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Abstract—Cardiovascular disease resulting from hypertension
poses a significant threat to human health, and early detection
of hypertension can potentially save numerous lives. Traditional
methods for detecting hypertension require specialized equipment
and are often incapable of capturing continuous blood pressure
fluctuations. To address this issue, this study starts by analyzing
the principle of heart rate variability (HRV) and introduces the
utilization of sliding window and power spectral density (PSD)
techniques to analyze both temporal and frequency domain features
of HRV. Subsequently, a hypertension prediction network that relies
on HRV is proposed, combining Resnet, attention mechanisms, and a
multi-layer perceptron. The network leverages a modified ResNet18
to extract frequency domain features, while employing an attention
mechanism to integrate temporal domain features, thus enabling
auxiliary hypertension prediction through the multi-layer perceptron.
The proposed network is trained and tested using the publicly
available SHAREE dataset from PhysioNet. The results demonstrate
that the network achieves a high prediction accuracy of 92.06% for
hypertension, surpassing traditional models such as K Near Neighbor
(KNN), Bayes, Logistic regression, and traditional Convolutional
Neural Network (CNN).

Keywords—Feature extraction, heart rate variability, hypertension,
residual networks.

I. INTRODUCTION

W ITH the continuous improvement of living conditions

and the enhancement of quality of life, many chronic

diseases have gradually emerged as invisible killers of physical

health. Although these chronic diseases can be effectively

managed, their complications pose a greater risk to people’s

health overall [1]. Due to changes in lifestyle and work

patterns in our country, unhealthy habits such as staying up

late, excessive drinking, and smoking have led to an increasing

number of people suffering from chronic non-communicable

diseases, including hypertension. These diseases have become

significant public health issues in China. According to

the China Cardiovascular Health and Disease Report 2020

published in July 2021, cardiovascular diseases caused by

hypertension rank first among the causes of death for both

urban and rural residents in China, surpassing other diseases.

There are two main methods for monitoring hypertension:

direct blood pressure measurement and indirect measurement

using the Korotkoff sound method. Direct measurement is

invasive and involves inserting a catheter into a peripheral

artery, while the Korotkoff sound method [2] is non-invasive

and uses a cuff and stethoscope to detect arterial sounds. Both

methods have limitations such as external noise interference
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and variations in pulse strength among individuals, which can

affect accuracy. Additionally, the Korotkoff sound method may

not be suitable for long-term and continuous monitoring.

During the process of heartbeating, the human body

undergoes a series of electrophysiological changes. These

changes generate electrical signals that can be picked up from

the body surface using electrodes, and they are continuously

displayed on a timeline to form an electrocardiogram

(ECG) [3]. Researchers have found that the interactions

between the sympathetic and parasympathetic nervous systems

in the autonomic nervous system (ANS) [4], [5] of the human

body affect the rhythmicity of heartbeats and result in small

variations over time, known as heart rate variability (HRV).

HRV is one of the non-invasive indicators that has gained

attention in recent years for cardiac monitoring. Analyzing

HRV can indirectly quantitatively evaluate the tension and

balance of cardiac sympathetic and vagal nerves, as well as

analyze the activity of the autonomic nervous system [6]–[8].

For example, HRV can serve as an independent predictor for

the risk of sudden cardiac death [9]. Abrishami et al. [10]

proposed an expert system for assisting hypertension detection

based on a multi-layer neural network. The system takes

inputs such as patient’s systolic blood pressure, smoking

status, age, weight, and body mass index (BMI), and predicts

the diagnosis of hypertension using the multi-layer neural

network. The experiment achieved good results. Ren et

al. [11] used LSTM to classify textual sequences in electronic

medical records and combined an autoencoder to classify

numerical data in electronic medical records. The outputs of

the two classifiers were then merged into a fully connected

layer, and the model predicted renal diseases in hypertension

patients using Softmax classification. The effectiveness of the

model was validated through experiments and comparisons

with other algorithms. Some researchers have conducted

hypertension prediction by extracting feature parameters of

HRV and combining them with machine learning algorithms.

