
 

 

 
Abstract—One of the difficulties encountered in solving 

nonlinear Boundary Value Problems (BVP) by many researchers is 
finding approximated solutions with minimum deviations from the 
exact solutions without so much rigor and complications. In this 
paper, we propose an approach to solve a two point BVP which 
involves a combination of Taylor series expansion method and 
Newton Raphson method. Furthermore, the fourth and sixth order 
approximated solutions are obtained and we compare their relative 
error and rate of convergence to the exact solution. Finally, some 
numerical simulations are presented to show the behavior of the 
solution and its derivatives. 

 
Keywords—Newton Raphson method, non-linear boundary value 

problem, Taylor series approximation, Michaelis-Menten equation. 

I. INTRODUCTION 

HE importance of enzymes in the management of life 
processes cannot be over emphasized. These enzymes are 

specific proteins stimulated by chemical reactions [1]. Based 
on some available data, enzymes can be used in diagnosing 
pathological disorders, drugs workability and disease 
treatment [2], [3]. These enzymatic reactions are seen to be 
very useful in the management of life processes and one of the 
equations arising from enzymatic reactions is a two point BVP 
known as the Michaelis-Menten equation. This Michaelis-
Menten equation is a nonlinear linear differential equation and 
one of the most useful enzymatic kinetics models arising from 
the field of biochemistry and other related fields [4], [5]. This 
model is somehow difficult to solve for its exact solution due 
to its nonlinear nature. Hence, there is need to find a suitable 
numerical approach to solve this problem.  

A lot of models derived in real life situations from different 
fields of mathematics and other related areas such engineering, 
biology, biochemistry, physics, biotechnology and even 
biomathematics often degenerate into linear or nonlinear 
differential equations. These equations may either be Ordinary 
Differential Equations (ODEs) or Partial Differential 
Equations (PDEs). The solutions of most linear ODEs and 
PDEs can be obtained by direct integration, separation of 
variable methods, Laplace transformation method, Fourier 
transformation method etc. [6]-[8]. However, most nonlinear 
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differential equations be it ODEs or PDEs are not that easy to 
solve for their exact solutions. Hence, many researchers have 
developed different methods of solutions including analytical 
and numerical methods [9]-[19]. The numerical methods are 
used to obtain approximated solutions to any given problem. 
As often observed, most of these models are very difficult to 
solve for their exact solutions hence this has necessitated the 
use of approximated technique to obtain approximated 
solutions. Some of these methods include Adomian 
decomposition method [9], [10], differential transformation 
method [11], [12], the Taylor series approximation method 
[13], Fourier spectral method [14], Gamma function method 
[15], perturbation method [16], He frequency formulation and 
the dimensional method [17]-[19], homotopy perturbation 
method [20]-[26], the ancient Chinese algorithm [27] etc. 
These methods have been applied by many researchers in the 
field of medicine, biochemistry, pharmacy and biotechnology 
to solve enzymatic kinetics problems [28]. Specifically, the 
Michaelis-Menten equation has been solved for its 
approximated solutions using homotopy perturbation method 
[29], [30], Fourier spectral method [14], Ying Buzu algorithm 
[27], [31], [32] etc.  

Also, another numerical method of solution used in solving 
differential equation is the Newton Raphson method. The 
method has been used by some researchers in [33]-[38]. 
Lately, the authors in [39] used a combination of Taylor series 
approximation and Ying Buzu algorithm to solve a two-point 
BVP for its fourth and sixth order solution. In this paper, we 
solve the Michaelis-Menten equation in [39] with modified 
boundary conditions using a combination of Taylor series 
approximation and Newton Raphson method to obtain the 
fourth and sixth order approximated solutions and compare the 
solution with [39] in terms of error and rate of convergence. 

