
 

 
    Abstract—Support Vector Machine (SVM) is a recent class of 
statistical classification and regression techniques playing an 
increasing role in applications to detection problems in various 
engineering problems, notably in statistical signal processing, pattern 
recognition, image analysis, and communication systems. In this 
paper, SVM is applied to an infrared (IR) binary communication 
system with different types of channel models including Ricean 
multipath fading and partially developed scattering channel with 
additive white Gaussian noise (AWGN) at the receiver. The structure 
and performance of SVM in terms of the bit error rate (BER) metric 
is derived and simulated for these channel stochastic models and the 
computational complexity of the implementation, in terms of average 
computational time per bit, is also presented. The performance of 
SVM is then compared to classical binary signal maximum 
likelihood detection using a matched filter driven by On-Off keying 
(OOK) modulation. We found that the performance of SVM is 
superior to that of the traditional optimal detection schemes used in 
statistical communication, especially for very low signal-to-noise 
ratio (SNR) ranges. For large SNR, the performance of the SVM is 
similar to that of the classical detectors. The implication of these 
results is that SVM can prove very beneficial to IR communication 
systems that notoriously suffer from low SNR at the cost of increased 
computational complexity.  

 
Keywords—Least Square–Support Vector Machine, On-Off 

Keying, Matched Filter, Maximum Likelihood Detector, Wireless 
Infrared Communication.   

I. INTRODUCTION 
VM is based on the statistical learning theory initially 
developed by Vapnik [1] in 1979 and later developed to a 

more complex concept of structural risk minimization (SRM).  
SVM is formulated on the structural risk minimization (SRM) 
principle which minimizes an upper bound on the 
generalization error, as opposed to the classical empirical risk 
minimization (ERM) approach which minimizes the error on 
the training data and is embodied in statistical learning. The 
quality and complexity of the SVM solution does not depend 
directly on the dimensionality of the input space.  

The SVM theory starts from simple ideas on linear 
separable classes, then progresses into studying the case of 
linear non-separable classes. The separation of classes using 
linear separation functions is extended to the nonlinear case. 
The derivation of SVM is based on constructing an optimal 
separating hyperplane after nonlinearly mapping the input 
space into a high-dimensional feature space via simple kernel 
representations using linear separation functions. The 
classification problem is solved in the higher dimension space  
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by constructing a linear classifier with maximum margin. We 
note that the dimension of the higher space is not needed and 
the explicit construction of this mapping function is avoided 
by the application of Mercer’s condition [2]. Kernels that 
satisfy this condition and can be employed for SVM’s are 
polynomials, splines, radial basis functions, and multilayer 
perceptrons with one hidden layer. For classification problems 
the parameters which are related to these kernel functions are 
chosen so as to minimize an upper bound on the Vapnik–
Chervonenkis (VC) dimension of the SVM [2]. The training 
of SVM’s with Vapnik’s epsilon insensitive loss function is 
done by quadratic programming. 

Only a sparse set of support vectors (SVs) determine the 
SVM classifier, and these SVs are automatically chosen from 
the training data during the learning process. 

Support vector machines have been widely used in solving 
classification and function estimation problems due to its 
many attractive features and promising empirical performance 
with many successful applications in synthetic aperture radar 
image classification and pattern recognition [3]. Recently, 
SVM has been introduced to digital communication systems 
as a new method for channel equalization [4] – [6] and has 
proved to be very effective in overcoming intersymbol 
interference (ISI) and co-channel interference (CCI). SVM 
was also applied for the equalization of burst time division 
multiple access (TDMA) transmission [7]. To the best of our 
knowledge, SVM has not been implemented yet for receiver 
detection in digital communication systems in the presence of 
multiplicative partially fading channel noise and additive 
receiver noise. A notable exception is the initial work of 
Mokbel and Hashem [8] who applied SVM to a bipolar non-
return to zero (BNRZ) digital communication detector based 
on a cascade of sampler and comparator using multiple 
samples per binary period (termed dimension) in the presence 
of additive white Gaussian noise in wire-line communication 
systems. Their work showed that the SVM-based detector 
outperformed the classical detector for low SNR and that the 
SVM performance improved (with a law-of diminishing 
return taking place) as the dimension increased with no 
practical improvement noticed after 10 samples per bit. The 
authors in [8] did not conduct further research to study SVM 
in wireless multipath fading channels. 