For example, Wang et al. [12] developed a prediction model

for hypertension based on logistic regression and artificial

neural networks without measurement. They used binary

logistic regression to predict the significant risk factors

leading to hypertension. The experimental results showed an

accuracy of over 72% for the model. Pavithran et al. analyzed

HRV and other conventional parameters (including HRV

during deep breathing, blood pressure response during static

standing, and isometric grip strength) in 35 male subjects.

The experimental results showed that the parasympathetic

function of hypertension patients was impaired, leading to a

decrease in HRV compared to the normal population [13],
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[14]. In general, there is currently a lack of deep learning based

hypertension prediction techniques specifically targeting HRV.

Lan et al. [15] used intelligent wearable devices to collect

continuous 6-hour photoplethysmography (PPG) signals from

24 hypertension patients and 19 healthy individuals. They

extracted six HRV features and achieved an 85.47% accuracy

rate for hypertension classification. However, the accuracy

of hypertension prediction using PPG signals is affected

by the fact that PPG waveforms do not carry important

high-frequency components and are highly sensitive to motion

artifacts [16]. Therefore, in this study, the HRV features of

hypertension patients are analyzed using ECG signals, and

deep learning algorithms are combined to study hypertension

prediction techniques based on HRV.

The rest of the paper is structured as follows: In Section

II, a comparative analysis is conducted between the heart

rate variability (HRV) of normal individuals and that of

individuals with hypertension. A sliding window and PSD are

introduced to analyze the time-domain and frequency-domain

features of HRV. In Section III, a hypertension prediction

network is presented based on HRV, which integrates

ResNet18, attention mechanisms, and multi-layer perceptron.

The network extracts frequency-domain features from PSD

graphs and combines them with time-domain features through

attention mechanisms. The multi-layer perceptron is then

used for hypertension classification prediction. In Section

IV, the SHAREE [17] dataset is used for network training

and experiments, and the hypertension prediction results of

the proposed model are compared with those of traditional

machine learning algorithms. Finally, a summary is provided

in the conclusion of the paper.

II. RELATED WORK

The methods for analyzing HRV mainly include

time-domain analysis and frequency-domain analysis

[18]–[20]. In this section, based on the analysis of HRV

features in hypertensive patients, a sliding window and PSD

technique are introduced to transform the ECG data into

time-frequency domain features. This provides a foundation

for the subsequent construction of an improved residual

network for hypertension-assisted prediction.

A. Analysis of HRV in Hypertensive Patients

Due to the elevation of blood pressure, changes such as

vasodilation and accelerated heart rate may occur. Therefore,

extracting the HRV features by analyzing the heart rate interval

sequence based on electrocardiogram (ECG) is a necessary

step for assisting in predicting hypertension. Fig. 1 compares

the heart rate interval images between normal individuals and

hypertensive patients. The horizontal axis represents the heart

rate interval sequence within one minute, and the vertical

axis represents the time difference between the current and

previous heartbeats. The heart rate interval sequence with

a relatively flat curve represents normal individuals, with

a mean time difference of 886.12 and a heart rate of 68

beats per minute. The heart rate interval sequence with more

fluctuations represents hypertensive patients, with a mean time

difference of 793.54 and a heart rate of 77 beats per minute.

Compared with normal individuals, hypertensive patients have

lower HRV values. Based on the differences in HRV between

healthy individuals and hypertensive patients, analysis of the

time-frequency domain features of HRV provides a foundation

for subsequent research.

Fig. 1 Heartbeat interval diagram

B. HRV Time-Frequency Domain Characterization

ECG data, often collected by instrument equipment, are

susceptible to irregularities caused by factors such as breathing

and movement, resulting in missing data points and noise

that can affect subsequent analysis. To extract HRV features

accurately, it is necessary to obtain a feature vector as a

standard for assisted prediction. Firstly, the original ECG data

are sampled using a cubic spline interpolation to improve

the time accuracy of peak detection. Secondly, a high-pass

Butterworth filter is applied to reduce potential long-term

drift in the signal. Finally, a Savitzky-Golay filter is used to

smooth the data, reducing sharp peaks while maintaining time

accuracy.