II. KINETIC MODEL 

In this section, we introduce the kinematic model similar to 
the one in [1] and [39]. The following nonlinear BVP signify 
the law of mass action of oxygen: 

 

൝
𝓎ᇱᇱሺ𝑥ሻ ൌ 𝓂𝓎ሺ௫ሻ

ଵା𝓃𝓎ሺ௫ሻ
,

𝓎ሺ0ሻ ൌ 𝓂𝒸, 𝓎ሺ1ሻ ൌ 1 ൅ 𝒸, 𝓎ᇱሺ0ሻ ൌ 0
   (1) 

 
where 𝑥 is the dimension, 𝓂 is the reaction diffusion 
parameter, 𝓎 is the oxygen concentration and 𝓃 the saturation 
parameter. Furthermore, we can rewrite (1) as: 
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ௗమ𝓎

ௗ௫మ ൅ ℳሺ𝓎ሻ ൌ 0,    (2) 

 
𝓎ᇱሺ𝒶ሻ ൌ 𝛼,     (3) 

 
𝓎ሺ𝒷ሻ ൌ 𝛽,     (4) 

 
where 𝓎 is a function of 𝑥, 𝓎ᇱሺ𝒶ሻ ൌ 𝛼, 𝓎ሺ𝒷ሻ ൌ 𝛽 are the 
boundary conditions. 

III. METHODOLOGY  

A. The Newton Raphson Method  

In this section, we discuss the Newton Raphson method. 
The method has been used by some researchers in [33]-[38] to 
solve some differential equations.  

The Newton-Raphson method is a powerful tool for finding 
the root of an algebraic equation. It is an iterative method that 
uses initial values for the unknowns and then at each iteration, 
updates these values until no change occurs in two consecutive 
iterations. The Newton-Raphson formula is derived as 
follows: Let 𝑐଴ be an approximate value of a root of the 
equation 𝓎ሺ𝑐ሻ ൌ 0. Let 𝑐 be the exact root nearer to 𝑐଴. Then 

 
 𝑐 ൌ 𝑐଴ ൅  ℎ        (5) 

 
where ℎ is very small, positive or negative.  
 

∴ 𝓎ሺ𝑐ሻ ൌ 𝓎ሺ𝑐଴ ൅  ℎሻ ൌ 0 
 
since 𝑐 is the exact root of 𝓎ሺ𝑐ሻ ൌ 0. By Taylor expansion,  

 

𝓎ሺ𝑐ሻ ൌ 𝓎ሺ𝑐଴ ൅  ℎሻ ൌ ൭
𝓎ሺ𝑐଴ሻ ൅ ℎ𝓎ˈሺ𝑐଴ሻ

൅ ௛మ

ଶ!
𝓎̎ሺ𝑐଴ሻ ൅ ⋯ 

൱ ൌ 0    (6) 

 
Since ℎ is small, ℎଶ, ℎଷ, … etc., are smaller. So, by 

neglecting terms with ℎଶ, ℎଷ, …etc., we have  
 

𝓎ሺ𝑐଴ሻ ൅ ℎ𝓎ˈሺ𝑐଴ሻ ൌ 0         (7) 
 

Solving for ℎ in (7), we have 
 

ℎ ൌ െ
𝓎ሺ௖బሻ

𝓎ˈሺ௖బሻ
         (8)  

 

Substituting (7) in (5), we have 𝑐 ൌ 𝑐଴ െ
𝓎ሺ௖బሻ

𝓎ˈሺ௖బሻ
. In general, 

 

 𝑐௡ାଵ ൌ 𝑐௡ െ 𝓎ሺ௖೙ሻ

𝓎ˈሺ௖೙ሻ
             (9) 

 
for 𝑛 ൌ 0, 1, 2,3 …, is the Newton-Raphson formula. 

