenated BNNTs. An extrapolation technique was 
employed to determine the Young’s Modulus due to the deformation 
of the nanostructure at its theoretical density. A linear regression was 
used to extrapolate the data to the theoretical density of 2.62g/cm3. 
Simulation data shows that the hydrogenated BNNTs will experience 
a 11% decrease in the Young’s Modulus for (6,6) BNNTs and 8.5% 
decrease for (8,8) BNNTs compared to non-hydrogenated BNNT’s. 
Hydrogenated BNNTs are a viable option as a nanofiller for radiation 
shielding nanocomposite materials for long range and long duration 
space exploration. 
 

Keywords—Boron Nitride Nanotube, Radiation Shielding, 
Young Modulus, Atomistic Modeling.  

I. INTRODUCTION 
OR the last decade, there has been increased focus in 
developing materials for radiation shielding to protect the 

astronauts, space structures and equipment from space 
radiation. Space radiation is composed ionizing radiation and 
non-ionizing radiation [1]. There are three main types of 
ionizing radiation: Solar Particle Events (SPE), Galactic 
Cosmic Rays (GCR), and Secondary Neutrons. Solar particle 
events are high energy electrons, protons, and heavy particles 
that are generated mainly from solar events such as solar 
flares. GCRs are particles ranging from a single proton to 
heavy nuclei of particles and originate from outside our solar 
system. Secondary neutrons are produced by interaction of 
GCRs and SPEs with matter [1]. It has become necessary that 
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a shielding solution be developed that is lightweight, cost 
effective and durable to insure the safety of astronauts and 
success of long duration missions.  

Boron Nitride Nanotubes (BNNTs) have become an 
attractive nanomaterial for this application. BNNTs are similar 
in structure to Carbon Nanotubes (CNTs) but the carbon atoms 
are replace with boron and nitrogen atoms, with almost 
identical lattice parameters, bond angles, and bond spacing 
[2]. The structural similarities of BNNTs and CNTs lead 
researchers to believe that these two structures have similar 
mechanical properties. CNTs have become a focal point for 
enhancing the mechanical properties of composite materials 
because of their superb mechanical properties. Boron is the 
key element associated with the radiation shielding 
characteristics of BNNT’s because of B10’s large neutron 
capture cross section, making it effective at capturing harmful 
neutrons [1]. Single-walled BNNTs have a band gap of 5.0 to 
6.0eV (semiconducting range) [2]-[4]. BNNT’s also offer 
better thermal conductivity and chemical stability, which are 
beneficial in the fabrication of radiation shielded suits and 
composites [5]-[8]. These properties have made BNNT’s a 
good choice for applications in radiation shielding material in 
the structure of space craft and organic photovoltaic packaging 
material [9]-[10].  

In the past it was very difficult to fabricate large amounts of 
high quality BNNTs. Most of the draw backs were due to the 
high synthesis temperatures and toxic precursor gases required 
to manufacture highly crystalline, low impurity, low defect 
BNNTs. Recently, the National Aeronautics and Space 
Administration (NASA) developed a new synthesis method 
that addresses the challenges mentioned above. The method is 
called the pressure vapor condenser (PVC) method and this 
breakthrough has made BNNTs a viable solution to create 
radiation shielding nanocomposites.  

II. SIMULATION DETAILS 
Materials Studios 6.0 by Accelrys was used to perform the 

Molecular Dynamics (MD) Simulation. A universal force field 
was used, inside of the CASTEP module which uses Density 
Functional Theory (DFT) to calculate the various parameters 
of the system. The simulation process consists of five steps: 
1. Construction of a BNNT and a Periodic Box, 
2. Loading of the BNNT with hydrogen 
3. Geometry optimization 
4. Calculation of Elastic Constants 
5. Calculation of Mechanical Properties. 
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III. RESULTS AND DISCUSSION 
The young’s modulus for bnnt and the two configurations 