After pre-processing the raw data, it is necessary to extract

time-frequency domain features from the processed data.

Due to the continuous and long-term nature of ECG data,

traditional analysis methods for static data are insufficient for

this scenario. Therefore, this paper utilizes a sliding window

technique. As shown in Fig. 2, a window of 20 seconds is used

to cache ECG data and perform wave detection and feature

analysis of each window of ECG data, with corresponding

timestamps set to save the time-frequency domain feature

results. As new data are continuously generated, the sliding
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Fig. 2 Sliding window to extract features

window updates its data according to the first in first out rule

and continuously saves its analysis results.

For ECG data, peak detection can be influenced by unrelated

prominent P-waves and T-waves. Specifically, traditional

amplitude-based analysis may occasionally detect non-R-wave

peaks that have similar or larger amplitudes compared to

the R-wave. Therefore, for ECG data, K-means clustering is

applied to differentiate R-waves from the commonly present

P and T waves in the signal, followed by the extraction of the

RR interval sequence.

The RR interval sequence, which has been extracted,

is initially subjected to time-domain signal analysis to

extract its time-domain feature parameters. The primary

parameters in focus include RR, Standard Deviation of

Normal-to-Normal intervals (SDNN), Root Mean Square of

Successive Differences (RMSSD), and Percentage of RR

intervals greater than 50ms in total RR intervals( PNN50),

as described in Table I.

TABLE I
TIME DOMAIN CHARACTERISTICS

Features Feature Description

RR(Mean) RR interval mean

SDNN RR Standard deviation of continuous normal RR interval

RMSSD The root mean square of the difference between adjacent
R-R intervals

PNN50 RR The number of adjacent normal R-R intervals with a
difference greater than 50ms as a percentage of the total
number of heartbeats

Subsequently, the frequency-domain feature parameters for

heart rate variability are extracted from the PSD estimation.

Fourier Transform is used to convert the signal from the

time-domain to the frequency-domain. Its formula is shown

in (1), where f represents the frequency component of

x, and t represents time. The equation can be understood

as the time-domain signal x(t) being multiplied by an

exponential term consisting of specified frequencies (e−2πift).

The integral of this product over the entire time axis produces

the frequency-domain signal, which identifies the spectral

components of the signal. PSD is defined as the square of the

modulus of the Fast Fourier Transform and is expressed as (2).

The power spectrum reflects the changes in signal power with

frequency in a given frequency band, i.e. the distribution of

signal power in the frequency-domain.

S(f) =

∫ +∞

−∞
x(t) ∗ e−2πiftdt (1)

P = lim
T→∞

1

T

∫
|S(f)|2df (2)

The raw ECG data, represented as a one-dimensional signal,

are converted into a three-channel RGB image using PSD.

This image incorporates frequency-domain features of heart

rate intervals within a sliding window. The utilization of this

image provides a foundation for exploring high blood pressure

prediction techniques based on an improved residual network.

III. METHOD

In this section, we first introduce a network architecture that

integrates Resnet [21], attention mechanism, and multilayer

perceptron. Secondly, we provide an overview of the principles

of Resnet and the extraction of frequency-domain features

using the improved Resnet18. Lastly, we discuss the fusion

of time-frequency domain feature vectors based on attention

mechanism.

A. Network Architecture

The preprocessed ECG data are transformed into individual

RGB images through the utilization of sliding windows and

PSD conversion. These images can be subjected to feature

extraction using convolutional networks. Building upon the

analysis and comparison of traditional convolutional networks

such as KNN [22], Bayes [23], Logistic [24], and CNN [25],

this paper introduces a network architecture that integrates

Resnet, attention mechanism, and multilayer perceptron (as

depicted in Fig. 3). This architecture comprises of an input
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layer, Resnet layer, fusion layer, fully connected layer, and

softmax layer.