The condition for the validity of this formula and method is 
that 𝓎ሺ𝑐௡ሻ ് 0 and the condition for the convergence of the 
Newton-Raphson method is;  

 
|𝑣ሺ𝑥ሻ𝑣 ̍ሺ𝑥ሻ| ൏ |𝑣 ̎ሺ𝑥ሻ|ଶ       

B. The Taylor Series Approximation Method  

The Taylor series approximation for a second order 

nonlinear differential equation of the type similar to the one in 
[13], [27], is illustrated as follows: We consider the nonlinear 
BVP in (2)-(4) and if  

 
𝓎ሺ𝑐ሻ ൌ 𝛼,    (10) 

 
the infinite Taylor series expansion can be used to express the 
exact solution of (1). 

From [13], [27], the Taylor series expansion for 𝑘௧௛ order 
derivative is given as 

 

⎩
⎪
⎨

⎪
⎧

𝓎ሺ𝑥ሻ ൌ 𝓎ሺ𝑐ሻ ൅ 𝓎ᇱሺ𝑐ሻሺ𝑥 െ 𝑐ሻ

൅ ଵ

ଶ!
𝓎ᇱᇱሺ𝑐ሻሺ𝑥 െ 𝑐ሻଶ ൅ ଵ

ଷ!
𝓎ᇱᇱᇱሺ𝑐ሻሺ𝑥 െ 𝑐ሻଷ

൅ ⋯ ൅
ଵ

ሺ௞ିଵሻ!
𝓎ሺ௞ିଵሻሺ𝑐ሻሺ𝑥 െ 𝑐ሻ௞ିଵ

൅
ଵ

௞!
𝓎௞ሺ𝑐ሻሺ𝑥 െ 𝑐ሻ௞

, (11) 

 
where 

ቊ
𝓎ሺ𝑐ሻ ൌ 𝛼, 𝓎ᇱሺ𝑐ሻ ൌ 𝒶, 𝓎ᇱᇱሺ𝑐ሻ ൌ െ𝐾ሺ𝛼ሻ,

𝓎ᇱᇱᇱሺ𝑐ሻ ൌ െ𝒶 డ௄ሺఈሻ

డ௩

  

IV. MAIN RESULT 

In this section, we will consider a typical kinetic model in 
(1) similar to [39], where 𝓂 ൌ 2, 𝓃 ൌ 1. The equation is 
given by (12): 

 

𝓎ᇱᇱሺ𝑥ሻ ൌ ଶ𝓎ሺ௫ሻ

ଵା𝓎ሺ௫ሻ
,   (12) 

 
with boundary conditions of as  

 
𝓎ሺ0ሻ ൌ 2𝒸, 𝓎ሺ1ሻ ൌ 1 ൅ 𝒸, 𝓎ᇱሺ0ሻ ൌ 0 . (13) 

 
From (12) and (13),  

 

𝓎ᇱᇱሺ0ሻ ൌ ସ𝒸

ଵାଶ𝒸
 ,   (14) 

 
𝓎ᇱᇱᇱሺ0ሻ ൌ 0 ,   (15) 

 

𝓎ᇱ௩ሺ0ሻ ൌ
଼𝒸

ሺଵାଶ𝒸ሻయ ,  (16) 

 
𝓎௩ሺ0ሻ ൌ 0 ,   (17) 

 

𝓎௩ᇱሺ0ሻ ൌ ଵ଺𝒸ሺଵିଵଶ𝒸ሻ

ሺଵାଶ𝒸ሻఱ  .  (18) 

A. The Fourth Order Solution  

From (11), the fourth order Taylor series is given by 
 

𝓎ሺ𝑥ሻ ൌ 𝓎ሺ0ሻ ൅ 𝓎ᇱሺ0ሻ𝑥 ൅ ଵ

ଶ!
𝓎ᇱᇱሺ0ሻ𝑥ଶ ൅ ଵ

ଷ!
𝓎ᇱᇱᇱሺ0ሻ𝑥ଷ ൅ ଵ

ସ!
𝓎ᇱ௩ሺ0ሻ𝑥ସ . 

