Search results for: velocity gradient.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1099

Search results for: velocity gradient.

979 Effect of Linear Thermal Gradient on Steady-State Creep Behavior of Isotropic Rotating Disc

Authors: Minto Rattan, Tania Bose, Neeraj Chamoli

Abstract:

The present paper investigates the effect of linear thermal gradient on the steady-state creep behavior of rotating isotropic disc using threshold stress based Sherby’s creep law. The composite discs made of aluminum matrix reinforced with silicon carbide particulate has been taken for analysis. The stress and strain rate distributions have been calculated for discs rotating at linear thermal gradation using von Mises’ yield criterion. The material parameters have been estimated by regression fit of the available experimental data. The results are displayed and compared graphically in designer friendly format for the above said temperature profile with the disc operating under uniform temperature profile. It is observed that radial and tangential stresses show minor variation and the strain rates vary significantly in the presence of thermal gradation as compared to disc having uniform temperature.

Keywords: Creep, isotropic, steady-state, thermal gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 846
978 Numerical Investigation of Flow Past Cylinderin Cross Flow

Authors: M. H. Alhajeri, Jasem Alrajhi, Mohsen Alardhi, Saleh Alhajeri

Abstract:

A numerical prediction of flow in a tube bank is reported. The flow regimes considered cover a wide range of Reynolds numbers, which range from 380 to 99000 and which are equivalent to a range of inlet velocities from very low (0.072 m/s) to very high (60 m/s). In this study, calculations were made using the standard k-e model with standard wall function. The drag coefficient, skin friction drag, pressure drag, and pressure distribution around a tube were investigated. As the velocity increased, the drag coefficient decreased until the velocity exceeded 45 m/s, after which it increased. Furthermore, the pressure drag and skin friction drag depend on the velocity.

Keywords: Numerical, Fluid, Flow, Turbine, Cooling, Blade.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981
977 Analysis of Flow in Cylindrical Mixing Chamber

Authors: Václav Dvořák

Abstract:

The article deals with numerical investigation of axisymmetric subsonic air to air ejector. An analysis of flow and mixing processes in cylindrical mixing chamber are made. Several modes with different velocity and ejection ratio are presented. The mixing processes are described and differences between flow in the initial region of mixing and the main region of mixing are described. The lengths of both regions are evaluated. Transition point and point where the mixing processes are finished are identified. It was found that the length of the initial region of mixing is strongly dependent on the velocity ratio, while the length of the main region of mixing is dependent on velocity ratio only slightly.

Keywords: Air ejector, mixing chamber, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3977
976 Bayesian Inference for Phase Unwrapping Using Conjugate Gradient Method in One and Two Dimensions

Authors: Yohei Saika, Hiroki Sakaematsu, Shota Akiyama

Abstract:

We investigated statistical performance of Bayesian inference using maximum entropy and MAP estimation for several models which approximated wave-fronts in remote sensing using SAR interferometry. Using Monte Carlo simulation for a set of wave-fronts generated by assumed true prior, we found that the method of maximum entropy realized the optimal performance around the Bayes-optimal conditions by using model of the true prior and the likelihood representing optical measurement due to the interferometer. Also, we found that the MAP estimation regarded as a deterministic limit of maximum entropy almost achieved the same performance as the Bayes-optimal solution for the set of wave-fronts. Then, we clarified that the MAP estimation perfectly carried out phase unwrapping without using prior information, and also that the MAP estimation realized accurate phase unwrapping using conjugate gradient (CG) method, if we assumed the model of the true prior appropriately.