The input layer receives RGB images and feeds them

into the Resnet layer. The ResNet layer consists of

multiple convolutional blocks and residual blocks to extract

frequency-domain features from the images. The fusion layer

utilizes attention mechanism to fuse the frequency-domain

feature vectors with the time-domain feature vectors. Finally,

the feature vectors are classified through the fully connected

layer (which is essentially a multilayer perceptron) and

softmax layer. The predicted result is determined by selecting

the class with the highest probability and is then outputted.

B. Resnet-Based Frequency Domain Feature Extraction

ResNet proposed the residual learning method to alleviate

the difficulties of training deep neural networks, which often

leads to a decrease in accuracy. As shown in Fig. 4, each

residual module contains two paths, one of which is a direct

path to the input feature, while the other path applies two

to three convolutional operations to the feature to obtain

the residual feature F(x), with both paths having their own

weights. Finally, the two results are added together as input for

the next layer. If the convolutional path does not produce good

results, its weight is set to zero, resulting in the input being

treated as an identity mapping, ensuring that the effect is no

worse than that of the original input. The addition of residual

modules can avoid the problem of gradient disappearing,

further improving the fitting ability of the model and reducing

the impact of increasing network depth.

The improved Resnet18 mainly includes an input layer,

several intermediate layers, and an average pooling layer, as

shown in Fig. 5. The input layer consists of a convolutional

layer and a max pooling layer. The intermediate layers,

indicated by the dotted lines in the figure, consist of four

convolutional blocks containing residual modules, followed by

an average pooling layer to output the feature values.

The input, which is transformed by PSD (Position-Specific

Discrete) convolution, has a size of 224*224*3. It consists

of three channels, each with a size of 224*224. This input

includes a convolutional layer with a 7*7 kernel and a

stride of 2, as well as a 3*3 max pooling layer with a

stride of 2. Through this process, the image is reduced

to a feature map of size 56*56, significantly reducing the

required storage space. In the intermediate layers, there are

a total of four convolutional blocks. The convolutional layer

is a crucial component of the CNN as it is responsible for

extracting features from the raw data while preserving the

spatial continuity of the image. It captures local features of

the data, and the convolutional kernel has parameter-sharing

capabilities, effectively reducing the number of parameters in

the convolutional layer. Firstly, the input passes through a

convolutional layer with a 3*3 kernel, a stride of 2, padding

of 1, and an output channel of 64. The output of this layer is

64*112*112. Secondly, it goes through another convolutional

layer with a 3*3 kernel, a stride of 1, padding of 1, and an

output of 128*56*56. Finally, there are two 11 convolutional

layers and one downsampling operation. Each layer has a

stride of 2, padding of 1, and doubles the output channels while

halving the size of the output vector. The final output vector

has a size of 512*7*7. It then undergoes average pooling,

resulting in an output vector of size 512*1*1.

C. Attention-Based Mechanism for Time-Frequency
Domain Feature Fusion

To begin with, the frequency-domain feature vectors

generated by the ResNet layer and the time-domain feature

vectors obtained through computation are utilized together as

inputs for the attention mechanism. Then, a scoring function

is employed to compute the correlation between the query

vector q and each input vector, resulting in a score. The higher

the score, the higher the weight. The feature vectors are then

weighted and concatenated using the concat function. Finally,

the classification results are output through a fully connected

layer and softmax layer. The scoring function is defined by

(3), where x represents the query, xi represents the key, and

yi represents the value corresponding to the key. The attention

weight between query x and key xi is denoted by ∝ (x, xi),
and if a key is closer to the given query x, a larger attention

weight is assigned to its corresponding value yi.

f(x) =

n∑
i=1

∝ (x, xi)yi (3)

IV. EXPERIMENTAL DESIGN AND ANALYSIS OF RESULTS

A. Experimental Data Set

The dataset used in this study is derived from the publicly

available dataset of SHAREE. The dataset was developed

for studying the possibility of identifying subjects at risk of

cardiovascular events based on heart rate variability analysis.

