Search results for: tensile properties and fracture locations.
2001 Effect of Rubber Treatment on Compressive Strength and Modulus of Elasticity of Self-Compacting Rubberized Concrete
Authors: I. Miličević, M. Hadzima Nyarko, R. Bušić, J. Simonović Radosavljević, M. Prokopijević, K. Vojisavljević
Abstract:
This paper investigates the effects of different treatment methods of rubber aggregates for self-compacting concrete (SCC) on compressive strength and modulus of elasticity. SCC mixtures with 10% replacement of fine aggregate with crumb rubber by total aggregate volume and with different aggregate treatment methods were investigated. The rubber aggregate was treated in three different methods: dry process, water-soaking, and NaOH treatment plus water soaking. Properties of SCC in a fresh and hardened state were tested and evaluated. Scanning electron microscope (SEM) analysis of three different SCC patches were made and discussed. It was observed that applying the proposed NaOH plus water soaking method resulted in the improvement of fresh and hardened concrete properties. It resulted in a more uniform distribution of rubber particles in the cement matrix, a better bond between rubber particles and the cement matrix, and higher compressive strength of SCC rubberized concrete.
Keywords: Compressive strength, modulus of elasticity, NaOH treatment, rubber aggregate, self-compacting rubberized concrete, scanning electron microscope analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6412000 Influence of the Compression Force and Powder Particle Size on Some Physical Properties of Date Fruit (Phoenix dactylifera) Tablets
Authors: Djemaa Megdoud, Messaoud Boudaa, Fatima Ouamrane, Salem Benamara
Abstract:
In recent years, the compression of date (Phoenix dactylifera L.) fruit powders (DP) to obtain date tablets (DT) has been suggested as a promising form of valorization of non commercial valuable date fruit (DF) varieties. To further improve and characterize DT, the present study aims to investigate the influence of the DP particle size and compression force on some physical properties of DT. The results show that independently of particle size, the hardness (y) of tablets increases with the increase of the compression force (x) following a logarithmic law (y = a ln (bx) where a and b are the constants of model). Further, a full factorial design (FFD) at two levels, applied to investigate the erosion %, reveals that the effects of time and particle size are the same in absolute value and they are beyond the effect of the compression. Regarding the disintegration time, the obtained results also by means of a FFD show that the effect of the compression force exceeds 4 times that of the DP particle size. As final stage, the color parameters in the CIELab system of DT immediately after their obtaining are differently influenced by the size of the initial powder.
Keywords: Powder, valorization, tablets, date fruit (Phoenix dactylifera L.), hardness, erosion, disintegration time, color.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27241999 Alkali Silica Reaction Mitigation and Prevention Measures for Arkansas Local Aggregates
Authors: Amin Kamal Akhnoukh, Lois Zaki Kamel, Magued Mourad Barsoum
Abstract:
The objective of this research is to mitigate and prevent the alkali silica reactivity (ASR) in highway construction projects. ASR is a deleterious reaction initiated when the silica content of the aggregate reacts with alkali hydroxides in cement in the presence of relatively high moisture content. The ASR results in the formation of an expansive white colored gel-like material which forms the destructive tensile stresses inside hardened concrete. In this research, different types of local aggregates available in the State of Arkansas were mixed and mortar bars were poured according to the ASTM specifications. Mortar bars expansion was measured versus time and aggregates with potential ASR problems were detected. Different types of supplementary cementitious materials (SCMs) were used in remixing mortar bars with highly reactive aggregates. Length changes for remixed bars proved that different types of SCMs can be successfully used in reducing the expansive effect of ASR. SCMs percentage by weight is highly dependent on the SCM type. The result of this study will help avoiding future losses due to ASR cracking in construction project and reduce the maintenance, repair, and replacement budgets required for highways network.Keywords: Alkali Silica Reaction, Aggregates, Moisture, Cracks, Mortar Bar Test supplementary cementitious materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20291998 Effect of U-Turn in Reinforced Concrete Dog-Legged Stair Slabs
Authors: Abdul Baqi, Zaid Mohammad
Abstract:
Reinforced concrete stair slabs with mid landings i.e. Dog-legged shaped are conventionally designed as per specifications of standard codes of practices which guide about the effective span according to the varying support conditions. Presently, the behavior of such slabs has been investigated using Finite Element method. A single flight stair slab with landings on both sides and supported at ends on wall, and a multi flight stair slab with landings and six different support arrangements have been analyzed. The results obtained for stresses, strains and deflections are used to describe the behavior of such stair slabs, including locations of critical moments and deflections. Values of critical moments obtained by F.E. analysis have also have been compared with that obtained from conventional analysis. Analytical results show that the moments are also critical near the kinks i.e. junction of mid-landing and inclined waist slab. This change in the behavior of dog-legged stair slab may be due to continuity of the material in transverse direction in two landings adjoining the waist slab, hence additional stiffness achieved. This change in the behavior is generally not taken care of in conventional method of design.Keywords: Dog-legged, Stair slab, F.E. Analysis, Landing, Reinforced concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45541997 Investigating the Fiber Content, Fiber Length, and Curing Characteristics of 3D Printed Recycled Carbon Fiber
Authors: Peng Hao Wang, Ronald Sterkenburg, Garam Kim, Yuwei He
Abstract:
As composite materials continue to gain popularity in the aerospace industry; large airframe sections made out of composite materials are becoming the standard for aerospace manufacturers. However, the heavy utilization of these composite materials also increases the importance of the recycling of these composite materials. A team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students have partnered to investigate the characteristics of 3D printed recycled carbon fiber. A prototype of a 3D printed recycled carbon fiber part was provided by an industry partner and different sections of the prototype were used to create specimens. A furnace was utilized in order to remove the polymer from the specimens and the specimen’s fiber content and fiber length was calculated from the remaining fibers. A differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) test was also conducted on the 3D printed recycled carbon fiber prototype in order to determine the prototype’s degree of cure at different locations. The data collected from this study provided valuable information in the process improvement and understanding of 3D printed recycled carbon fiber.