II. BINARY WIRELESS INFRARED COMMUNICATION 
Wireless infrared communications refers to the use of free-

space propagation of light waves in the near infrared band as a 
transmission medium for telecommunication applications. IR 
radiation (nondirected) has been shown to be a viable 
alternative to radio transmission for indoor wireless 
communication but it requires a high average power efficiency 
[9]. On-Off Keying is the simplest modulation techniques 
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implemented in the physical link of general binary systems. 
Beside its simplicity, OOK is characterized by the ease of its 
clock recovery.  

Another popular modulation technique for IR 
communication is L-pulse-position modulation (L-PPM). PPM 
is an effective modulation scheme for nondirected IR because 
of its high average power efficiency, which increases with an 
increase in L. However, the drawback of L-PPM is its poor 
bandwidth efficiency. As a result, L-PPM suffers from severe 
ISI in high speed indoor IR systems (> 10 Mbps) caused by 
the multipath fading channel’s scatterers. OOK, on the other 
hand, does not suffer severely from ISI. For this reason, in 
addition to its simplicity, OOK is chosen as the modulation 
technique of the IR communication system analysed in this 
work. 

Considering the receiver side of an OOK modulated signal, 
and assuming a distortionless channel, the ideal maximum 
likelihood (ML) detector is composed of a filter matched to 
the transmitted pulse shape, and a threshold detector equal to 
half the amplitude of a "high" pulse. The theoretical power 
requirements of unequalized OOK links computed on 
multipath channels including non-directed line-of-sight and 
diffuse configurations, with and without shadowing [10], 
show that the optical power requirement depends essentially 
on the normalized delay spread (the delay spread normalized 
to the it duration). Also it shows that for links operating at 100 
Mbps unequalized, OOK faces a very large power drop and 
encounters an irreducible BER, which implies that 
unequalized OOK reception on multipath channels is not 
feasible. This triggers the need for a detector other than 
classical model-based ones. 

III. SUPPORT VECTOR MACHINE 
Since the idea of SVM emanates from determining an 

optimal hyperplane for separating two classes with maximum 
margin, it is logically very relevant to binary detection in 
communication systems. 

In this section, we provide a succinct introduction to the 
SVM approach. The reader is referred to the initial work of 
Vapnik [1] and the tutorial paper of Burges [2] for more in-
depth treatment of the SVM theory and the concepts of VC 
dimension and the structural risk minimization. These 
references also study the use of linear functions to classify 
data in both cases of separable data and non-separable data. A 
thorough coverage of the generalization to non-linear cases 
through the mapping to a higher-dimension space is also 
presented in these references in addition to the kernel mapping 
techniques. 

Many reasons could be stated for preferring Least Square–
Support Vector Machine (LS-SVM) over other methods and 
models of SVM, yet the most important reason is that LS-
SVM is an iterative method that could be used to solve large 
scale problems with robustness in the sense of the choice of 
the regularization and smoothing parameters [11].  

Moreover, in many real life applications it offers a fast 
method for obtaining classifiers with good generalization 
performance [12]. SVM is equipped with this intriguing 
potential to generalize mainly because its formulation 

embodies SRM as opposed to the ERM approach commonly 
employed in statistical learning. 

Given a training set of N data points {yk, xk)N, where xk 
denotes the kth input pattern and yk the kth output pattern, the 
support vector method approach aims at constructing a 
classifier of the form [13]: 

 
 ( ) ( )Tf x sign x b⎡ ⎤= +⎣ ⎦w ϕ   
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( )
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where ϕ(.) is a set of mapping functions that transform the 
input patterns into a high dimensional feature space termed the 
reproducing kernel Hilbert space (RKHS), w is the weight 
vector in the RKHS, αk are support values (Lagrangian 
multipliers) and b is the bias term. The kernel function 

( )2 2
2( , ) exp /k kK x x x x σ= − −  for RBF (radial basic 

function) SVM, where σ is constant. For binary classification 
(separable data), we can assume 
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Equivalently, 
 