The data include information such as electrocardiogram

data and basic patient information, totaling 1260 cases, of

which 139 cases are hypertension patients, and the remaining

are healthy individuals. Hypertension is commonly seen in

middle-aged and elderly populations. In this dataset, the

age of hypertension patients is concentrated in the range of

[60-70] years, with an average age of 71.76 years. In machine

learning, in order to reflect the generalization performance of

algorithms, three-quarters of the dataset is randomly selected

as training samples, and the rest are used as test samples. A

binary classification model is established using the presence

or absence of hypertension symptoms as the label result.

To evaluate the effectiveness of the hypertension prediction

model, it is necessary to assess its predictive performance.

In this study, the model is evaluated from three dimensions:

accuracy, recall rate, and AUC (Area Under the Curve).

(1) Accuracy: The accuracy of predicting the presence or

absence of hypertension is measured as shown in (4), where

TP represents the number of true positives (correctly predicted

hypertensive patients), TN represents the number of true

negatives (correctly predicted non-hypertensive patients), FN
represents the number of false negatives (incorrectly predicted

hypertensive patients), and FP represents the number of false

positives (incorrectly predicted non-hypertensive patients).
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Fig. 3 Network architecture diagram

Fig. 4 Residual unit

Fig. 5 Resnet18 architecture

accuracy =
TP + TN

TP + FN + FP + TN
(4)

(2) Recall: The proportion of correctly predicted

hypertensive patients among all hypertensive patients in

the sample set is represented as shown in (5):

recall =
TP

TP + FN
(5)

(3) F1 value: It is an evaluation metric that combines

Precision and Recall, aiming to provide a comprehensive

representation of the overall performance. The formula for this

metric is shown as (6):

F1 =
2 ∗ accuracy ∗ recall
accuracy + recall

(6)

B. Analysis of Results

To validate the impact of data preprocessing, two

comparative experiments were conducted in the early stage of

this study using an improved residual network. One experiment

utilized preprocessed data, while the other experiment used

raw, unprocessed data. The results are presented in Table II.

The results demonstrate the necessity of preprocessing the raw

data before using it for analysis.

TABLE II
COMPARISON OF DATA PRE-PROCESSING

Testing Pre-processing Not pre-processed

Accuracy 91.03 82.7

Recall Rate 93.46 84.28

F1 0.91 0.83

Next, the preprocessed data were fed into the model

for testing, and the results were obtained by averaging the

outcomes over 10 trials, as shown in Table III. The average

accuracy of the ten classification predictions was found to be

92.06%, with an average recall of 93.55% and an average F1

score of 0.92.

TABLE III
CLASSIFICATION PREDICTION RESULTS BASED ON RESNET18

Testing Accuracy/% Recall/% F1

TEST1 90.03 99.87 0.95

TEST2 93.46 98.28 0.96

TEST3 94.10 97.90 0.95

TEST4 91.30 83.25 0.87

TEST5 90.57 83.76 0.87

TEST6 89.73 96.85 0.93

TEST7 91.52 94.63 0.93

TEST8 95.81 97.82 0.96

TEST9 91.57 92.67 0.92

TEST10 92.51 90.44 0.91

Average 92.06 93.55 0.92

To validate the effectiveness of the proposed network model,

it was compared with the KNN, Bayes, Logistic, and CNN
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algorithms. In the K-NN algorithm, the value of k was set to 2.

The Bayes algorithm implements the principle of conditional

probability to determine the probability after events are

exchanged. Logistic classification is a supervised learning

approach that requires manual annotation. CNN represents the

traditional convolutional neural network. All four classification

algorithms were evaluated using the same data, with the

same training and testing lengths. The performance evaluation

results averaged over 10 runs, are presented in Table IV.

It can be observed that the average performance of the

Bayes algorithm is significantly lower than the other four

algorithms. This could be attributed to the strong assumption

of independence between features in Bayes’ law, neglecting

the inter-dependencies among features. The KNN, Logistic,

and CNN algorithms achieved an average accuracy of around

70-80%. In contrast, the proposed residual network exhibited

the highest average accuracy at approximately 92% and also

attained the highest F1 score of 0.92.