Keywords: 3D printed, carbon fiber, fiber content, recycling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7681996 Influence of Taguchi Selected Parameters on Properties of CuO-ZrO2 Nanoparticles Produced via Sol-gel Method
Authors: H. Abdizadeh, Y. Vahidshad
Abstract:
The present paper discusses the selection of process parameters for obtaining optimal nanocrystallites size in the CuOZrO2 catalyst. There are some parameters changing the inorganic structure which have an influence on the role of hydrolysis and condensation reaction. A statistical design test method is implemented in order to optimize the experimental conditions of CuO-ZrO2 nanoparticles preparation. This method is applied for the experiments and L16 orthogonal array standard. The crystallites size is considered as an index. This index will be used for the analysis in the condition where the parameters vary. The effect of pH, H2O/ precursor molar ratio (R), time and temperature of calcination, chelating agent and alcohol volume are particularity investigated among all other parameters. In accordance with the results of Taguchi, it is found that temperature has the greatest impact on the particle size. The pH and H2O/ precursor molar ratio have low influences as compared with temperature. The alcohol volume as well as the time has almost no effect as compared with all other parameters. Temperature also has an influence on the morphology and amorphous structure of zirconia. The optimal conditions are determined by using Taguchi method. The nanocatalyst is studied by DTA-TG, XRD, EDS, SEM and TEM. The results of this research indicate that it is possible to vary the structure, morphology and properties of the sol-gel by controlling the above-mentioned parameters.Keywords: CuO-ZrO2 Nanoparticles, Sol-gel, Taguchi method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17381995 Behavior Analysis Based On Nine Degrees-of-Freedom Sensor for Emergency Rescue Evacuation Support System
Authors: Maeng-Hwan Hyun, Dae-Man Do, Young-Bok Choi
Abstract:
Around the world, there are frequent incidents of natural disasters, such as earthquakes, tsunamis, floods, and snowstorms, as well as manmade disasters such as fires, arsons, and acts of terror. These diverse and unpredictable adversities have resulted in a number of fatalities and injuries. If disaster occurrence can be assessed quickly and information such as the exact location of the disaster and evacuation routes can be provided, victims can promptly move to safe locations, minimizing losses. This paper proposes a behavior analysis method based on a nine degrees-of-freedom (9-DOF) sensor that is effective for the emergency rescue evacuation support system (ERESS), which is being researched with an objective of providing evacuation support during disasters. Based on experiments performed using the acceleration sensor and the gyroscope sensor in the 9-DOF sensor, data are analyzed for human behavior regarding stationary position, walking, running, and during emergency situation to suggest guidelines for system judgment. Using the results of the experiments performed to determine disaster occurrence, it was confirmed that the proposed method quickly determines whether a disaster has occurred.
Keywords: Behavior Analysis, Nine degrees-of-freedom sensor, Emergency rescue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16891994 Seismic Rehabilitation of R/C Buildings Designed with Earlier Technical Standards
Authors: Stefano Sorace, Gloria Terenzi
Abstract:
The seismic rehabilitation designs of two reinforced concrete school buildings, representative of a wide stock of similar edifices designed under earlier editions of the Italian Technical Standards, are presented in this paper. The mutual retrofit solution elaborated for the two buildings consists in the incorporation of a dissipative bracing system including pressurized fluid viscous springdampers as passive protective devices. The mechanical parameters, layouts and locations selected for the constituting elements of the system; the architectural renovation projects developed to properly incorporate the structural interventions and improve the appearance of the buildings; highlights of the installation works already completed in one of the two structures; and a synthesis of the performance assessment analyses carried out in original and rehabilitated conditions, are illustrated. The results of the analyses show a remarkable enhancement of the seismic response capacities of both structures. This allows reaching the high performance objectives postulated in the retrofit designs with much lower costs and architectural intrusion as compared to traditional rehabilitation interventions designed for the same objectives.Keywords: Seismic rehabilitation, R/C structures, performance analysis, dissipative braces, fluid viscous dampers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16441993 A New Class χ2 (M, A,) of the Double Difference Sequences of Fuzzy Numbers
Authors: N.Subramanian, U.K.Misra
Abstract:
The aim of this paper is to introduce and study a new concept of strong double χ2 (M,A, Δ) of fuzzy numbers and also some properties of the resulting sequence spaces of fuzzy numbers were examined.