 ( ) 1, 1, ,T
k ky x b k N⎡ ⎤+ ≥ =⎣ ⎦ Lw ϕ  (3) 

 
LS-SVM classifiers are obtained as a solution to the 

following optimization problem (non separable case): 
 

 
1

1min ( )
2
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T
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k

b
ξ

ξ γ ξ
=

ℑ = + ∑, ,
w, , w w  (4) 

 
subject to the equality constraint 
 

 ( ) 1 0 1T
k k k ky x b k Nϕ ξ ξ⎡ ⎤+ = − ≥ =⎣ ⎦ Lw , , , ,  (5) 

 
where γ is the regularization factor and kξ  is the difference 
between the output yk and discriminant function f(xk). 

The parameters of the kernels, such as σ for the RBF 
kernel, can be optimally chosen by optimizing an upper bound 
on the VC dimension, which involves solving a quadratic 
programming problem. The support values αk are proportional 
to the errors at the data points in the LS-SVM case, while in 
the standard SVM case many support values are typically 
equal to zero [14]. 

IV. STOCHASTIC CHANNEL MODELING 
The Rician fading channel model is widely used in the 

literature for wireless indoor IR systems [15-18]. We used for 
the SVM simulations a more accurate model for fading power 
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in a local environment (small area), that of partially developed 
fading power whose probability density function (pdf) is 
formulated as a series of modified-Rician distributions 
weighted by orthogonal polynomials [19, 20]. Such pdf series 
model converges asymptotically to a modified-Riciean 
distribution. More models have been suggested in the 
literature, such as the WLAN IEEE 802.11 and the ultra 
wideband IEEE 802.12 standards and we leave this as an area 
of future investigation [21].  

The partially developed fading envelope obeys the 
scattering stochastic model 

  

 0
1

,k

M
j

M k
k

A e Vϕγ
=

= +∑  (6) 

 
with the partially developed fading power being 2

M Mν γ= .  
Ak is the random amplitude of the kth scatterer, kφ  is the 
random phase of the kth scatterer assumed to be uniformly 
distributed between [0, 2π), V0 is the amplitude strength of the 
direct line of sight (LOS), and M is the random number of 
scatterers in the channel assumed to obey a Poisson 
distribution, a valid assumption since the underlying random 
point process in space describing the spatial distribution of the 
channel scatterers satisfies a technical condition known as the 
Khinchine orderliness condition [22]. We note that as M 
approaches infinity, the stochastic model is termed fully-
developed, the fading envelope γM is asympotically Rician, 
and the fading power νM obeys a modified-Rician distribution. 

The received IR signal is corrupted by two types of noises: 
(1) channel fading multiplicative noise Mγ and (2) receiver 
additive white Gaussian noise (AWGN). 

V. SIMULATION RESULTS AND DISCUSSIONS 
In this section all systems described earlier will be 

simulated and compared with their new SVM-based versions. 
The results of this section will cover the most widely used 
models of the wireless hostile channel. They could be thus 
considered as a corner stone for any future research in the 
field of SVM in comparison with conventional systems to 
give theoretically, not as accurately as in real time 
measurements with real systems, a clear insight of the 
performance of the new SVM-based system.  

For simulation purposes, Matlab is used due to its enhanced 
mathematical capabilities and engineering based structure. 
The LS-SVM model was simulated using Matlab code 
downloaded from [23] on a 1.7 GHz Pentium IV computer 
with 256 MB RAM, to ensure that the comparison with 
classical detectors is fair since it is the main scope of this 
simulation. Without loss of generality (wlg) and for the 
purpose of simulation, we assumed K = 3 (the Rician K-factor 
defined as the ratio of diffuse power to coherent LOS power). 

The classical infrared system detector was designed for 
directed LOS link using intensity modulation with direct 
detection (IM/DD). Then the SVM-based IR detector was also 
designed and simulated, yielding the graph of Fig. 1. 

In order to take full advantage of the SVM technique, we 
considered several samples of the OOK signal in the bit 
period. This offers a generalization since the SVM classifier is 
applied in a wider space. 

It is noticed from Fig. 1 that the SVM-based detector 
outperforms the classical ML-based detector for low SNR, 
while for high SNR, both systems seem to produce similar 
results and converge at 9.12 dB.  
 

