Information System for Early Diabetic Retinopathy Diagnostics Based on Multiscale Texture Gradient Method
Authors: L. S. Godlevsky, N. V. Kresyun, V. P. Martsenyuk, K. S. Shakun, T. V. Tatarchuk, K. O. Prybolovets, L. F. Kalinichenko, M. Karpinski, T. Gancarczyk
Abstract:
Structures of eye bottom were extracted using multiscale texture gradient method and color characteristics of macular zone and vessels were verified in CIELAB scale. The difference of average values of L*, a* and b* coordinates of CIE (International Commision of Illumination) scale in patients with diabetes and healthy volunteers was compared. The average value of L* in diabetic patients exceeded such one in the group of practically healthy persons by 2.71 times (P < 0.05), while the value of a* index was reduced by 3.8 times when compared with control one (P < 0.05). b* index exceeded such one in the control group by 12.4 times (P < 0.05). The integrated index on color difference (ΔE) exceeded control value by 2.87 times (P < 0.05). More pronounced differences with ΔE were followed by a shorter period of MA appearance with a correlation level at -0.56 (P < 0.05). The specificity of diagnostics raised by 2.17 times (P < 0.05) and negative prognostic index exceeded such one determined with the expert method by 2.26 times (P < 0.05).
Keywords: Diabetic retinopathy, multiscale texture gradient, color spectrum analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 576References:
[1] N. V. Kresyun, T. V. Tatarchuk, K. S. Shakun, and L. S. Godlevsky. “Multiscale textural gradient method of eye bottom images analysis in automatic diagnostics of diabetic retinopathy”. Ophthalmological J. (Ukrainian), 2014, pp. 9-13.
[2] E. K. Chin, B. V. Ventura, and K. Y. See. “Nonmydriatic fundus photography for teleophthalmology diabetic retinopathy screening in rural and urban clinics”. Telemed. J. e-Health. 2014, pp. 102-108.
[3] A. F. M. Hani and H. A. Nugroho. “Retinal vasculature enhancement using independent component analysis”. J. Biomed. Sci. Engineer. 2009, pp. 543-549.
[4] Yu Y. Chen, S. B. Su “Neuroinflammatory responses in diabetic retinopathy”. J. of Neuroinflammation. 2015, vol. 12, pp. 141-147.
[5] L. S. Godlevsky, N. V. Kresyun, H. O. Son, V. V. Godovan, O. N. Nenova, M. P. Pervak, T. L. Godlevska, K. A. Bidnuk, and T. V. Prybolovets, “Retina Protection with Cerebellum Activation in Experimental Diabetes and Translational Perspectives” In: Development of the Cerebellum, Clinical and Molecular Perspectives. S.Fabbri, Ed. New York: Nova Science Publishers Inc., 2018, pp. 147-173.
[6] L. S. Godlevsky, E. A. Bidnyuk, N. V. Kresyun, N. R. Bayazitov, A. V. Lyashenko, and V. V. Balykov. “Application of mobile photography with smartphone cameras for monitoring of orthodontic correction with dental BRACKETS”. China Journal of Modern Medicine. 2014, pp. 10-14.
[7] L. S. Godlevsky, E. A. Bidnyuk, N. R. Bayazitov, N. V. Kresyun, A. S. Kovalenko, A. V. Lyashenko, and V. V. Balykov. “Application of mobile photography with smartphone cameras for monitoring of early caries appearance in the course of orthodontic correction with dental brackets”. Applied Medical Informatics (Romania). 2013, pp. 21-26.
[8] M. H. A. Fadzil, L. I. Izhar, P. A. Venkatachalam, and T. V. Karunakar. “Extraction and reconstruction of retinal vasculature”. J. Medical Engineer. Technol. 2007, pp. 435–442.
[9] L.S. Godlevsky, K.S. Shakun, V.P. Martsenyuk, T.V. Tatarchuk, T.V.Stoeva, T.L.Godlevska, I.K.Shakun. “Dynamic Changes of the Colour Intensity of Collected Urine as a Basis for a Distant Uroflowmetry,” Proc. 10th IEEE Internat. Conf. on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS’2019), Sept. 2019, pp. 308-314.
[10] P.A. Chochiya. “Pyramidal algorithm of images segmentation”. Informationnyie Protsessy
[Russian]. 2010, pp. 23 35.
[11] R.C. Gonzales, R.E. Woods, Digital image processing, Prentice-Hall, Inc., 2002, pp. 567-643.
[12] G. Scanolon, P. Connell, M. Ratzlaff, B. Foerg, D. Mc Cartney, A. Murphy, K. O’Connor, and J. Loughman. “Macular pigment optical density is lowe in type 2 diabetes, compared with type 1 diabetes and normal controls”. Retina. 2015, pp. 1808-1816.
[13] V. C. Lima, R. B. Rosen, M. Maia, T. S. Prata, S. Dorairaj, M. E. Farah, and J. Salum. “Macular pigment optical density measured by dual-wavelength autofluorescence imaging in diabetic and nondiabetic patients: a comparative study”. Invest. Ophthalmol. Vis. Sci. 2010, pp. 5840-5845.
[14] T. T. J. M. Berendschot, P. J. DeLint, and D. Norren. “Fundus reflectance-historical and present ideas”. Progress in Retinal and Eye Research. 2003, pp. 171–200.