Search results for: time series.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7083

Search results for: time series.

6963 Blow up in Polynomial Differential Equations

Authors: Rudolf Csikja, Janos Toth

Abstract:

Methods to detect and localize time singularities of polynomial and quasi-polynomial ordinary differential equations are systematically presented and developed. They are applied to examples taken form different fields of applications and they are also compared to better known methods such as those based on the existence of linear first integrals or Lyapunov functions.

Keywords: blow up, finite escape time, polynomial ODE, singularity, Lotka–Volterra equation, Painleve analysis, Ψ-series, global existence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183
6962 Evaluation of the ANN Based Nonlinear System Models in the MSE and CRLB Senses

Authors: M.V Rajesh, Archana R, A Unnikrishnan, R Gopikakumari, Jeevamma Jacob

Abstract:

The System Identification problem looks for a suitably parameterized model, representing a given process. The parameters of the model are adjusted to optimize a performance function based on error between the given process output and identified process output. The linear system identification field is well established with many classical approaches whereas most of those methods cannot be applied for nonlinear systems. The problem becomes tougher if the system is completely unknown with only the output time series is available. It has been reported that the capability of Artificial Neural Network to approximate all linear and nonlinear input-output maps makes it predominantly suitable for the identification of nonlinear systems, where only the output time series is available. [1][2][4][5]. The work reported here is an attempt to implement few of the well known algorithms in the context of modeling of nonlinear systems, and to make a performance comparison to establish the relative merits and demerits.

Keywords: Multilayer neural networks, Radial Basis Functions, Clustering algorithm, Back Propagation training, Extended Kalmanfiltering, Mean Square Error, Nonlinear Modeling, Cramer RaoLower Bound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
6961 Comparison of Two Maintenance Policies for a Two-Unit Series System Considering General Repair

Authors: Seyedvahid Najafi, Viliam Makis

Abstract:

In recent years, maintenance optimization has attracted special attention due to the growth of industrial systems complexity. Maintenance costs are high for many systems, and preventive maintenance is effective when it increases operations' reliability and safety at a reduced cost. The novelty of this research is to consider general repair in the modeling of multi-unit series systems and solve the maintenance problem for such systems using the semi-Markov decision process (SMDP) framework. We propose an opportunistic maintenance policy for a series system composed of two main units. Unit 1, which is more expensive than unit 2, is subjected to condition monitoring, and its deterioration is modeled using a gamma process. Unit 1 hazard rate is estimated by the proportional hazards model (PHM), and two hazard rate control limits are considered as the thresholds of maintenance interventions for unit 1. Maintenance is performed on unit 2, considering an age control limit. The objective is to find the optimal control limits and minimize the long-run expected average cost per unit time. The proposed algorithm is applied to a numerical example to compare the effectiveness of the proposed policy (policy Ⅰ) with policy Ⅱ, which is similar to policy Ⅰ, but instead of general repair, replacement is performed. Results show that policy Ⅰ leads to lower average cost compared with policy Ⅱ. 

Keywords: Condition-based maintenance, proportional hazards model, semi-Markov decision process, two-unit series systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 588
6960 Coordination between SC and SVC for Voltage Stability Improvement

Authors: Ali Reza Rajabi, Shahab Rashnoei, Mojtaba Hakimzadeh, Amir Habibi

Abstract:

At any point of time, a power system operating condition should be stable, meeting various operational criteria and it should also be secure in the event of any credible contingency. Present day power systems are being operated closer to their stability limits due to economic and environmental constraints. Maintaining a stable and secure operation of a power system is therefore a very important and challenging issue. Voltage instability has been given much attention by power system researchers and planners in recent years, and is being regarded as one of the major sources of power system insecurity. Voltage instability phenomena are the ones in which the receiving end voltage decreases well below its normal value and does not come back even after setting restoring mechanisms such as VAR compensators, or continues to oscillate for lack of damping against the disturbances. Reactive power limit of power system is one of the major causes of voltage instability. This paper investigates the effects of coordinated series capacitors (SC) with static VAR compensators (SVC) on steady-state voltage stability of a power system. Also, the influence of the presence of series capacitor on static VAR compensator controller parameters and ratings required to stabilize load voltages at certain values are highlighted.