    (19) 
 

Substituting (13)-(16) into (19), we will have 
 

𝓎ሺ𝑥ሻ ൌ 2𝒸 ൅
ଶ𝒸

ଵାଶ𝒸
𝑥ଶ ൅

𝒸

ଷሺଵାଶ𝒸ሻయ 𝑥ସ .  (20) 
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Substituting 𝓎ሺ1ሻ ൌ 1 ൅ 𝒸 into (20), we have 𝓎ሺ𝒸ሻ ൌ 𝒸 ൅
ଶ𝒸

ଵାଶ𝒸
൅ 𝒸

ଷሺଵାଶ𝒸ሻయ െ 1. Applying the Newton Raphson formula 

(9), we have 𝑐௡ାଵ ൌ 𝑐௡ െ 𝓎ሺ௖೙ሻ

𝓎ˈሺ௖೙ሻ
  where  

 

𝓎ሺ𝑐௡ሻ ൌ 𝑐௡ ൅ ଶ௖೙

ଵାଶ௖೙
൅ ௖೙

ଷሺଵାଶ௖೙ሻయ െ 1 . 

𝓎ᇱሺ𝑐ሻ ൌ 1 ൅
ଶ

ሺଵାଶ௖೙ሻమ ൅
ଵିସ௖೙

ଷሺଵାଶ௖೙ሻర  

 
If we assume our initial guess to be 𝑐଴ ൌ 0.5 
 

𝓎ሺ𝑐଴ሻ ൌ 0.02083, 𝓎ᇱሺ𝑐଴ሻ ൌ 1.47917  

𝑐ଵ ൌ 𝑐଴ െ
𝓎ሺ௖బሻ

𝓎ˈሺ௖బሻ
ൌ 0.5 െ

଴.଴ଶ଴଼ଷ 

ଵ.ସ଻ଽଵ଻
ൌ 0.48592  

𝛽ଵ ൌ 𝓎ሺ1, 𝑐ଵሻ ൌ 2𝑐ଵ ൅ ଶ௖భ

ଵାଶ௖భ
൅ ௖భ

ଷሺଵାଶ௖భሻయ ൌ 1.48583 . 

 
Next, we repeat the iteration till 𝑐௡ ൌ 𝑐௡ାଵ, since 𝑐ଵ ൌ

0.48592, 
 

𝓎ሺ𝑐ଵሻ ൌ െ0.000093996, 𝓎ᇱሺ𝑐ଵሻ ൌ 1.49358  

𝑐ଶ ൌ 𝑐ଵ െ 𝓎ሺ௖భሻ

𝓎ˈሺ௖భሻ
ൌ 0.48592 ൅ ଴.଴଴଴଴ଽଷଽଽ଺ 

ଵ.ସଽଷହ଼
ൌ 0.48598  

𝛽ଶ ൌ 𝓎ሺ1, 𝑐ଶሻ ൌ 2𝑐ଶ ൅ ଶ௖మ

ଵାଶ௖మ
൅ ௖మ

ଷሺଵାଶ௖మሻయ ൌ 1.48598 .  

 
Next, we repeat the iteration till 𝑐௡ ൌ 𝑐௡ାଵ, since 𝑐ଶ ൌ

0.48598, 
 

𝓎ሺ𝑐ଵሻ ൌ െ0.0000043834, 𝓎ᇱሺ𝑐ଵሻ ൌ 1.49351  

𝑐ଷ ൌ 𝑐ଶ െ
𝓎ሺ௖మሻ

𝓎ˈሺ௖మሻ
ൌ 0.48598 ൅

଴.଴଴଴଴଴ସଷ଼ଷସ 

ଵ.ସଽଷହଵ
ൌ 0.48598  

𝛽ଷ ൌ 𝓎ሺ1, 𝑐ଷሻ ൌ 2𝑐ଷ ൅ ଶ௖య

ଵାଶ௖య
൅ ௖య

ଷሺଵାଶ௖యሻయ ൌ 1.48598 . 