Keywords: Bayesian inference using maximum entropy, MAP estimation using conjugate gradient method, SAR interferometry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
975 The Role of Velocity Map Quality in Estimation of Intravascular Pressure Distribution

Authors: Ali Pashaee, Parisa Shooshtari, Gholamreza Atae, Nasser Fatouraee

Abstract:

Phase-Contrast MR imaging methods are widely used for measurement of blood flow velocity components. Also there are some other tools such as CT and Ultrasound for velocity map detection in intravascular studies. These data are used in deriving flow characteristics. Some clinical applications are investigated which use pressure distribution in diagnosis of intravascular disorders such as vascular stenosis. In this paper an approach to the problem of measurement of intravascular pressure field by using velocity field obtained from flow images is proposed. The method presented in this paper uses an algorithm to calculate nonlinear equations of Navier- Stokes, assuming blood as an incompressible and Newtonian fluid. Flow images usually suffer the lack of spatial resolution. Our attempt is to consider the effect of spatial resolution on the pressure distribution estimated from this method. In order to achieve this aim, velocity map of a numerical phantom is derived at six different spatial resolutions. To determine the effects of vascular stenoses on pressure distribution, a stenotic phantom geometry is considered. A comparison between the pressure distribution obtained from the phantom and the pressure resulted from the algorithm is presented. In this regard we also compared the effects of collocated and staggered computational grids on the pressure distribution resulted from this algorithm.

Keywords: Flow imaging, pressure distribution estimation, phantom, resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
974 Pulsating Flow of an Incompressible Couple Stress Fluid Between Permeable Beds

Authors: T. K. V. Iyengar, Punnamchandar Bitla

Abstract:

The paper deals with the pulsating flow of an incompressible couple stress fluid between permeable beds. The couple stress fluid is injected into the channel from the lower permeable bed with a certain velocity and is sucked into the upper permeable bed with the same velocity. The flow between the permeable beds is assumed to be governed by couple stress fluid flow equations of V. K. Stokes and that in the permeable regions by Darcy-s law. The equations are solved analytically and the expressions for velocity and volume flux are obtained. The effects of the material parameters are studied numerically and the results are presented through graphs.

Keywords: Pulsating flow, couple stress fluid, permeable beds, mass flux, shear stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
973 DQ Analysis of 3D Natural Convection in an Inclined Cavity Using an Velocity-Vorticity Formulation

Authors: D. C. Lo, S. S. Leu

Abstract:

In this paper, the differential quadrature method is applied to simulate natural convection in an inclined cubic cavity using velocity-vorticity formulation. The numerical capability of the present algorithm is demonstrated by application to natural convection in an inclined cubic cavity. The velocity Poisson equations, the vorticity transport equations and the energy equation are all solved as a coupled system of equations for the seven field variables consisting of three velocities, three vorticities and temperature. The coupled equations are simultaneously solved by imposing the vorticity definition at boundary without requiring the explicit specification of the vorticity boundary conditions. Test results obtained for an inclined cubic cavity with different angle of inclinations for Rayleigh number equal to 103, 104, 105 and 106 indicate that the present coupled solution algorithm could predict the benchmark results for temperature and flow fields. Thus, it is convinced that the present formulation is capable of solving coupled Navier-Stokes equations effectively and accurately.

Keywords: Natural convection, velocity-vorticity formulation, differential quadrature (DQ).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
972 Numerical Solutions of Boundary Layer Flow over an Exponentially Stretching/Shrinking Sheet with Generalized Slip Velocity

Authors: Ezad Hafidz Hafidzuddin, Roslinda Nazar, Norihan M. Arifin, Ioan Pop

Abstract:

In this paper, the problem of steady laminar boundary layer flow and heat transfer over a permeable exponentially stretching/shrinking sheet with generalized slip velocity is considered. The similarity transformations are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary differential equations. The transformed equations are then solved numerically using the bvp4c function in MATLAB. Dual solutions are found for a certain range of the suction and stretching/shrinking parameters. The effects of the suction parameter, stretching/shrinking parameter, velocity slip parameter, critical shear rate and Prandtl number on the skin friction and heat transfer coefficients as well as the velocity and temperature profiles are presented and discussed.

Keywords: Boundary Layer, Exponentially Stretching/Shrinking Sheet, Generalized Slip, Heat Transfer, Numerical Solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2698
971 Motion Detection Techniques Using Optical Flow

Authors: A. A. Shafie, Fadhlan Hafiz, M. H. Ali

Abstract:

Motion detection is very important in image processing. One way of detecting motion is using optical flow. Optical flow cannot be computed locally, since only one independent measurement is available from the image sequence at a point, while the flow velocity has two components. A second constraint is needed. The method used for finding the optical flow in this project is assuming that the apparent velocity of the brightness pattern varies smoothly almost everywhere in the image. This technique is later used in developing software for motion detection which has the capability to carry out four types of motion detection. The motion detection software presented in this project also can highlight motion region, count motion level as well as counting object numbers. Many objects such as vehicles and human from video streams can be recognized by applying optical flow technique.