Keywords: Static VAR Compensator (SVC), Series Capacitor (SC), voltage stability, reactive power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967
6959 Power Series Form for Solving Linear Fredholm Integral Equations of Second Order via Banach Fixed Point Theorem

Authors: Adil AL-Rammahi

Abstract:

In this paper, a new method for solution of second order linear Fredholm integral equation in power series form was studied. The result is obtained by using Banach fixed point theorem.

Keywords: Fredholm integral equation, power series, Banach fixed point theorem, Linear Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2491
6958 Using Artificial Neural Network to Forecast Groundwater Depth in Union County Well

Authors: Zahra Ghadampour, Gholamreza Rakhshandehroo

Abstract:

A concern that researchers usually face in different applications of Artificial Neural Network (ANN) is determination of the size of effective domain in time series. In this paper, trial and error method was used on groundwater depth time series to determine the size of effective domain in the series in an observation well in Union County, New Jersey, U.S. different domains of 20, 40, 60, 80, 100, and 120 preceding day were examined and the 80 days was considered as effective length of the domain. Data sets in different domains were fed to a Feed Forward Back Propagation ANN with one hidden layer and the groundwater depths were forecasted. Root Mean Square Error (RMSE) and the correlation factor (R2) of estimated and observed groundwater depths for all domains were determined. In general, groundwater depth forecast improved, as evidenced by lower RMSEs and higher R2s, when the domain length increased from 20 to 120. However, 80 days was selected as the effective domain because the improvement was less than 1% beyond that. Forecasted ground water depths utilizing measured daily data (set #1) and data averaged over the effective domain (set #2) were compared. It was postulated that more accurate nature of measured daily data was the reason for a better forecast with lower RMSE (0.1027 m compared to 0.255 m) in set #1. However, the size of input data in this set was 80 times the size of input data in set #2; a factor that may increase the computational effort unpredictably. It was concluded that 80 daily data may be successfully utilized to lower the size of input data sets considerably, while maintaining the effective information in the data set.

Keywords: Neural networks, groundwater depth, forecast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2516
6957 An efficient Activity Network Reduction Algorithm based on the Label Correcting Tracing Algorithm

Authors: Weng Ming Chu

Abstract:

When faced with stochastic networks with an uncertain duration for their activities, the securing of network completion time becomes problematical, not only because of the non-identical pdf of duration for each node, but also because of the interdependence of network paths. As evidenced by Adlakha & Kulkarni [1], many methods and algorithms have been put forward in attempt to resolve this issue, but most have encountered this same large-size network problem. Therefore, in this research, we focus on network reduction through a Series/Parallel combined mechanism. Our suggested algorithm, named the Activity Network Reduction Algorithm (ANRA), can efficiently transfer a large-size network into an S/P Irreducible Network (SPIN). SPIN can enhance stochastic network analysis, as well as serve as the judgment of symmetry for the Graph Theory.

Keywords: Series/Parallel network, Stochastic network, Network reduction, Interdictive Graph, Complexity Index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1379
6956 Recurrent Radial Basis Function Network for Failure Time Series Prediction

Authors: Ryad Zemouri, Paul Ciprian Patic

Abstract:

An adaptive software reliability prediction model using evolutionary connectionist approach based on Recurrent Radial Basis Function architecture is proposed. Based on the currently available software failure time data, Fuzzy Min-Max algorithm is used to globally optimize the number of the k Gaussian nodes. The corresponding optimized neural network architecture is iteratively and dynamically reconfigured in real-time as new actual failure time data arrives. The performance of our proposed approach has been tested using sixteen real-time software failure data. Numerical results show that our proposed approach is robust across different software projects, and has a better performance with respect to next-steppredictability compared to existing neural network model for failure time prediction.

Keywords: Neural network, Prediction error, Recurrent RadialBasis Function Network, Reliability prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
6955 Quantitative Estimation of Periodicities in Lyari River Flow Routing

Authors: Rana Khalid Naeem, Asif Mansoor

Abstract:

The hydrologic time series data display periodic structure and periodic autoregressive process receives considerable attention in modeling of such series. In this communication long term record of monthly waste flow of Lyari river is utilized to quantify by using PAR modeling technique. The parameters of model are estimated by using Frances & Paap methodology. This study shows that periodic autoregressive model of order 2 is the most parsimonious model for assessing periodicity in waste flow of the river. A careful statistical analysis of residuals of PAR (2) model is used for establishing goodness of fit. The forecast by using proposed model confirms significance and effectiveness of the model.