 
Since 𝑐ଶ ൌ 𝑐ଷ, we stop the iteration and we observed that 

the relative error is approximately zero. Hence, we obtain the 
fourth order approximated solution by substituting 𝑐ଷ ൌ
0.48598 into (20) as follows 

 
𝓎ሺ𝑥ሻ ൌ 0.97196 ൅ 0.49289𝑥ଶ ൅ 0.02113𝑥ସ . (21) 

 

 

Fig. 1 The Fourth order solution 
 

 

Fig. 2 The Fourth order solution with different initial guesses 

B. The Sixth Order Solution  

From (11), the fourth order Taylor series is given by 
 

𝓎ሺ𝑥ሻ ൌ 𝓎ሺ0ሻ ൅ 𝓎ᇱሺ0ሻ𝑥 ൅
ଵ

ଶ!
𝓎ᇱᇱሺ0ሻ𝑥ଶ ൅

ଵ

ଷ!
𝓎ᇱᇱᇱሺ0ሻ𝑥ଷ ൅

ଵ

ସ!
𝓎ᇱ௩ሺ0ሻ𝑥ସ ൅

ଵ

ହ!
𝓎௩ሺ0ሻ𝑥ହ ൅

ଵ

଺!
𝓎௩ᇱሺ0ሻ𝑥଺  .  (22) 

 
Substituting (13)-(18) into (22), we will have 
 

𝓎ሺ𝑥ሻ ൌ 2𝒸 ൅ ଶ𝒸

ଵାଶ𝒸
𝑥ଶ ൅ 𝒸

ଷሺଵାଶ𝒸ሻయ 𝑥ସ ൅ 𝒸ሺଵିଵଶ𝒸ሻ

ସହሺଵାଶ𝒸ሻఱ 𝑥଺ . (23) 

 
Substituting 𝓎ሺ1ሻ ൌ 1 ൅ 𝒸 into (23), we have 𝓎ሺ𝒸ሻ ൌ 𝒸 ൅

ଶ𝒸

ଵାଶ𝒸
൅

𝒸

ଷሺଵାଶ𝒸ሻయ ൅
𝒸ሺଵିଵଶ𝒸ሻ

ସହሺଵାଶ𝒸ሻఱ െ 1. Applying the Newton Raphson 

formula (9), we have 𝑐௡ାଵ ൌ 𝑐௡ െ
𝓎ሺ௖೙ሻ

𝓎ˈሺ௖೙ሻ
 where 

 

𝓎ሺ𝑐௡ሻ ൌ 𝑐௡ ൅ ଶ௖೙

ଵାଶ௖೙
൅ ௖೙

ଷሺଵାଶ௖೙ሻయ ൅ ௖೙ሺଵିଵଶ௖೙ሻ

ସହሺଵାଶ௖೙ሻఱ െ 1 .  

𝓎ᇱሺ𝑐ሻ ൌ 1 ൅ ଶ

ሺଵାଶ௖೙ሻమ ൅ ଵିସ௖೙

ଷሺଵାଶ௖೙ሻర ൅ ସ଼௖೙
మିଷ଴௖೙ାଵ

ସହሺଵାଶ௖೙ሻల   

 
If we assume our initial guess to be 𝑐଴ ൌ 0.5 
 

𝓎ሺ𝑐଴ሻ ൌ 0.0191, 𝓎ᇱሺ𝑐଴ሻ ൌ 1.47847  

𝑐ଵ ൌ 𝑐଴ െ 𝓎ሺ௖బሻ

𝓎ˈሺ௖బሻ
ൌ 0.5 െ ଴.଴ଵଽଵ 

ଵ.ସ଻଼ସ଻
ൌ 0.48708  

𝛽ଵ ൌ 2𝑐ଵ ൅ ଶ௖భ

ଵାଶ௖భ
൅ ௖భ

ଷሺଵାଶ௖భሻయ ൅ ௖೙ሺଵିଵଶ௖೙ሻ

ସହሺଵାଶ௖೙ሻఱ ൌ 1.48697 . 