TABLE IV
PREDICTION RESULTS OF DIFFERENT ALGORITHMS

Classification Algorithm Accuracy/% Recall/% F1

KNN 79.84 77.21 0.79

Bayes 49.44 39.28 0.44

Logistic 76.92 80.42 0.77

CNN 88.64 82.38 0.85

Resnet18 92.06 93.55 0.92

Finally, this study compared the effect of the number

of layers in a multilayer perceptron on accuracy. The

parameters and training data were kept consistent with the

previous experiments, while the number of layers in the

multilayer perceptron was increased or decreased, solely for

the purpose of observing the classification performance of

different numbers of layers. The results of this analysis are

presented in Table V.

TABLE V
ACCURACY RATE OF DIFFERENT LAYERS

Number of layers Accuracy/% Recall/% F1

2 89.48 90.25 0.89

3 92.06 93.55 0.92

4 88.26 87.35 0.87

When there are only 2 layers, it may not be able to

comprehensively extract and refine the features, resulting in

low accuracy. On the other hand, when there are 4 layers, it

may lead to overfitting of the features and also result in lower

accuracy. Therefore, in this study, a multilayer perceptron with

3 layers was selected as the optimal configuration.

V. CONCLUSION

Due to the lack of obvious early symptoms of hypertension,

patients themselves find it difficult to detect the condition. This

study aims to provide precise early warning and prediction

of hypertension risk to individuals with minimal economic

and physical burden. The main focus of this paper is to

propose a hypertension-assistant prediction model based on

the fusion of HRV time-frequency domain features, residual

networks, attention mechanisms, and multilayer perceptrons.

Experimental comparisons were conducted using the publicly

available SHAREE dataset. The results demonstrate that the

proposed model outperforms the other four classification

algorithms in assisting hypertension prediction. It provides

clearer and more accurate guidance and support for healthcare

professionals, thus aiding further examinations. Future work

will involve adjusting the network structure, including the

number of convolutional layers and the size of convolutional

kernels. Additionally, continuous optimization of model

parameters and exploration of more model fusion techniques

will be pursued.

REFERENCES

[1] C. Troeger, M. Forouzanfar, P. C. Rao, I. Khalil, A. Brown, R. C. Reiner,
N. Fullman, R. L. Thompson, A. Abajobir, M. Ahmed et al., “Estimates
of global, regional, and national morbidity, mortality, and aetiologies
of diarrhoeal diseases: a systematic analysis for the global burden of
disease study 2015,” The Lancet infectious diseases, vol. 17, no. 9, pp.
909–948, 2017.

[2] A. Meidert, J. Briegel, and B. Saugel, “Principles and pitfalls of arterial
blood pressure measurement,” Der Anaesthesist, vol. 68, pp. 637–650,
2019.

[3] P. Lamba and K. Rawal, “A survey of algorithms for feature extraction
and feature classification methods,” in 2019 International Conference
on Automation, Computational and Technology Management (ICACTM).
IEEE, 2019, pp. 338–341.

[4] C. M. van Ravenswaaij-Arts, L. A. Kollee, J. C. Hopman, G. B.
Stoelinga, and H. P. van Geijn, “Heart rate variability,” Annals of internal
medicine, vol. 118, no. 6, pp. 436–447, 1993.

[5] J. P. ZBILUT and L. LAWSON, “Decreased heart rate variability in
significant cardiac events,” Critical care medicine, vol. 16, no. 1, pp.
64–66, 1988.

[6] G. Wilson, “A review of “the polyvagal theory: Neurophysiological
foundations of emotions, attachment, communication, and self
regulation” stephen w. porges.(2011). new york: Ww norton, 272 pp.,
$45.00 (hardback).” 2012.

[7] B. Folkow, “Physiological aspects of primary hypertension.”
Physiological reviews, vol. 62, no. 2, pp. 347–504, 1982.

[8] S. Oparil, “The sympathetic nervous system in clinical and experimental
hypertension,” Kidney international, vol. 30, no. 3, pp. 437–452, 1986.

[9] B. Xhyheri, O. Manfrini, M. Mazzolini, C. Pizzi, and R. Bugiardini,
“Heart rate variability today,” Progress in cardiovascular diseases,
vol. 55, no. 3, pp. 321–331, 2012.