Keywords: Diagnostic checks, Lyari river, Model selection, Monthly waste flow, Periodicity, Periodic autoregressive model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
6954 Fault Zone Detection on Advanced Series Compensated Transmission Line using Discrete Wavelet Transform and SVM

Authors: Renju Gangadharan, G. N. Pillai, Indra Gupta

Abstract:

In this paper a novel method for finding the fault zone on a Thyristor Controlled Series Capacitor (TCSC) incorporated transmission line is presented. The method makes use of the Support Vector Machine (SVM), used in the classification mode to distinguish between the zones, before or after the TCSC. The use of Discrete Wavelet Transform is made to prepare the features which would be given as the input to the SVM. This method was tested on a 400 kV, 50 Hz, 300 Km transmission line and the results were highly accurate.

Keywords: Flexible ac transmission system (FACTS), thyristorcontrolled series-capacitor (TCSC), discrete wavelet transforms(DWT), support vector machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
6953 Application of Generalized Autoregressive Score Model to Stock Returns

Authors: Katleho Daniel Makatjane, Diteboho Lawrence Xaba, Ntebogang Dinah Moroke

Abstract:

The current study investigates the behaviour of time-varying parameters that are based on the score function of the predictive model density at time t. The mechanism to update the parameters over time is the scaled score of the likelihood function. The results revealed that there is high persistence of time-varying, as the location parameter is higher and the skewness parameter implied the departure of scale parameter from the normality with the unconditional parameter as 1.5. The results also revealed that there is a perseverance of the leptokurtic behaviour in stock returns which implies the returns are heavily tailed. Prior to model estimation, the White Neural Network test exposed that the stock price can be modelled by a GAS model. Finally, we proposed further researches specifically to model the existence of time-varying parameters with a more detailed model that encounters the heavy tail distribution of the series and computes the risk measure associated with the returns.

Keywords: Generalized autoregressive score model, stock returns, time-varying.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1035
6952 Hybrid Minimal Repair for a Serial System

Authors: Ellysa Nursanti, Anas Ma'ruf, Tota Simatupang, Bermawi P. Iskandar

Abstract:

This study proposes a hybrid minimal repair policy which combines periodic maintenance policy with age-based maintenance policy for a serial production system. Parameters of such policy are defined as  and  which indicate as hybrid minimal repair time and planned preventive maintenance time respectively  . Under this hybrid policy, the system is repaired minimally if it fails during , . A perfect repair is conducted on the first failure after  at any machines. At the same time, we take opportunity to advance the preventive maintenance of other machines simultaneously. If the system is still operating properly up to , then the preventive maintenance is carried out as its predetermined schedule. For a given , we obtain the optimal value  which minimizes the expected cost per time unit. Numerical example is presented to illustrate the properties of the optimal solution.

Keywords: Hybrid minimal repair, opportunistic maintenance, preventive maintenance, series system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
6951 Empirical Study of Real Retail Trade Turnover

Authors: J. Arneric, E. Jurun, L. Kordic

Abstract:

This paper deals with econometric analysis of real retail trade turnover. It is a part of an extensive scientific research about modern trends in Croatian national economy. At the end of the period of transition economy, Croatia confronts with challenges and problems of high consumption society. In such environment as crucial economic variables: real retail trade turnover, average monthly real wages and household loans are chosen for consequence analysis. For the purpose of complete procedure of multiple econometric analysis data base adjustment has been provided. Namely, it has been necessary to deflate original national statistics data of retail trade turnover using consumer price indices, as well as provide process of seasonally adjustment of its contemporary behavior. In model establishment it has been necessary to involve the overcoming procedure for the autocorrelation and colinearity problems. Moreover, for case of time-series shift a specific appropriate econometric instrument has been applied. It would be emphasize that the whole methodology procedure is based on the real Croatian national economy time-series.