Keywords: Background modeling, Motion detection, Optical flow, Velocity smoothness constant, motion trajectories.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5384
970 Minimum Fluidization Velocities of Binary-Solid Mixtures: Model Comparison

Authors: Mohammad Asif

Abstract:

An accurate prediction of the minimum fluidization velocity is a crucial hydrodynamic aspect of the design of fluidized bed reactors. Common approaches for the prediction of the minimum fluidization velocities of binary-solid fluidized beds are first discussed here. The data of our own careful experimental investigation involving a binary-solid pair fluidized with water is presented. The effect of the relative composition of the two solid species comprising the fluidized bed on the bed void fraction at the incipient fluidization condition is reported and its influence on the minimum fluidization velocity is discussed. In this connection, the capability of packing models to predict the bed void fraction is also examined.

Keywords: Bed void fraction, Binary solid mixture, Minimumfluidization velocity, Packing models

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2646
969 Information System for Early Diabetic Retinopathy Diagnostics Based on Multiscale Texture Gradient Method

Authors: L. S. Godlevsky, N. V. Kresyun, V. P. Martsenyuk, K. S. Shakun, T. V. Tatarchuk, K. O. Prybolovets, L. F. Kalinichenko, M. Karpinski, T. Gancarczyk

Abstract:

Structures of eye bottom were extracted using multiscale texture gradient method and color characteristics of macular zone and vessels were verified in CIELAB scale. The difference of average values of L*, a* and b* coordinates of CIE (International Commision of Illumination) scale in patients with diabetes and healthy volunteers was compared. The average value of L* in diabetic patients exceeded such one in the group of practically healthy persons by 2.71 times (P < 0.05), while the value of a* index was reduced by 3.8 times when compared with control one (P < 0.05). b* index exceeded such one in the control group by 12.4 times (P < 0.05). The integrated index on color difference (ΔE) exceeded control value by 2.87 times (P < 0.05). More pronounced differences with ΔE were followed by a shorter period of MA appearance with a correlation level at -0.56 (P < 0.05). The specificity of diagnostics raised by 2.17 times (P < 0.05) and negative prognostic index exceeded such one determined with the expert method by 2.26 times (P < 0.05).

Keywords: Diabetic retinopathy, multiscale texture gradient, color spectrum analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 578
968 Optimal Economic Restructuring Aimed at an Increase in GDP Constrained by a Decrease in Energy Consumption and CO2 Emissions

Authors: Alexander Y. Vaninsky

Abstract:

The objective of this paper is finding the way of economic restructuring - that is, change in the shares of sectoral gross outputs - resulting in the maximum possible increase in the gross domestic product (GDP) combined with decreases in energy consumption and CO2 emissions. It uses an input-output model for the GDP and factorial models for the energy consumption and CO2 emissions to determine the projection of the gradient of GDP, and the antigradients of the energy consumption and CO2 emissions, respectively, on a subspace formed by the structure-related variables. Since the gradient (antigradient) provides a direction of the steepest increase (decrease) of the objective function, and their projections retain this property for the functions' limitation to the subspace, each of the three directional vectors solves a particular problem of optimal structural change. In the next step, a type of factor analysis is applied to find a convex combination of the projected gradient and antigradients having maximal possible positive correlation with each of the three. This convex combination provides the desired direction of the structural change. The national economy of the United States is used as an example of applications.