[10] Z. Abrishami and H. Tabatabaee, “Design of a fuzzy expert system and
a multi-layer neural network system for diagnosis of hypertension,” Bull
Environ Pharmacol Life Sci, vol. 4, no. 11, pp. 138–145, 2015.

[11] Y. Ren, H. Fei, X. Liang, D. Ji, and M. Cheng, “A hybrid neural network
model for predicting kidney disease in hypertension patients based
on electronic health records,” BMC medical informatics and decision
making, vol. 19, pp. 131–138, 2019.

[12] A. Wang, N. An, G. Chen, L. Li, and G. Alterovitz, “Predicting
hypertension without measurement: A non-invasive, questionnaire-based
approach,” Expert Systems with Applications, vol. 42, no. 21, pp.
7601–7609, 2015.

[13] P. Pavithran, M. Madanmohan, R. Mithun, M. Jomal, and H. Nandeesha,
“Heart rate variability in middle-aged men with new-onset
hypertension,” Annals of Noninvasive Electrocardiology, vol. 13,
no. 3, pp. 242–248, 2008.

[14] A. Gunther, I. Salzmann, S. Nowack, M. Schwab, R. Surber, H. Hoyer,
O. Witte, and D. Hoyer, “Heart rate variability–a potential early marker
of sub-acute post-stroke infections,” Acta neurologica Scandinavica, vol.
126, no. 3, pp. 189–196, 2012.

[15] K.-c. Lan, P. Raknim, W.-F. Kao, and J.-H. Huang, “Toward hypertension
prediction based on ppg-derived hrv signals: A feasibility study,” Journal
of medical systems, vol. 42, pp. 1–7, 2018.

[16] K. M. Warren, J. R. Harvey, K. H. Chon, and Y. Mendelson, “Improving
pulse rate measurements during random motion using a wearable
multichannel reflectance photoplethysmograph,” Sensors, vol. 16, no. 3,
p. 342, 2016.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:1, 2024 

6International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
44

0.
pd

f



[17] PhysioNet, https://www.physionet.org/content/shareedb.
[18] H. Kawano, R. Okada, and K. Yano, “Histological study on the

distribution of autonomic nerves in the human heart,” Heart and vessels,
vol. 18, no. 1, p. 32, 2003.

[19] J. L. Hamilton and L. B. Alloy, “Atypical reactivity of heart rate
variability to stress and depression across development: Systematic
review of the literature and directions for future research,” Clinical
psychology review, vol. 50, pp. 67–79, 2016.

[20] C. Schiweck, D. Piette, D. Berckmans, S. Claes, and E. Vrieze, “Heart
rate and high frequency heart rate variability during stress as biomarker
for clinical depression. a systematic review,” Psychological medicine,
vol. 49, no. 2, pp. 200–211, 2019.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[22] A. M. Alsayat, “Efficient genetic k-means clustering algorithm and its
application to data mining on different domains,” Ph.D. dissertation,
Bowie State University, 2016.

[23] D. Niedermayer, “An introduction to bayesian networks and their
contemporary applications,” Innovations in Bayesian networks: Theory
and applications, pp. 117–130, 2008.

[24] C.-c. Chen, K. Mondal, P. Vervliet, A. Covaci, E. P. O’Brien, K. J.
Rockne, J. L. Drummond, and L. Hanley, “Logistic regression analysis
of lc-ms/ms data of monomers eluted from aged dental composites: A
supervised machine-learning approach,” Analytical Chemistry, 2023.

[25] A. Roslin, M. Lebedev, T. Mitchell, I. Onederra, and C. Leonardi,
“Processing of micro-ct images of granodiorite rock samples using
convolutional neural networks (cnn). part iii: Enhancement of scanco
micro-ct images of granodiorite rocks using a 3d convolutional neural
network super-resolution algorithm,” Minerals Engineering, vol. 195, p.
108028, 2023.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:1, 2024 

7International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
44

0.
pd

f