Keywords: Consumption society, multiple econometric model, real retail trade turnover, second order autocorrelation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468
6950 Keyloggers Prevention with Time-Sensitive Obfuscation

Authors: Chien-Wei Hung, Fu-Hau Hsu, Chuan-Sheng Wang, Chia-Hao Lee

Abstract:

Nowadays, the abuse of keyloggers is one of the most widespread approaches to steal sensitive information. In this paper, we propose an On-Screen Prompts Approach to Keyloggers (OSPAK) and its analysis, which is installed in public computers. OSPAK utilizes a canvas to cue users when their keystrokes are going to be logged or ignored by OSPAK. This approach can protect computers against recoding sensitive inputs, which obfuscates keyloggers with letters inserted among users' keystrokes. It adds a canvas below each password field in a webpage and consists of three parts: two background areas, a hit area and a moving foreground object. Letters at different valid time intervals are combined in accordance with their time interval orders, and valid time intervals are interleaved with invalid time intervals. It utilizes animation to visualize valid time intervals and invalid time intervals, which can be integrated in a webpage as a browser extension. We have tested it against a series of known keyloggers and also performed a study with 95 users to evaluate how easily the tool is used. Experimental results made by volunteers show that OSPAK is a simple approach.

Keywords: Authentication, computer security, keylogger, privacy, information leakage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778
6949 Empirical Roughness Progression Models of Heavy Duty Rural Pavements

Authors: Nahla H. Alaswadko, Rayya A. Hassan, Bayar N. Mohammed

Abstract:

Empirical deterministic models have been developed to predict roughness progression of heavy duty spray sealed pavements for a dataset representing rural arterial roads. The dataset provides a good representation of the relevant network and covers a wide range of operating and environmental conditions. A sample with a large size of historical time series data for many pavement sections has been collected and prepared for use in multilevel regression analysis. The modelling parameters include road roughness as performance parameter and traffic loading, time, initial pavement strength, reactivity level of subgrade soil, climate condition, and condition of drainage system as predictor parameters. The purpose of this paper is to report the approaches adopted for models development and validation. The study presents multilevel models that can account for the correlation among time series data of the same section and to capture the effect of unobserved variables. Study results show that the models fit the data very well. The contribution and significance of relevant influencing factors in predicting roughness progression are presented and explained. The paper concludes that the analysis approach used for developing the models confirmed their accuracy and reliability by well-fitting to the validation data.

Keywords: Roughness progression, empirical model, pavement performance, heavy duty pavement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 804
6948 Analysis of the Structural Fluctuation of the Permitted Building Areas and Housing Distribution Ratios - Focused on 5 Cities Including Bucheon

Authors: Cheon Sik Min, Hyeong Wook Song, Sook Yeon Shim, Hoon Chang

Abstract:

The purpose of this study was to analyze the correlation between permitted building areas and housing distribution ratios and their fluctuation, and test a distribution model during 3 successive governments in 5 cities including Bucheon in reference to the time series administrative data, and thereby, interpret the results of the analysis in association with the policies pursued by the successive governments to examine the structural fluctuation of permitted building areas and housing distribution ratios. In order to analyze the fluctuation of permitted building areas and housing distribution ratios during 3 successive governments and examine the cycles of the time series data, the spectral analysis was performed, and in order to analyze the correlation between permitted building areas and housing distribution ratios, the tabulation was performed to describe the correlations statistically, and in order to explain about differences of fluctuation distribution of permitted building areas and housing distribution ratios among 3 governments, the goodness of fit test was conducted.

Keywords: The Permitted Building Areas, Housing Distribution Ratios, the Structural Fluctuation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1195
6947 Comparative Study of Evolutionary Model and Clustering Methods in Circuit Partitioning Pertaining to VLSI Design

Authors: K. A. Sumitra Devi, N. P. Banashree, Annamma Abraham

Abstract:

Partitioning is a critical area of VLSI CAD. In order to build complex digital logic circuits its often essential to sub-divide multi -million transistor design into manageable Pieces. This paper looks at the various partitioning techniques aspects of VLSI CAD, targeted at various applications. We proposed an evolutionary time-series model and a statistical glitch prediction system using a neural network with selection of global feature by making use of clustering method model, for partitioning a circuit. For evolutionary time-series model, we made use of genetic, memetic & neuro-memetic techniques. Our work focused in use of clustering methods - K-means & EM methodology. A comparative study is provided for all techniques to solve the problem of circuit partitioning pertaining to VLSI design. The performance of all approaches is compared using benchmark data provided by MCNC standard cell placement benchmark net lists. Analysis of the investigational results proved that the Neuro-memetic model achieves greater performance then other model in recognizing sub-circuits with minimum amount of interconnections between them.