of HBNNTs were determined using the extrapolation 
technique (Figs. 3 and 4). Table II shows predicted values of E 
where theoretical density of 2.28 g/cm3 and 2.62 g/cm3 were 
used for BNNT and HBNNT, respectively. In case of (6,6) 
nanotubes, addition of Hydrogen to the structure of tube 
resulted in 11.6 percent decrease in Young’s modulus (for 
both configurations) while for (8,8) nanotubes smaller 
decrease is observed with 10 percent for the external 
Hydrogen configuration and 7 percent for Hydrogen on the 
external side of B and the internal side of N configuration. 
Therefore, it is expected that by introducing Hydrogen to the 
structure of nanotubes, the Young`s modulus value will 
decrease by the average of 8.5 percent. 

 
TABLE II 

PREDICTED YOUNG`S MODULUS FOR (6,6) AND (8,8) BNNTS AND HBNNTS 
BNNTs Type 6,6 8,8 

External Hydrogen Only 733 715 
Hydrogen on External B and Internal N 732 736 

No Hydrogen 830 795 
 
Interestingly, the changes of Young`s modulus for 

Hydrogen on the external side of B and the internal side of N 
for both (6,6) and (8,8) nanotubes is very close (11 and 10 
percent, respectively) while for the external Hydrogen 
configuration, changes in E for (8,8) is smaller than (6,6) 
tubes. Even though further investigation is needed, addition of 
Hydrogen on only external sites has been demonstrated to 
have less effect on Young`s modulus of nanotubes with larger 
diameter. The relationship between tube diameter and the 
effect of introducing Hydrogen on Young`s modulus may be 
explained through atomic interactions between Hydrogen and 
B and N atoms. In the smaller tube, e.g.(6,6) with 0.814 nm 
diameter, the distances between atoms are so small that 
changing the position of Hydrogen from the outside to the 
inside of the tube might not affect the total interaction between 
the three types of atoms. On the other hand, the larger (8,8) 
Nanotubes (diameter of 1.085 nm) shows a dependence on the 
configuration of the hydrogen which is probably due to the 
increased distance between the atoms, resulting in a decreased 
disturbance on the overall system. 

Although, based on presented results, addition of Hydrogen 
reduces the elastic modulus of BNNTs and degrades 
mechanical properties, HBNNTs still offer a unique and 
interesting combination of strength and shielding capability. 
Researchers have long tried to improve the mechanical 
strength of carbon composite by adding Carbon Nanotubes, 
but the results are not as promising as was expected. Addition 
of Carbon nanotubes into composites has introduced new 
challenges such as dispersion of nanotubes throughout the 
composite, nanotube agglomeration, interface interaction 
between nanotube and matrix, a limit on the maximum 
percentage of Carbon nanotubes that can be incorporated into 
the composite and many others. Therefore, HBNNTs can be 
interesting candidates for space application, considering that 

they possess a combination of properties including improved 
radiation shielding properties, high Young`s modulus (+ 700 
GPa comparing to 150 GPa for carbon fiber) and light weight. 
Once fabrication challenges are solved and good quality 
composites are made using HBNNTs, addition of Boron 
Nitride nanotubes are expected to increase the mechanical 
strength of carbon fiber nanocomposite while improving 
chemical and thermal stability [6], [10], [14]. 

IV. CONCLUSION 
Using the extrapolation technique with the Material Studios 

software has shown that it is possible to predict Young’s 
Modulus for BNNTs [13]. Results show an 11 % decrease in 
the Young’s Modulus for the (6,6) HBNNTs and an 8.5 % 
decrease for the (8,8) HBNNTs . This would still result in an 
enhancement of the mechanical properties of the 
conventionally accepted and used carbon fiber composites. In 
conclusion, hydrogenated BNNTs are theoretically predicted 
to be a viable choice in radiation shielding nanocomposites.  
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Fig. 3 Young’s Modulus vs. Density for (6,6) BNNT w and w/o Hydrogen 

 

 
 

Fig. 4 Young’s Modulus vs. Density for (8,8) BNNT w and w/o Hydrogen 
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