 
Fig. 1 Comparative performance of an IM/DD infrared 

communication system using OOK in fully developed multipath 
Ricean channel with AWGN 

 
The results of the simulations for partially developed 

scattering noise are shown in Fig. 2 with the assumptions 
made in the stochastic model of (6) (wlg) as: Ak = 1 and Γ = 1 
(the intensity of the Poisson distribution).  

 

 
Fig. 2 Comparative performance of an IM/DD Infrared 

communication system using OOK in partially developed scattering 
channel with AWGN  

 
Again, the SVM outperformed the ML detector for low 

SNR and it achieved the ML performance asymptotically at 
9.87 dB. For very low SNR (-10 dB), the BER attempts 10% 
in the ML detector and 1.5% in the SVM detector, so the 
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SVM results present a significant improvement over the 
classical optimal ML-based detector for low SNR. 

For very large SNR, there are no notable differences in the 
BER curves and the performance of SVM and ML are, in 
practice, almost identical. For high SNR, the BER is very 
weak and cannot be measured with sufficient precision for 
both  methods, so a much larger training data block must be 
used. 

In order to fully study the performance of the classical 
binary infrared system using a whitened Matched filter 
(WMF) and the new suggested SVM-based receiver, it is vital 
to study and compare the processing time for each system. 
These results are tabulated in Table I.  

We note that the processing time is slightly smaller for 
partially developed fading for both WMF and SVM. This is 
expected because the partially developed model uses only a 
small number of scatterers. In both fading models, SVM was 
slower than WMF. In fact, the main drawback of SVM 
method is that it is a block-data based method. 

 
TABLE I 

PROCESSING TIME FOR THE DIFFERENT SCHEMES OF IR 

 Adopted Scheme Processing Time 
 (micro secs/bit) 

WMF 0.0852 Fully Developed 
Ricean Fading SVM 0.1054 

WMF 0.0847 Partially Developed 
Fading SVM 0.1048 

 
The results of this work are generated from simulation 

programs, which are not as accurate as the results that could 
be acquired from real-time physical systems. For this reason, 
the computational results of Table I remain rather 
inconclusive due to the subjectivity of the programming which 
is controllable in the sense of choosing the models parameters 
that may not meet the real-time characteristics of real physical 
systems. Moreover, the computation of the processing time is 
subjected to the processing time of the computer. Yet since all 
systems are written with the same programming methodology, 
the results are comparable in the sense that if one of the 
systems did give a better processing time than the other 
system, it is expected that it would give such difference in real 
time implementation. 

To remedy this problem, we suggest, as future work, to 
adopt one of the many pre-designed SVM chips [24] and 
implement a real physical system and compare results with the 
simulation outputs. As processors technology becomes faster 
and cheaper, SVM’s computational complexity disadvantage 
will be eliminated. 

VI. CONCLUSION 
In this paper, we applied SVM to binary OOK detection in 

IR systems in the presence of fading channel and AWGN 
receiver noise with various statistical characteristics. Two 
multipath fading channel models were considered: Fully-
developed Rician and partially developed fading which is 
more practical for fading in a local environment with small 
area and is representative of a wide class of wireless 

communication systems, including IR, cellular (pico- and 
femto-cells), and WPAN (wireless personal area networks). 

We found that the performance of SVM was superior to 
that of the traditional ML detector used in binary signalling, 
especially for very low SNR (below 9 dB). For large SNR, the 
performance of SVM was similar to that of the ML detector. 

The implication of these results is that SVM can be applied 
to IR communication systems that notoriously suffer from low 
SNR at the cost of increased computational complexity. SVM 
can prove very beneficial to IR systems because it allows the 
transmission distance to increase without significant loss of 
detected signal quality. We thus expect this work to conceive 
a new generation of SVM-based IR systems. Since 
transmission range is also a major problem in deep space 
communication, such systems can also become SVM-based.  

As perspective to this work, we propose to validate the 
conclusions on real data and to investigate the ability of the 
SVM-detector to generalize to new noise conditions. 
Moreover, since SVM is a boundary-based classifier, we 
propose to define a strategy to integrate in the decision 
samples from adjacent bits. 
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