Keywords: Economic restructuring, Input-Output analysis, Divisia index, Factorial decomposition, E3 models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608
967 The Effect of Mixture Velocity and Droplet Diameter on Oil-water Separator using Computational Fluid Dynamics (CFD)

Authors: M. Abdulkadir, V. Hernandez-Perez

Abstract:

The characteristics of fluid flow and phase separation in an oil-water separator were numerically analysed as part of the work presented herein. Simulations were performed for different velocities and droplet diameters, and the way this parameters can influence the separator geometry was studied. The simulations were carried out using the software package Fluent 6.2, which is designed for numerical simulation of fluid flow and mass transfer. The model consisted of a cylindrical horizontal separator. A tetrahedral mesh was employed in the computational domain. The condition of two-phase flow was simulated with the two-fluid model, taking into consideration turbulence effects using the k-ε model. The results showed that there is a strong dependency of phase separation on mixture velocity and droplet diameter. An increase in mixture velocity will bring about a slow down in phase separation and as a consequence will require a weir of greater height. An increase in droplet diameter will produce a better phase separation. The simulations are in agreement with results reported in literature and show that CFD can be a useful tool in studying a horizontal oilwater separator.

Keywords: CFD, droplet diameter, mixture velocity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3180
966 Investigation of Bubble Growth during Nucleate Boiling Using CFD

Authors: K. Jagannath, Akhilesh Kotian, S. S. Sharma, Achutha Kini U., P. R. Prabhu

Abstract:

Boiling process is characterized by the rapid formation of vapour bubbles at the solid–liquid interface (nucleate boiling) with pre-existing vapour or gas pockets. Computational fluid dynamics (CFD) is an important tool to study bubble dynamics. In the present study, CFD simulation has been carried out to determine the bubble detachment diameter and its terminal velocity. Volume of fluid method is used to model the bubble and the surrounding by solving single set of momentum equations and tracking the volume fraction of each of the fluids throughout the domain. In the simulation, bubble is generated by allowing water-vapour to enter a cylinder filled with liquid water through an inlet at the bottom. After the bubble is fully formed, the bubble detaches from the surface and rises up during which the bubble accelerates due to the net balance between buoyancy force and viscous drag. Finally when these forces exactly balance each other, it attains a constant terminal velocity. The bubble detachment diameter and the terminal velocity of the bubble are captured by the monitor function provided in FLUENT. The detachment diameter and the terminal velocity obtained are compared with the established results based on the shape of the bubble. A good agreement is obtained between the results obtained from simulation and the equations in comparison with the established results.

Keywords: Bubble growth, computational fluid dynamics, detachment diameter, terminal velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117
965 Heat and Mass Transfer over an Unsteady Stretching Surface Embedded in a Porous Medium in the Presence of Variable Chemical Reaction

Authors: T. G. Emam

Abstract:

The effect of variable chemical reaction on heat and mass transfer characteristics over unsteady stretching surface embedded in a porus medium is studied. The governing time dependent boundary layer equations are transformed into ordinary differential equations containing chemical reaction parameter, unsteadiness parameter, Prandtl number and Schmidt number. These equations have been transformed into a system of first order differential equations. MATHEMATICA has been used to solve this system after obtaining the missed initial conditions. The velocity gradient, temperature, and concentration profiles are computed and discussed in details for various values of the different parameters.

Keywords: Heat and mass transfer, stretching surface, chemical reaction, porus medium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
964 Modeling of Blood Flow Velocity into the Main Artery via Left Ventricle of Heart during Steady Condition

Authors: Mohd Azrul Hisham Mohd Adib, Nur Hazreen Mohd Hasni

Abstract:

A three-dimensional and pulsatile blood flow in the left ventricle of heart model has been studied numerically. The geometry was derived from a simple approximation of the left ventricle model and the numerical simulations were obtained using a formulation of the Navier-Stokes equations. In this study, simulation was used to investigate the pattern of flow velocity in 3D model of heart with consider the left ventricle based on critical parameter of blood under steady condition. Our results demonstrate that flow velocity focused from mitral valve channel and continuous linearly to left ventricle wall but this skewness progresses into outside wall in atrium through aortic valve with random distribution that is irregular due to force subtract from ventricle wall during cardiac cycle. The findings are the prediction of the behavior of the blood flow velocity pattern in steady flow condition which can assist the medical practitioners in their decision on the patients- treatments.