Keywords: Modulus function, fuzzy number, metric space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22991992 On the Hierarchical Ergodicity Coefficient
Authors: Yilun Shang
Abstract:
In this paper, we deal with the fundamental concepts and properties of ergodicity coefficients in a hierarchical sense by making use of partition. Moreover, we establish a hierarchial Hajnal’s inequality improving some previous results.
Keywords: Stochastic matrix, ergodicity coefficient, partition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13471991 Methods for Material and Process Monitoring by Characterization of (Second and Third Order) Elastic Properties with Lamb Waves
Abstract:
In accordance with the industry 4.0 concept, manufacturing process steps as well as the materials themselves are going to be more and more digitalized within the next years. The “digital twin” representing the simulated and measured dataset of the (semi-finished) product can be used to control and optimize the individual processing steps and help to reduce costs and expenditure of time in product development, manufacturing, and recycling. In the present work, two material characterization methods based on Lamb waves were evaluated and compared. For demonstration purpose, both methods were shown at a standard industrial product - copper ribbons, often used in photovoltaic modules as well as in high-current microelectronic devices. By numerical approximation of the Rayleigh-Lamb dispersion model on measured phase velocities second order elastic constants (Young’s modulus, Poisson’s ratio) were determined. Furthermore, the effective third order elastic constants were evaluated by applying elastic, “non-destructive”, mechanical stress on the samples. In this way, small microstructural variations due to mechanical preconditioning could be detected for the first time. Both methods were compared with respect to precision and inline application capabilities. Microstructure of the samples was systematically varied by mechanical loading and annealing. Changes in the elastic ultrasound transport properties were correlated with results from microstructural analysis and mechanical testing. In summary, monitoring the elastic material properties of plate-like structures using Lamb waves is valuable for inline and non-destructive material characterization and manufacturing process control. Second order elastic constants analysis is robust over wide environmental and sample conditions, whereas the effective third order elastic constants highly increase the sensitivity with respect to small microstructural changes. Both Lamb wave based characterization methods are fitting perfectly into the industry 4.0 concept.
Keywords: Lamb waves, industry 4.0, process control, elasticity, acoustoelasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10991990 Reutilization of Organic and Peat Soils by Deep Cement Mixing
Authors: Bee-Lin Tang, Ismail Bakar, Chee - Ming Chan
Abstract:
Limited infrastructure development on peats and organic soils is a serious geotechnical issues common to many countries of the world especially Malaysia which distributed 1.5 mill ha of those problematic soil. These soils have high water content and organic content which exhibit different mechanical properties and may also change chemically and biologically with time. Constructing structures on peaty ground involves the risk of ground failure and extreme settlement. Nowdays, much efforts need to be done in making peatlands usable for construction due to increased landuse. Deep mixing method employing cement as binders, is generally used as measure again peaty/ organic ground failure problem. Where the technique is widely adopted because it can improved ground considerably in a short period of time. An understanding of geotechnical properties as shear strength, stiffness and compressibility behavior of these soils was requires before continues construction on it. Therefore, 1- 1.5 meter peat soil sample from states of Johor and an organic soil from Melaka, Malaysia were investigated. Cement were added to the soil in the pre-mixing stage with water cement ratio at range 3.5,7,14,140 for peats and 5,10,30 for organic soils, essentially to modify the original soil textures and properties. The mixtures which in slurry form will pour to polyvinyl chloride (pvc) tube and cured at room temperature 250C for 7,14 and 28 days. Laboratory experiments were conducted including unconfined compressive strength and bender element , to monitor the improved strength and stiffness of the 'stabilised mixed soils'. In between, scanning electron miscroscopic (SEM) were observations to investigate changes in microstructures of stabilised soils and to evaluated hardening effect of a peat and organic soils stabilised cement. This preliminary effort indicated that pre-mixing peat and organic soils contributes in gaining soil strength while help the engineers to establish a new method for those problematic ground improvement in further practical and long term applications.Keywords: peat soils, organic soils, cement stabilisation, strength, stiffness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32621989 Relay Node Placement for Connectivity Restoration in Wireless Sensor Networks Using Genetic Algorithms
Authors: Hanieh Tarbiat Khosrowshahi, Mojtaba Shakeri
Abstract:
Wireless Sensor Networks (WSNs) consist of a set of sensor nodes with limited capability. WSNs may suffer from multiple node failures when they are exposed to harsh environments such as military zones or disaster locations and lose connectivity by getting partitioned into disjoint segments. Relay nodes (RNs) are alternatively introduced to restore connectivity. They cost more than sensors as they benefit from mobility, more power and more transmission range, enforcing a minimum number of them to be used. This paper addresses the problem of RN placement in a multiple disjoint network by developing a genetic algorithm (GA). The problem is reintroduced as the Steiner tree problem (which is known to be an NP-hard problem) by the aim of finding the minimum number of Steiner points where RNs are to be placed for restoring connectivity. An upper bound to the number of RNs is first computed to set up the length of initial chromosomes. The GA algorithm then iteratively reduces the number of RNs and determines their location at the same time. Experimental results indicate that the proposed GA is capable of establishing network connectivity using a reasonable number of RNs compared to the best existing work.