Keywords: VLSI, circuit partitioning, memetic algorithm, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
6946 Temporal Signal Processing by Inference Bayesian Approach for Detection of Abrupt Variation of Statistical Characteristics of Noisy Signals

Authors: Farhad Asadi, Hossein Sadati

Abstract:

In fields such as neuroscience and especially in cognition modeling of mental processes, uncertainty processing in temporal zone of signal is vital. In this paper, Bayesian online inferences in estimation of change-points location in signal are constructed. This method separated the observed signal into independent series and studies the change and variation of the regime of data locally with related statistical characteristics. We give conditions on simulations of the method when the data characteristics of signals vary, and provide empirical evidence to show the performance of method. It is verified that correlation between series around the change point location and its characteristics such as Signal to Noise Ratios and mean value of signal has important factor on fluctuating in finding proper location of change point. And one of the main contributions of this study is related to representing of these influences of signal statistical characteristics for finding abrupt variation in signal. There are two different structures for simulations which in first case one abrupt change in temporal section of signal is considered with variable position and secondly multiple variations are considered. Finally, influence of statistical characteristic for changing the location of change point is explained in details in simulation results with different artificial signals.

Keywords: Time series, fluctuation in statistical characteristics, optimal learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 564
6945 Series-Parallel Systems Reliability Optimization Using Genetic Algorithm and Statistical Analysis

Authors: Essa Abrahim Abdulgader Saleem, Thien-My Dao

Abstract:

The main objective of this paper is to optimize series-parallel system reliability using Genetic Algorithm (GA) and statistical analysis; considering system reliability constraints which involve the redundant numbers of selected components, total cost, and total weight. To perform this work, firstly the mathematical model which maximizes system reliability subject to maximum system cost and maximum system weight constraints is presented; secondly, a statistical analysis is used to optimize GA parameters, and thirdly GA is used to optimize series-parallel systems reliability. The objective is to determine the strategy choosing the redundancy level for each subsystem to maximize the overall system reliability subject to total cost and total weight constraints. Finally, the series-parallel system case study reliability optimization results are showed, and comparisons with the other previous results are presented to demonstrate the performance of our GA.

Keywords: Genetic algorithm, optimization, reliability, statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1156
6944 Tidal Data Analysis using ANN

Authors: Ritu Vijay, Rekha Govil

Abstract:

The design of a complete expansion that allows for compact representation of certain relevant classes of signals is a central problem in signal processing applications. Achieving such a representation means knowing the signal features for the purpose of denoising, classification, interpolation and forecasting. Multilayer Neural Networks are relatively a new class of techniques that are mathematically proven to approximate any continuous function arbitrarily well. Radial Basis Function Networks, which make use of Gaussian activation function, are also shown to be a universal approximator. In this age of ever-increasing digitization in the storage, processing, analysis and communication of information, there are numerous examples of applications where one needs to construct a continuously defined function or numerical algorithm to approximate, represent and reconstruct the given discrete data of a signal. Many a times one wishes to manipulate the data in a way that requires information not included explicitly in the data, which is done through interpolation and/or extrapolation. Tidal data are a very perfect example of time series and many statistical techniques have been applied for tidal data analysis and representation. ANN is recent addition to such techniques. In the present paper we describe the time series representation capabilities of a special type of ANN- Radial Basis Function networks and present the results of tidal data representation using RBF. Tidal data analysis & representation is one of the important requirements in marine science for forecasting.

Keywords: ANN, RBF, Tidal Data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
6943 Vector Control Using Series Iron Loss Model of Induction, Motors and Power Loss Minimization

Authors: Kheldoun Aissa, Khodja Djalal Eddine

Abstract:

The iron loss is a source of detuning in vector controlled induction motor drives if the classical rotor vector controller is used for decoupling. In fact, the field orientation will not be satisfied and the output torque will not truck the reference torque mostly used by Loss Model Controllers (LMCs). In addition, this component of loss, among others, may be excessive if the vector controlled induction motor is driving light loads. In this paper, the series iron loss model is used to develop a vector controller immune to iron loss effect and then an LMC to minimize the total power loss using the torque generated by the speed controller.