Keywords: Mitral Valve, Aortic Valve, Cardiac Cycle, Leaflet, Biomechanics, Left Ventricle

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139
963 Acceleration Analysis of a Rotating Body

Authors: R. Usubamatov

Abstract:

The velocity of a moving point in a general path is the vector quantity, which has both magnitude and direction. The magnitude or the direction of the velocity vector can change over time as a result of acceleration that the time rate of velocity changes. Acceleration analysis is important because inertial forces and inertial torques are proportional to rectilinear and angular accelerations accordingly. The loads must be determined in advance to ensure that a machine is adequately designed to handle these dynamic loads. For planar motion, the vector direction of acceleration is commonly separated into two elements: tangential and centripetal or radial components of a point on a rotating body. All textbooks in physics, kinematics and dynamics of machinery consider the magnitude of a radial acceleration at condition when a point rotates with a constant angular velocity and it means without acceleration. The magnitude of the tangential acceleration considered on a basis of acceleration for a rotating point. Such condition of presentation of magnitudes for two components of acceleration logically and mathematically is not correct and may cause further confusion in calculation. This paper presents new analytical expressions of the radial and absolute accelerations of a rotating point with acceleration and covers the gap in theoretical study of acceleration analysis.

Keywords: acceleration analysis, kinematics of mechanisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2695
962 An Investigation on Ultrasonic Pulse Velocity of Hybrid Fiber Reinforced Concretes

Authors: Soner Guler, Demet Yavuz, Refik Burak Taymuş, Fuat Korkut

Abstract:

Because of the easy applying and not costing too much, ultrasonic pulse velocity (UPV) is one of the most used non-destructive techniques to determine concrete characteristics along with impact-echo, Schmidt rebound hammer (SRH) and pulse-echo. This article investigates the relationship between UPV and compressive strength of hybrid fiber reinforced concretes. Water/cement ratio (w/c) was kept at 0.4 for all concrete mixes. Compressive strength of concrete was targeted at 35 MPa. UPV testing and compressive strength tests were carried out at the curing age of 28 days. The UPV of concrete containing steel fibers has been found to be higher than plain concrete for all the testing groups. It is decided that there is not a certain relationship between fiber addition and strength.

Keywords: Ultrasonic pulse velocity, hybrid fiber, compressive strength, fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1064
961 Modeling the Fischer-Tropsch Reaction In a Slurry Bubble Column Reactor

Authors: F. Gholami, M. Torabi Angaji, Z. Gholami

Abstract:

Fischer-Tropsch synthesis is one of the most important catalytic reactions that convert the synthetic gas to light and heavy hydrocarbons. One of the main issues is selecting the type of reactor. The slurry bubble reactor is suitable choice for Fischer- Tropsch synthesis because of its good qualification to transfer heat and mass, high durability of catalyst, low cost maintenance and repair. The more common catalysts for Fischer-Tropsch synthesis are Iron-based and Cobalt-based catalysts, the advantage of these catalysts on each other depends on which type of hydrocarbons we desire to produce. In this study, Fischer-Tropsch synthesis is modeled with Iron and Cobalt catalysts in a slurry bubble reactor considering mass and momentum balance and the hydrodynamic relations effect on the reactor behavior. Profiles of reactant conversion and reactant concentration in gas and liquid phases were determined as the functions of residence time in the reactor. The effects of temperature, pressure, liquid velocity, reactor diameter, catalyst diameter, gasliquid and liquid-solid mass transfer coefficients and kinetic coefficients on the reactant conversion have been studied. With 5% increase of liquid velocity (with Iron catalyst), H2 conversions increase about 6% and CO conversion increase about 4%, With 8% increase of liquid velocity (with Cobalt catalyst), H2 conversions increase about 26% and CO conversion increase about 4%. With 20% increase of gas-liquid mass transfer coefficient (with Iron catalyst), H2 conversions increase about 12% and CO conversion increase about 10% and with Cobalt catalyst H2 conversions increase about 10% and CO conversion increase about 6%. Results show that the process is sensitive to gas-liquid mass transfer coefficient and optimum condition operation occurs in maximum possible liquid velocity. This velocity must be more than minimum fluidization velocity and less than terminal velocity in such a way that avoid catalysts particles from leaving the fluidized bed.