Keywords: Connectivity restoration, genetic algorithms, multiple-node failure, relay nodes, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11041988 Development of a Paediatric Head Model for the Computational Analysis of Head Impact Interactions
Authors: G. A. Khalid, M. D. Jones, R. Prabhu, A. Mason-Jones, W. Whittington, H. Bakhtiarydavijani, P. S. Theobald
Abstract:
Head injury in childhood is a common cause of death or permanent disability from injury. However, despite its frequency and significance, there is little understanding of how a child’s head responds during injurious loading. Whilst Infant Post Mortem Human Subject (PMHS) experimentation is a logical approach to understand injury biomechanics, it is the authors’ opinion that a lack of subject availability is hindering potential progress. Computer modelling adds great value when considering adult populations; however, its potential remains largely untapped for infant surrogates. The complexities of child growth and development, which result in age dependent changes in anatomy, geometry and physical response characteristics, present new challenges for computational simulation. Further geometric challenges are presented by the intricate infant cranial bones, which are separated by sutures and fontanelles and demonstrate a visible fibre orientation. This study presents an FE model of a newborn infant’s head, developed from high-resolution computer tomography scans, informed by published tissue material properties. To mimic the fibre orientation of immature cranial bone, anisotropic properties were applied to the FE cranial bone model, with elastic moduli representing the bone response both parallel and perpendicular to the fibre orientation. Biofiedility of the computational model was confirmed by global validation against published PMHS data, by replicating experimental impact tests with a series of computational simulations, in terms of head kinematic responses. Numerical results confirm that the FE head model’s mechanical response is in favourable agreement with the PMHS drop test results.
Keywords: Finite element analysis, impact simulation, infant head trauma, material properties, post mortem human subjects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12881987 Copper Contamination in the Sediments of Northern Kaohsiung Harbor, Taiwan
Authors: Chiu-Wen Chen, Chih-Feng Chen, Cheng-Di Dong
Abstract:
The distribution, enrichment, accumulation, and potential ecological risk of copper (Cu) in the surface sediments of northern Kaohsiung Harbor, Taiwan were investigated. Sediment samples from 12 locations of northern Kaohsiung Harbor were collected and characterized for Cu, aluminum, water content, organic matter, total nitrogen, total phosphorous, total grease and grain size. Results showed that the Cu concentrations varied from 6.9–244 mg/kg with an average of 109±66 mg/kg. The spatial distribution of Cu reveals that the Cu concentration is relatively high in the river mouth region, and gradually diminishes toward the harbor entrance region. This indicates that upstream industrial and municipal wastewater discharges along the river bank are major sources of Cu pollution. Results from the enrichment factor and geo-accumulation index analyses imply that the sediments collected from the river mouth can be characterized between moderate and moderately severe degree enrichment and between none to medium and moderate accumulation of Cu, respectively. However, results of potential ecological risk index indicate that the sediment has low ecological potential risk.