 
Next we repeat the iteration till 𝑐௡ ൌ 𝑐௡ାଵ since 𝑐ଵ ൌ

0.48708, 
 

𝓎ሺ𝑐ଵሻ ൌ െ0.00011105, 𝓎ᇱሺ𝑐ଵሻ ൌ 1.49153  

𝑐ଶ ൌ 𝑐ଵ െ
𝓎ሺ௖భሻ

𝓎ˈሺ௖భሻ
ൌ 0.48708 ൅

଴.଴଴଴ଵଵଵ଴ହ 

ଵ.ସଽଵହଷ
ൌ 0.48714  

𝛽ଶ ൌ 2𝑐ଶ ൅
ଶ௖మ

ଵାଶ௖మ
൅

௖మ

ଷሺଵାଶ௖మሻయ ൅
௖೙ሺଵିଵଶ௖೙ሻ

ସହሺଵାଶ௖೙ሻఱ ൌ 1.48714 . 

 
Since 𝑐ଶ ൌ 0.48714, 
 

𝓎ሺ𝑐ଵሻ ൌ െ0.00001, 𝓎ᇱሺ𝑐ଵሻ ൌ 1.49146  

𝑐ଷ ൌ 𝑐ଶ െ
𝓎ሺ௖మሻ

𝓎ˈሺ௖మሻ
ൌ 0.48714 ൅

଴.଴଴଴଴ଵ 

ଵ.ସଽଵସ଺
ൌ 0.48714  
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𝛽ଷ ൌ 𝓎ሺ1, 𝑐ଷሻ ൌ 2𝑐ଷ ൅
ଶ௖య

ଵାଶ௖య
൅

௖య

ଷሺଵାଶ௖యሻయ ൌ 1.48714. 

 
Since 𝑐ଶ ൌ 𝑐ଷ, we stop the iteration and we observed that 

the relative error is approximately zero. Hence, we obtain the 
sixth order approximated solution by substituting 𝑐ଷ ൌ
0.48714 into (23) as follows 

 
𝓎ሺ𝑥ሻ ൌ 0.97428 ൅ 0.49349𝑥ଶ ൅ 0.02110𝑥ସ െ 0.0017488 

(24) 
 

 

Fig. 3 The Sixth order solution 
 

 

Fig. 4 The Sixth order solution with different initial guesses 

V. DISCUSSION AND CONCLUSION 

Fig. 1 shows the solution of the solution of the two-point 
BVP in (12) and the derivative of the solution. We observed 
that the solution was a curve while that of its derivative was a 
straight line. The graph also shows that the numerical solution 
satisfies the boundary conditions. We also observed that the 
fourth order solution obtained by the combination of Taylor 
series approximation and Newton Raphson method was 
similar to that obtained in [39] for the sixth order Ying Buzu 
Shu algorithm.  

 

Fig. 5 Convergence of the fourth and sixth order solutions 
 
Fig. 5 presents a comparison of the approximate solutions 

for the fourth and sixth order solution. It is observed that the 
fourth and sixth order approximate solutions converge very 
closely to the boundary conditions. Also, Figs. 2 and 4 show 
plots of the fourth and sixth order solution of the two-point 
BVP in (12) with different initial guesses. We observed that 
both 𝑐ଵ and 𝑐ଶ converge very closely to the exact solution.  

In summary, the results obtained were very close to the 
results obtained in [39], secondly, the rate of convergence to 
solution is faster compared to Ying Buzu Shu algorithm with a 
small relative error. In conclusion, the combination of Taylor 
series approximation with Newton Raphson and a combination 
of Taylor with Ying Buzu Shu algorithm is more efficient than 
using Taylor series approximation only which is consistent 
with [27], [39]. Therefore, we conclude that solutions obtained 
with a combination of Taylor series with Newton Rapson 
method are more accurate than that of Taylor series 
approximation method solutions and the process is simple and 
straight forward. 
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