Keywords: Modeling, Fischer-Tropsch Synthesis, Slurry Bubble Column Reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3020
960 Detailed Microzonation Studies around Denizli, Turkey

Authors: A. Aydin, E. Akyol, N. Soyatik

Abstract:

This study has been presented which is a detailed work of seismic microzonation of the city center. For seismic microzonation area of 225 km2 has been selected as the study area. MASW (Multichannel analysis of surface wave) and seismic refraction methods have been used to generate one-dimensional shear wave velocity profile at 250 locations and two-dimensional profile at 60 locations. These shear wave velocities are used to estimate equivalent shear wave velocity in the study area at every 2 and 5 m intervals up to a depth of 60 m. Levels of equivalent shear wave velocity of soil are used the classified of the study area. After the results of the study, it must be considered as components of urban planning and building design of Denizli and the application and use of these results should be required and enforced by municipal authorities.

Keywords: Seismic microzonation, liquefaction, land use management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
959 Handwriting Velocity Modeling by Artificial Neural Networks

Authors: Mohamed Aymen Slim, Afef Abdelkrim, Mohamed Benrejeb

Abstract:

The handwriting is a physical demonstration of a complex cognitive process learnt by man since his childhood. People with disabilities or suffering from various neurological diseases are facing so many difficulties resulting from problems located at the muscle stimuli (EMG) or signals from the brain (EEG) and which arise at the stage of writing. The handwriting velocity of the same writer or different writers varies according to different criteria: age, attitude, mood, writing surface, etc. Therefore, it is interesting to reconstruct an experimental basis records taking, as primary reference, the writing speed for different writers which would allow studying the global system during handwriting process. This paper deals with a new approach of the handwriting system modeling based on the velocity criterion through the concepts of artificial neural networks, precisely the Radial Basis Functions (RBF) neural networks. The obtained simulation results show a satisfactory agreement between responses of the developed neural model and the experimental data for various letters and forms then the efficiency of the proposed approaches.

Keywords: ElectroMyoGraphic (EMG) signals, Experimental approach, Handwriting process, Radial Basis Functions (RBF) neural networks, Velocity Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2315
958 Symmetry Breaking and the Emergence of Branching Structures in Morphogenesis: Minimal Conditions and Mechanical Interactions between Cells

Authors: M. Margarida Costa, Jorge Simão

Abstract:

The minimal condition for symmetry breaking in morphogenesis of cellular population was investigated using cellular automata based on reaction-diffusion dynamics. In particular, the study looked for the possibility of the emergence of branching structures due to mechanical interactions. The model used two types of cells an external gradient. The results showed that the external gradient influenced movement of cell type-I, also revealed that clusters formed by cells type-II worked as barrier to movement of cells type-I.

Keywords: Morphogenesis, branching structures, symmetrybreaking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1244
957 Simplified Stress Gradient Method for Stress-Intensity Factor Determination

Authors: Jeries J. Abou-Hanna

Abstract:

Several techniques exist for determining stress-intensity factors in linear elastic fracture mechanics analysis. These techniques are based on analytical, numerical, and empirical approaches that have been well documented in literature and engineering handbooks. However, not all techniques share the same merit. In addition to overly-conservative results, the numerical methods that require extensive computational effort, and those requiring copious user parameters hinder practicing engineers from efficiently evaluating stress-intensity factors. This paper investigates the prospects of reducing the complexity and required variables to determine stress-intensity factors through the utilization of the stress gradient and a weighting function. The heart of this work resides in the understanding that fracture emanating from stress concentration locations cannot be explained by a single maximum stress value approach, but requires use of a critical volume in which the crack exists. In order to understand the effectiveness of this technique, this study investigated components of different notch geometry and varying levels of stress gradients. Two forms of weighting functions were employed to determine stress-intensity factors and results were compared to analytical exact methods. The results indicated that the “exponential” weighting function was superior to the “absolute” weighting function. An error band +/- 10% was met for cases ranging from a steep stress gradient in a sharp v-notch to the less severe stress transitions of a large circular notch. The incorporation of the proposed method has shown to be a worthwhile consideration.