Keywords: Accumulation, ecological risk, enrichment, copper, sediment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13351986 Patterned Growth of ZnO Nanowire Arrays on Zinc Foil by Thermal Oxidation
Authors: Farid Jamali Sheini, Dilip S. Joag, Mahendra A. More
Abstract:
A simple approach is demonstrated for growing large scale, nearly vertically aligned ZnO nanowire arrays by thermal oxidation method. To reveal effect of temperature on growth and physical properties of the ZnO nanowires, gold coated zinc substrates were annealed at 300 °C and 400 °C for 4 hours duration in air. Xray diffraction patterns of annealed samples indicated a set of well defined diffraction peaks, indexed to the wurtzite hexagonal phase of ZnO. The scanning electron microscopy studies show formation of ZnO nanowires having length of several microns and average of diameter less than 500 nm. It is found that the areal density of wires is relatively higher, when the annealing is carried out at higher temperature i.e. at 400°C. From the field emission studies, the values of the turn-on and threshold field, required to draw emission current density of 10 μA/cm2 and 100 μA/cm2 are observed to be 1.2 V/μm and 1.7 V/μm for the samples annealed at 300 °C and 2.9 V/μm and 3.7 V/μm for that annealed at 400 °C, respectively. The field emission current stability, investigated over duration of more than 2 hours at the preset value of 1 μA, is found to be fairly good in both cases. The simplicity of the synthesis route coupled with the promising field emission properties offer unprecedented advantage for the use of ZnO field emitters for high current density applications.Keywords: ZnO, Nanowires, Thermal oxidation, FieldEmission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20591985 Optimization of Thermopile Sensor Performance of Polycrystalline Silicon Film
Authors: Li Long, Thomas Ortlepp
Abstract:
A theoretical model for the optimization of thermopile sensor performance is developed for thermoelectric-based infrared radiation detection. It is shown that the performance of polycrystalline silicon film thermopile sensor can be optimized according to the thermoelectric quality factor, sensor layer structure factor and sensor layout shape factor. Based on the properties of electrons, phonons, grain boundaries and their interactions, the thermoelectric quality factor of polycrystalline silicon is analyzed with the relaxation time approximation of Boltzmann transport equation. The model includes the effects of grain structure, grain boundary trap properties and doping concentration. The layer structure factor of sensor is analyzed with respect to infrared absorption coefficient. The effect of layout design is characterized with the shape factor, which is calculated for different sensor designs. Double layer polycrystalline silicon thermopile infrared sensors on suspended support membrane have been designed and fabricated with a CMOS-compatible process. The theoretical approach is confirmed with measurement results.
Keywords: Polycrystalline silicon film, relaxation time approximation, specific detectivity, thermal conductivity, thermopile infrared sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2311984 Motor Imagery Signal Classification for a Four State Brain Machine Interface
Authors: Hema C. R., Paulraj M. P., S. Yaacob, A. H. Adom, R. Nagarajan
Abstract:
Motor imagery classification provides an important basis for designing Brain Machine Interfaces [BMI]. A BMI captures and decodes brain EEG signals and transforms human thought into actions. The ability of an individual to control his EEG through imaginary mental tasks enables him to control devices through the BMI. This paper presents a method to design a four state BMI using EEG signals recorded from the C3 and C4 locations. Principle features extracted through principle component analysis of the segmented EEG are analyzed using two novel classification algorithms using Elman recurrent neural network and functional link neural network. Performance of both classifiers is evaluated using a particle swarm optimization training algorithm; results are also compared with the conventional back propagation training algorithm. EEG motor imagery recorded from two subjects is used in the offline analysis. From overall classification performance it is observed that the BP algorithm has higher average classification of 93.5%, while the PSO algorithm has better training time and maximum classification. The proposed methods promises to provide a useful alternative general procedure for motor imagery classification
Keywords: Motor Imagery, Brain Machine Interfaces, Neural Networks, Particle Swarm Optimization, EEG signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24561983 A Review on the Usage of Ceramic Wastes in Concrete Production
Authors: O. Zimbili, W. Salim, M. Ndambuki
Abstract:
Construction and Demolition (C&D) wastes contribute the highest percentage of wastes worldwide (75%). Furthermore, ceramic materials contribute the highest percentage of wastes within the C&D wastes (54%). The current option for disposal of ceramic wastes is landfill. This is due to unavailability of standards, avoidance of risk, lack of knowledge and experience in using ceramic wastes in construction. The ability of ceramic wastes to act as a pozzolanic material in the production of cement has been effectively explored. The results proved that temperatures used in the manufacturing of these tiles (about 900⁰C) are sufficient to activate pozzolanic properties of clay. They also showed that, after optimization (11-14% substitution); the cement blend performs better, with no morphological difference between the cement blended with ceramic waste, and that blended with other pozzolanic materials. Sanitary ware and electrical insulator porcelain wastes are some wastes investigated for usage as aggregates in concrete production. When optimized, both produced good results, better than when natural aggregates are used. However, the research on ceramic wastes as partial substitute for fine aggregates or cement has not been overly exploited as the other areas. This review has been concluded with focus on investigating whether ceramic wall tile wastes used as partial substitute for cement and fine aggregates could prove to be beneficial since the two materials are the most high-priced during concrete production.