Keywords: Field Oriented Controller, Induction Motor, Loss ModelController, Series Iron Loss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2703
6942 A Ground Observation Based Climatology of Winter Fog: Study over the Indo-Gangetic Plains, India

Authors: Sanjay Kumar Srivastava, Anu Rani Sharma, Kamna Sachdeva

Abstract:

Every year, fog formation over the Indo-Gangetic Plains (IGPs) of Indian region during the winter months of December and January is believed to create numerous hazards, inconvenience, and economic loss to the inhabitants of this densely populated region of Indian subcontinent. The aim of the paper is to analyze the spatial and temporal variability of winter fog over IGPs. Long term ground observations of visibility and other meteorological parameters (1971-2010) have been analyzed to understand the formation of fog phenomena and its relevance during the peak winter months of January and December over IGP of India. In order to examine the temporal variability, time series and trend analysis were carried out by using the Mann-Kendall Statistical test. Trend analysis performed by using the Mann-Kendall test, accepts the alternate hypothesis with 95% confidence level indicating that there exists a trend. Kendall tau’s statistics showed that there exists a positive correlation between time series and fog frequency. Further, the Theil and Sen’s median slope estimate showed that the magnitude of trend is positive. Magnitude is higher during January compared to December for the entire IGP except in December when it is high over the western IGP. Decade wise time series analysis revealed that there has been continuous increase in fog days. The net overall increase of 99 % was observed over IGP in last four decades. Diurnal variability and average daily persistence were computed by using descriptive statistical techniques. Geo-statistical analysis of fog was carried out to understand the spatial variability of fog. Geo-statistical analysis of fog revealed that IGP is a high fog prone zone with fog occurrence frequency of more than 66% days during the study period. Diurnal variability indicates the peak occurrence of fog is between 06:00 and 10:00 local time and average daily fog persistence extends to 5 to 7 hours during the peak winter season. The results would offer a new perspective to take proactive measures in reducing the irreparable damage that could be caused due to changing trends of fog.

Keywords: Fog, climatology, Mann-Kendall test, trend analysis, spatial variability, temporal variability, visibility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
6941 Approximated Solutions of Two-Point Nonlinear Boundary Problem by a Combination of Taylor Series Expansion and Newton Raphson Method

Authors: Chinwendu. B. Eleje, Udechukwu P. Egbuhuzor

Abstract:

One of the difficulties encountered in solving nonlinear Boundary Value Problems (BVP) by many researchers is finding approximated solutions with minimum deviations from the exact solutions without so much rigor and complications. In this paper, we propose an approach to solve a two point BVP which involves a combination of Taylor series expansion method and Newton Raphson method. Furthermore, the fourth and sixth order approximated solutions are obtained and we compare their relative error and rate of convergence to the exact solution. Finally, some numerical simulations are presented to show the behavior of the solution and its derivatives.

Keywords: Newton Raphson method, non-linear boundary value problem, Taylor series approximation, Michaelis-Menten equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 328
6940 A Quantitative Study of the Evolution of Open Source Software Communities

Authors: M. R. Martinez-Torres, S. L. Toral, M. Olmedilla

Abstract:

Typically, virtual communities exhibit the well-known phenomenon of participation inequality, which means that only a small percentage of users is responsible of the majority of contributions. However, the sustainability of the community requires that the group of active users must be continuously nurtured with new users that gain expertise through a participation process. This paper analyzes the time evolution of Open Source Software (OSS) communities, considering users that join/abandon the community over time and several topological properties of the network when modeled as a social network. More specifically, the paper analyzes the role of those users rejoining the community and their influence in the global characteristics of the network.

