Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30124
Effect of Linear Thermal Gradient on Steady-State Creep Behavior of Isotropic Rotating Disc

Authors: Minto Rattan, Tania Bose, Neeraj Chamoli

Abstract:

The present paper investigates the effect of linear thermal gradient on the steady-state creep behavior of rotating isotropic disc using threshold stress based Sherby’s creep law. The composite discs made of aluminum matrix reinforced with silicon carbide particulate has been taken for analysis. The stress and strain rate distributions have been calculated for discs rotating at linear thermal gradation using von Mises’ yield criterion. The material parameters have been estimated by regression fit of the available experimental data. The results are displayed and compared graphically in designer friendly format for the above said temperature profile with the disc operating under uniform temperature profile. It is observed that radial and tangential stresses show minor variation and the strain rates vary significantly in the presence of thermal gradation as compared to disc having uniform temperature.

Keywords: Creep, isotropic, steady-state, thermal gradient.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1130553

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 453

References:


[1] S. M. Arnold, A. F. Saleeb and N. R. Al-Zoubi, Deformation and life analysis of composite flywheel disk and multi-disk systems. NASA/TM-2001-210578, 1-50, 2001.
[2] N. S. Bhatnagar, P. S. Kulkarni and V. K. Arya, Steady-state creep of orthotropic rotating disks of variable thickness. Nuclear Engineering and Design, 91, 121-141, 1986.
[3] T. Bose and M. Rattan, Modeling creep behavior of thermally graded rotating disc of functionally graded material. Differential Equations and Dynamical Systems. (In Press) 2016.
[4] N. Chamoli, M. Rattan and S. B. Singh, Study of stress and strain rates in a rotating cylinder subjected to internal and external pressure. International Journal of Computational Materials, 1(2), 1250022-(1-15), 2012.
[5] T. W. Clyne and P. J. Withers, An introduction to metal matrix composites. Cambridge University Press, Cambridge, 479, 1993.
[6] M. Garg, B. S. Salaria and V. K. Gupta, Effect of thermal gradient on steady state creep in a rotating disc of variable thickness. Procedia Engineering 55, 542-547, 2013.
[7] V. K. Gupta, S. B. Singh, H. N. Chandrawat and S. Ray, Creep in an isotropic rotating disc of Al − SiCp composite. Indian J. pure. appl. Math., 34(12), 1797-1807, 2003.
[8] V. K. Gupta, S. B. Singh, H. N. Chandrawat and S. Ray, Steady state creep and material parameters in a rotating disc of Al−SiCp. European Journal of Mechanics A/Solids, 23, 335-344, 2004.
[9] Journal of The Iron and Steel Institute(Vol. 203). (Issue: 7-12), 969, 1965.
[10] S. Masaru, On the steady state creep of rotating solid disks. The Japan Society of Mechanical Engineers, 7(26), 621-625, 1964.
[11] A. B. Pandey, R. S. Mishra and Y. R. Mahajan, Steady state creep behavior of silicon carbide particulate reinforced aluminum composites. Acta Metall. Mater., 40(8), 2045-2052, 1992.
[12] M. Rattan, N. Chamoli and S. B. Singh, Creep analysis of an isotropic functionally graded rotating disc. International Journal of Contemporary Mathematical Sciences, 5(9), 419-431, 2010.
[13] M. ,Rattan, N. Chamoli, S. B. Singh and N. Gupta, Creep behavior of anisotropic functionally graded rotating discs. International Journal of Computational Materials, 2(1), 1350005-(1-15), 2013.
[14] M. Rattan, A. Kaushik, N. Chamoli and T. Bose, Steady state creep behavior of thermally graded isotropic rotating disc of composite taking into account the thermal residual stress. European Journal of Mechanics A/Solids, 60, 315-326, 2016.
[15] O. D. Sherby, R. H. Klundt and A. K. Miller, Flow stress, subgrain size and subgrain stability at elevated temperature. Metall. Trans. A., 8, 843-850, 1977.
[16] S. B. Singh and M. Rattan, Creep analysis of an isotropic rotating Al-SiC composite disc taking into account the phase-specific thermal residual stress. Journal of Thermoplastic Composite Materials, 23, 0299-14, 2010.
[17] S. B. Singh and S. Ray, Steady state creep behavior in an isotropic functionally graded material rotating disc of Al−SiC composite. Metall. Mater. Trans. A., 32A, 1679-1685, 2001.
[18] A. M. Wahl, G. O. Sankey, M. J. Manjoine, and E. Shoemaker, Creep tests of rotating disks at elevated temperature and comparison with theory. Journal Applied Mechanics, 76, 225-235, 1954.