Keywords: Blended, morphological, pozzolanic properties, waste.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 87941982 The Transfer of Low-Cost Housing in South Africa: Problems and Impediments
Authors: Gert Van Schalkwyk, Chris Cloete
Abstract:
South Africa is experiencing a massive housing backlog in urban low-cost housing. A backlog in the transfer of low-cost housing units is exacerbated by various impediments and delays that exist in the current legal framework. Structured interviews were conducted with 45 practicing conveyancers and 15 deeds office examiners at the Deeds Office in Pretoria, South Africa. One of the largest, the Deeds Office in Pretoria implements a uniform registration process and can be regarded as representative of other deeds offices in South Africa. It was established that a low percentage of low-cost properties are freely transferable. The main economic impediments are the absence of financing and the affordability or payment of rates and taxes to local government. Encroachment of buildings on neighbouring stands caused by enlargement of existing small units on small stands also cause long-term unresolved legal disputes. In addition, as transfer of properties is dependent on the proper functioning of administrative functions of various government departments, the adverse service delivery of government departments hampers transfer. Addressing the identified problems will contribute to a more sustainable process for the transfer of low-cost housing units in South Africa.
Keywords: Conveyancing, low-cost housing, South Africa, tenure, transfer, titling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2911981 Adhesive Connections in Timber: A Comparison between Rough and Smooth Wood Bonding Surfaces
Authors: Valentina Di Maria, Anton Ianakiev
Abstract:
The use OF adhesive anchors for wooden constructions is an efficient technology to connect and design timber members in new timber structures and to rehabilitate the damaged structural members of historical buildings. Due to the lack of standard regulation in this specific area of structural design, designers’ choices are still supported by test analysis that enables knowledge, and the prediction, of the structural behaviour of glued in rod joints. The paper outlines an experimental research activity aimed at identifying the tensile resistance capacity of several new adhesive joint prototypes made of epoxy resin, steel bar and timber, Oak and Douglas Fir species. The development of new adhesive connectors has been carried out by using epoxy to glue stainless steel bars into pre-drilled holes, characterised by smooth and rough internal surfaces, in timber samples. The realization of a threaded contact surface using a specific drill bit has led to an improved bond between wood and epoxy. The applied changes have also reduced the cost of the joints’ production. The paper presents the results of this parametric analysis and a Finite Element analysis that enables identification and study of the internal stress distribution in the proposed adhesive anchors.
Keywords: Glued in rod joints, adhesive anchors, timber, epoxy, rough contact surface, threaded hole shape.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33231980 Ultrasonic Investigation of Molecular Interaction in Binary Liquid Mixture of Polyethylene Glycol with Ethanol
Authors: S. Grace Sahaya Sheba, R. Omegala Priakumari
Abstract:
Polyethylene glycol (PEG) is a condensation polymer of ethylene oxide and water. It is soluble in water and in many organic solvents. PEG is used to make emulsifying agents, detergents, soaps, plasticizers, ointments etc. Ethanol (C2H5OH) also known as ethyl alcohol is a well-known organic compound and has wide applications in chemical industry as it is used as a solvent for paint, varnish, in preserving biological specimens, used as a fuel mixed with petrol etc. Though their chemical and physical properties are already studied, still because of their uses in day to day life the authors thought it is better to study some more of their physical properties like ultrasonic velocity and hence adiabatic compressibility, free length, etc. A detailed study of such properties and some excess parameters like excess adiabatic compressibility, excess free volume and few more in the liquid mixtures of these two compounds with PEG as a solute and Ethanol as a solvent at various mole fractions may throw some light on deeper understanding of molecular interaction between the solute and the solvent supported by NMR, IR etc. Hence the present research work is on ultrasonics/allied studies on these two liquid mixtures. Ultrasonic velocity (U), density (ρ) and viscosity (η) at room temperature and at different mole fraction from 0 to 0.055 of ethanol in PEG have been experimentally carried out by the authors. Acoustical parameters such as adiabatic compressibility (β), free volume (Vf), acoustic impedance (Z), internal pressure (πi), intermolecular free length (Lf) and relaxation time (τ) were calculated from the experimental data. We have calculated excess parameters like excess adiabatic compressibility (βE), excess internal pressure (πiE) free length (LfE) and excess acoustic impedance (ZE) etc for these two chosen liquid mixtures. The excess compressibility is positive and maximum around a mole fraction 0.007 and excess internal pressure is negative and maximum at the same mole fraction and longer free length. The results are analyzed and it may be concluded that the molecular interactions between the solute and the solvent is not strong and it may be weak. Appropriate graphs are drawn.