Keywords: Open source communities, social network analysis, time series, virtual communities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
6939 Measurement of I-V Characteristics of a PtSi/p-Si Schottky Barrier Diode at low Temperatures

Authors: Somayeh Gholami, Meysam Khakbaz

Abstract:

The current-voltage characteristics of a PtSi/p-Si Schottky barrier diode was measured at the temperature of 85 K and from the forward bias region of the I-V curve, the electrical parameters of the diode were measured by three methods. The results obtained from the two methods which considered the series resistance were in close agreement with each other and from them barrier height (), ideality factor (n) and series resistance () were found to be 0.2045 eV, 2.877 and 14.556 K respectively. By measuring the I-V characteristics in the temperature range of 85-136 K the electrical parameters were observed to have strong dependency on temperature. The increase of barrier height and decrease of ideality factor with increasing temperature is attributed to the existence of barrier height inhomogeneities in the silicide-semiconductor structure.

Keywords: Schottky diode, barrier height, series resistance, I-V, barrier height inhomogeneities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8386
6938 Investigation of SSR Characteristics of SSSC With GA Based Voltage Controller

Authors: R. Thirumalaivasan, M.Janaki, Nagesh Prabhu

Abstract:

In this paper, investigation of subsynchronous resonance (SSR) characteristics of a hybrid series compensated system and the design of voltage controller for three level 24-pulse Voltage Source Converter based Static Synchronous Series Compensator (SSSC) is presented. Hybrid compensation consists of series fixed capacitor and SSSC which is a active series FACTS controller. The design of voltage controller for SSSC is based on damping torque analysis, and Genetic Algorithm (GA) is adopted for tuning the controller parameters. The SSR Characteristics of SSSC with constant reactive voltage control modes has been investigated. The results show that the constant reactive voltage control of SSSC has the effect of reducing the electrical resonance frequency, which detunes the SSR.The analysis of SSR with SSSC is carried out based on frequency domain method, eigenvalue analysis and transient simulation. While the eigenvalue and damping torque analysis are based on D-Q model of SSSC, the transient simulation considers both D-Q and detailed three phase nonlinear system model using switching functions.

Keywords: FACTS, SSR, SSSC, damping torque, GA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
6937 Solar Radiation Time Series Prediction

Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs

Abstract:

A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled direct normal irradiance field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.

Keywords: Artificial Neural Networks, Resilient Propagation, Solar Radiation, Time Series Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2763
6936 Prediction on Housing Price Based on Deep Learning

Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang

Abstract:

In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.

Keywords: Deep learning, convolutional neural network, LSTM, housing prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4990
6935 Estimation of Time -Varying Linear Regression with Unknown Time -Volatility via Continuous Generalization of the Akaike Information Criterion

Authors: Elena Ezhova, Vadim Mottl, Olga Krasotkina

Abstract:

The problem of estimating time-varying regression is inevitably concerned with the necessity to choose the appropriate level of model volatility - ranging from the full stationarity of instant regression models to their absolute independence of each other. In the stationary case the number of regression coefficients to be estimated equals that of regressors, whereas the absence of any smoothness assumptions augments the dimension of the unknown vector by the factor of the time-series length. The Akaike Information Criterion is a commonly adopted means of adjusting a model to the given data set within a succession of nested parametric model classes, but its crucial restriction is that the classes are rigidly defined by the growing integer-valued dimension of the unknown vector. To make the Kullback information maximization principle underlying the classical AIC applicable to the problem of time-varying regression estimation, we extend it onto a wider class of data models in which the dimension of the parameter is fixed, but the freedom of its values is softly constrained by a family of continuously nested a priori probability distributions.

Keywords: Time varying regression, time-volatility of regression coefficients, Akaike Information Criterion (AIC), Kullback information maximization principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
6934 Modelling Silica Optical Fibre Reliability: A Software Application

Authors: I. Severin, M. Caramihai, R. El Abdi, M. Poulain, A. Avadanii

Abstract:

In order to assess optical fiber reliability in different environmental and stress conditions series of testing are performed simulating overlapping of chemical and mechanical controlled varying factors. Each series of testing may be compared using statistical processing: i.e. Weibull plots. Due to the numerous data to treat, a software application has appeared useful to interpret selected series of experiments in function of envisaged factors. The current paper presents a software application used in the storage, modelling and interpretation of experimental data gathered from optical fibre testing. The present paper strictly deals with the software part of the project (regarding the modelling, storage and processing of user supplied data).

Keywords: Optical fibres, computer aided analysis, data models, data processing, graphical user interfaces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823