Keywords: Fracture mechanics, finite element method, stress intensity factor, stress gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 766
956 A CFD Study of Sensitive Parameters Effect on the Combustion in a High Velocity Oxygen-Fuel Thermal Spray Gun

Authors: S. Hossainpour, A. R. Binesh

Abstract:

High-velocity oxygen fuel (HVOF) thermal spraying uses a combustion process to heat the gas flow and coating material. A computational fluid dynamics (CFD) model has been developed to predict gas dynamic behavior in a HVOF thermal spray gun in which premixed oxygen and propane are burnt in a combustion chamber linked to a parallel-sided nozzle. The CFD analysis is applied to investigate axisymmetric, steady-state, turbulent, compressible, chemically reacting, subsonic and supersonic flow inside and outside the gun. The gas velocity, temperature, pressure and Mach number distributions are presented for various locations inside and outside the gun. The calculated results show that the most sensitive parameters affecting the process are fuel-to-oxygen gas ratio and total gas flow rate. Gas dynamic behavior along the centerline of the gun depends on both total gas flow rate and fuel-to-oxygen gas ratio. The numerical simulations show that the axial gas velocity and Mach number distribution depend on both flow rate and ratio; the highest velocity is achieved at the higher flow rate and most fuel-rich ratio. In addition, the results reported in this paper illustrate that the numerical simulation can be one of the most powerful and beneficial tools for the HVOF system design, optimization and performance analysis.

Keywords: HVOF, CFD, gas dynamics, thermal spray, combustion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159
955 Efficiency of Robust Heuristic Gradient Based Enumerative and Tunneling Algorithms for Constrained Integer Programming Problems

Authors: Vijaya K. Srivastava, Davide Spinello

Abstract:

This paper presents performance of two robust gradient-based heuristic optimization procedures based on 3n enumeration and tunneling approach to seek global optimum of constrained integer problems. Both these procedures consist of two distinct phases for locating the global optimum of integer problems with a linear or non-linear objective function subject to linear or non-linear constraints. In both procedures, in the first phase, a local minimum of the function is found using the gradient approach coupled with hemstitching moves when a constraint is violated in order to return the search to the feasible region. In the second phase, in one optimization procedure, the second sub-procedure examines 3n integer combinations on the boundary and within hypercube volume encompassing the result neighboring the result from the first phase and in the second optimization procedure a tunneling function is constructed at the local minimum of the first phase so as to find another point on the other side of the barrier where the function value is approximately the same. In the next cycle, the search for the global optimum commences in both optimization procedures again using this new-found point as the starting vector. The search continues and repeated for various step sizes along the function gradient as well as that along the vector normal to the violated constraints until no improvement in optimum value is found. The results from both these proposed optimization methods are presented and compared with one provided by popular MS Excel solver that is provided within MS Office suite and other published results.

Keywords: Constrained integer problems, enumerative search algorithm, Heuristic algorithm, tunneling algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 801
954 Study of the Particle Size Effect on Bubble Rise Velocities in a Three-Phase Bubble Column

Authors: Weiling Li, Wenqi Zhong, Baosheng Jin, Rui Xiao, Yong Lu, Tingting He

Abstract:

Experiments were performed in a three-phase bubble column to study variations of bubble rise velocities. The dynamic gas disengagement (DGD) technique and the fast response pressure transducers were utilized to investigate the bubble rise in the column. The superficial gas velocity of large bubbles and small bubbles, the rise velocities of larger and small bubble fractions were studied considering the effect of particle sizes. The results show that the superficial gas velocity associated with large bubbles linearly increase as superficial gas velocity increasing. Particle size has little effect on the both large and small bubble superficial gas velocities. The rise velocities of larger bubble fractions are larger than that of small bubble fractions, and it had different tendency at low and high superficial gas velocities when changing the particle sizes. The rise velocities of small bubble fractions increased and then had a decrease tendency when the particle size became greater.