Keywords: Adiabatic Compressibility, Binary mixture, Induce dipole, Polarizability, Ultrasonic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27841979 Enhancing Seismic Performance of Ductile Moment Frames with Delayed Wire-Rope Bracing Using Middle Steel Plate
Authors: Babak Dizangian, Mohammad Reza Ghasemi, Akram Ghalandari
Abstract:
Moment frames have considerable ductility against cyclic lateral loads and displacements; however, if this feature causes the relative displacement to exceed the permissible limit, it can impose unfavorable hysteretic behavior on the frame. Therefore, adding a bracing system with the capability of preserving the capacity of high energy absorption and controlling displacements without a considerable increase in the stiffness is quite important. This paper investigates the retrofitting of a single storey steel moment frame through a delayed wire-rope bracing system using a middle steel plate. In this model, the steel plate lies where the wire ropes meet, and the model geometry is such that the cables are continuously under tension so that they can take the most advantage of the inherent potential they have in tolerating tensile stress. Using the steel plate also reduces the system stiffness considerably compared to cross bracing systems and preserves the ductile frame’s energy absorption capacity. In this research, the software models of delayed wire-rope bracing system have been studied, validated, and compared with other researchers’ laboratory test results.Keywords: Ductile moment frame, delayed wire rope bracing, cyclic loading, hysteresis curve, energy absorption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9781978 Dynamic Response of Strain Rate Dependent Glass/Epoxy Composite Beams Using Finite Difference Method
Authors: M. M. Shokrieh, A. Karamnejad
Abstract:
This paper deals with a numerical analysis of the transient response of composite beams with strain rate dependent mechanical properties by use of a finite difference method. The equations of motion based on Timoshenko beam theory are derived. The geometric nonlinearity effects are taken into account with von Kármán large deflection theory. The finite difference method in conjunction with Newmark average acceleration method is applied to solve the differential equations. A modified progressive damage model which accounts for strain rate effects is developed based on the material property degradation rules and modified Hashin-type failure criteria and added to the finite difference model. The components of the model are implemented into a computer code in Mathematica 6. Glass/epoxy laminated composite beams with constant and strain rate dependent mechanical properties under dynamic load are analyzed. Effects of strain rate on dynamic response of the beam for various stacking sequences, load and boundary conditions are investigated.Keywords: Composite beam, Finite difference method, Progressive damage modeling, Strain rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19901977 Centralized Monitoring and Self-protected against Fiber Fault in FTTH Access Network
Authors: Mohammad Syuhaimi Ab-Rahman, Boonchuan Ng, Kasmiran Jumari
Abstract:
This paper presented a new approach for centralized monitoring and self-protected against fiber fault in fiber-to-the-home (FTTH) access network by using Smart Access Network Testing, Analyzing and Database (SANTAD). SANTAD will be installed with optical line terminal (OLT) at central office (CO) for in-service transmission surveillance and fiber fault localization within FTTH with point-to-multipoint (P2MP) configuration downwardly from CO towards customer residential locations based on the graphical user interface (GUI) processing capabilities of MATLAB software. SANTAD is able to detect any fiber fault as well as identify the failure location in the network system. SANTAD enable the status of each optical network unit (ONU) connected line is displayed onto one screen with capability to configure the attenuation and detect the failure simultaneously. The analysis results and information will be delivered to the field engineer for promptly actions, meanwhile the failure line will be diverted to protection line to ensure the traffic flow continuously. This approach has a bright prospect to improve the survivability and reliability as well as increase the efficiency and monitoring capabilities in FTTH.Keywords: Fiber fault, FTTH, SANTAD, transmission surveillance, MATLAB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25531976 Three-dimensional Finite Element Analysis of the Front Cross Member of the Peugeot 405
Authors: Kh.Farhangdoust, H.Kamankesh
Abstract:
Undoubtedly, chassis is one of the most important parts of a vehicle. Chassis that today are produced for vehicles are made up of four parts. These parts are jointed together by screwing. Transverse parts are called cross member. This study reviews the stress generated by cyclic laboratory loads in front cross member of Peugeot 405. In this paper the finite element method is used to simulate the welding process and to determine the physical response of the spot-welded joints. Analysis is done by the Abaqus software. The Stresses generated in cross member structure are generally classified into two groups: The stresses remained in form of residual stresses after welding process and the mechanical stress generated by cyclic load. Accordingly the total stress must be obtained by determining residual stress and mechanical stress separately and then sum them according to the superposition principle. In order to improve accuracy, material properties including physical, thermal and mechanical properties were supposed to be temperature-dependent. Simulation shows that maximum Von Misses stresses are located at special points. The model results are then compared to the experimental results which are reported by producing factory and good agreement is observed.Keywords: Chassis, cross member, residual stress, resistancespot weld.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16101975 Comparison and Characterization of Dyneema™ HB-210 and HB-212 for Accelerated UV Aging
Authors: Jonmichael A. Weaver, David A. Miller
Abstract:
Ultra High Molecular Weight Polyethylene (UHMWPE) presents several distinct advantages as a material with a high strength to weight ratio, durability, and neutron stability. Understanding the change in the mechanical performance of UHMWPE due to environmental exposure is key to safety for future applications. Dyneema® HB-210, a 15 µm diameter UHMWPE multi-filament fiber laid up in a polyurethane matrix in [0/ 90]2, with a thickness of 0.17 mm is compared to the same fiber and orientation system, HB-212, with a rubber-based matrix under UV aging conditions. UV aging tests according to ASTM-G154 were performed on both HB-210 and HB-212 to interrogate the change in mechanical properties, as measured through dynamic mechanical analysis and imaged using a scanning electron microscope. These results showed a decrease in both the storage modulus and loss modulus of the aged material compared to the unaged, even though the tan δ slightly increased. Material degradation occurred at a higher rate in Dyneema® HB-212 compared to HB-210. The HB-210 was characterized for the effects of 100 hours of UV aging via dynamic mechanical analysis. Scanning electron microscope images were taken of the HB-210 and HB-212 to identify the primary damage mechanisms in the matrix. Embrittlement and matrix spall were the products of prolonged UV exposure and erosion, resulting in decreased mechanical properties.
Keywords: Composite materials, material characterization, UV aging, UHMWPE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6801974 Modeling Sustainable Truck Rental Operations Using Closed-Loop Supply Chain Network
Authors: Khaled S. Abdallah, Abdel-Aziz M. Mohamed
Abstract:
Moving industries consume numerous resources and dispose masses of used packaging materials. Proper sorting, recycling and disposing the packaging materials is necessary to avoid a sever pollution disaster. This research paper presents a conceptual model to propose sustainable truck rental operations instead of the regular one. An optimization model was developed to select the locations of truck rental centers, collection sites, maintenance and repair sites, and identify the rental fees to be charged for all routes that maximize the total closed supply chain profits. Fixed costs of vehicle purchasing, costs of constructing collection centers and repair centers, as well as the fixed costs paid to use disposal and recycling centers are considered. Operating costs include the truck maintenance, repair costs as well as the cost of recycling and disposing the packing materials, and the costs of relocating the truck are presented in the model. A mixed integer model is developed followed by a simulation model to examine the factors affecting the operation of the model.Keywords: Modeling, truck rental, supply chains management, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8211973 Time Organization for Urban Mobility Decongestion: A Methodology for People’s Profile Identification
Authors: Yassamina Berkane, Leïla Kloul, Yoann Demoli
Abstract:
Quality of life, environmental impact, congestion of mobility means, and infrastructures remain significant challenges for urban mobility. Solutions like car sharing, spatial redesign, eCommerce, and autonomous vehicles will likely increase the unit veh-km and the density of cars in urban traffic, thus reducing congestion. However, the impact of such solutions is not clear for researchers. Congestion arises from growing populations that must travel greater distances to arrive at similar locations (e.g., workplaces, schools) during the same time frame (e.g., rush hours). This paper first reviews the research and application cases of urban congestion methods through recent years. Rethinking the question of time, it then investigates people’s willingness and flexibility to adapt their arrival and departure times from workplaces. We use neural networks and methods of supervised learning to apply a methodology for predicting peoples’ intentions from their responses in a questionnaire. We created and distributed a questionnaire to more than 50 companies in the Paris suburb. Obtained results illustrate that our methodology can predict peoples’ intentions to reschedule their activities (work, study, commerce, etc.).
Keywords: Urban mobility, decongestion, machine learning, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4811972 Tribological Investigation and the Effect of Karanja Biodiesel on Engine Wear in Compression Ignition Engine
Authors: Ajay V. Kolhe, R. E. Shelke, S. S. Khandare
Abstract:
Various biomass based resources, which can be used as an extender, or a complete substitute of diesel fuel may have very significant role in the development of agriculture, industrial and transport sectors in the energy crisis. Use of Karanja oil methyl ester biodiesel in a CI DI engine was found highly compatible with engine performance along with lower exhaust emission as compared to diesel fuel but with slightly higher NOx emission and low wear characteristics. The combustion related properties of vegetable oils are somewhat similar to diesel oil. Neat vegetable oils or their blends with diesel, however, pose various long-term problems in compression ignition engines. These undesirable features of vegetable oils are because of their inherent properties like high viscosity, low volatility, and polyunsaturated character. Pongamia methyl ester (PME) was prepared by transesterification process using methanol for long term engine operations. The physical and combustion-related properties of the fuels thus developed were found to be closer to that of the diesel. A neat biodiesel (PME) was selected as a fuel for the tribological study of biofuels. Two similar new engines were completely disassembled and subjected to dimensioning of various vital moving parts and then subjected to long-term endurance tests on neat biodiesel and diesel respectively. After completion of the test, both the engines were again disassembled for physical inspection and wear measurement of various vital parts. The lubricating oil samples drawn from both engines were subjected to atomic absorption spectroscopy (AAS) for measurement of various wear metal traces present. The additional lubricating property of biodiesel fuel due to higher viscosity as compared to diesel fuel resulted in lower wear of moving parts and thus improved the engine durability with a bio-diesel fuel. Results reported from AAS tests confirmed substantially lower wear and thus improved life for biodiesel operated engines.
Keywords: Transesterification, PME, wear of engine parts, Metal traces and AAS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447