Keywords: Bubble rise velocity, gas–liquid–solid, particle size effect, three–phase bubble column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3403
953 Experimental Study on Using the Aluminum Sacrificial Anode as a Cathodic Protection for Marine Structures

Authors: A. Radwan, A. Elbatran, A. Mehanna, M. Shehadeh

Abstract:

The corrosion is natural chemical phenomenon that is applied in many engineering structures. Hence, it is one of the important topics to study in the engineering research. Ship and offshore structures are most exposed to corrosion due to the presence of corrosive medium of air and the seawater. Consequently, investigation of the corrosion behavior and properties over ship and offshore hulls is one of the important topics to study in the marine engineering research. Using sacrificial anode is the most popular solution for protecting marine structures from corrosion. Hence, this research investigates the extent of corrosion between the composite ship model and relative velocity of water, along with the sacrificial aluminum anode consumption and its degree of protection in seawater. In this study, the consumption rate of sacrificial aluminum anode with respect to relative velocity at different Reynold’s numbers was studied experimentally, and it was found that, the degree of cathodic protection represented by the cathode potential at a given distance from the aluminum anode was decreased slightly with increment of the relative velocity.

Keywords: Corrosion, Reynold’s numbers, sacrificial anode, velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1998
952 Anonymous Editing Prevention Technique Using Gradient Method for High-Quality Video

Authors: Jiwon Lee, Chanho Jung, Si-Hwan Jang, Kyung-Ill Kim, Sanghyun Joo, Wook-Ho Son

Abstract:

Since the advances in digital imaging technologies have led to development of high quality digital devices, there are a lot of illegal copies of copyrighted video content on the Internet. Also, unauthorized editing is occurred frequently. Thus, we propose an editing prevention technique for high-quality (HQ) video that can prevent these illegally edited copies from spreading out. The proposed technique is applied spatial and temporal gradient methods to improve the fidelity and detection performance. Also, the scheme duplicates the embedding signal temporally to alleviate the signal reduction caused by geometric and signal-processing distortions. Experimental results show that the proposed scheme achieves better performance than previously proposed schemes and it has high fidelity. The proposed scheme can be used in unauthorized access prevention method of visual communication or traitor tracking applications which need fast detection process to prevent illegally edited video content from spreading out.

Keywords: Editing prevention technique, gradient method, high-quality video, luminance change, visual communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
951 Response of Fully Backed Sandwich Beams to Low Velocity Transverse Impact

Authors: M. Sadighi, H. Pouriayevali, M. Saadati

Abstract:

This paper describes analysis of low velocity transverse impact on fully backed sandwich beams with composite faces from Eglass/epoxy and cores from Polyurethane or PVC. Indentation on sandwich beams has been analyzed with the existing theories and modeled with the FE code ABAQUS, also loadings have been done experimentally to verify theoretical results. Impact on fully backed has been modeled in two cases of impactor energy with SDOF model (single-degree-of-freedom) and indentation stiffness: lower energy for elastic indentation of sandwich beams and higher energy for plastic area in indentation. Impacts have been modeled by ABAQUS. Impact results can describe response of beam in terms of core and faces thicknesses, core material, indentor energy and energy absorbed. The foam core is modeled using the crushable foam material model and response of the foam core is experimentally characterized in uniaxial compression with higher velocity loading to define quasi impact behaviour.

Keywords: Low velocity impact, fully backed, indentation, sandwich beams, foams, finite element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800
950 A Numerical Simulation of the Indoor Air Flow

Authors: Karel Frana, Jianshun S. Zhang, Milos Muller

Abstract:

The indoor airflow with a mixed natural/forced convection was numerically calculated using the laminar and turbulent approach. The Boussinesq approximation was considered for a simplification of the mathematical model and calculations. The results obtained, such as mean velocity fields, were successfully compared with experimental PIV flow visualizations. The effect of the distance between the cooled wall and the heat exchanger on the temperature and velocity distributions was calculated. In a room with a simple shape, the computational code OpenFOAM demonstrated an ability to numerically predict flow patterns. Furthermore, numerical techniques, boundary type conditions and the computational grid quality were examined. Calculations using the turbulence model k-omega had a significant effect on the results influencing temperature and velocity distributions.

Keywords: natural and forced convections, numerical simulations, indoor airflows.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3206