Search results for: Lyapunov
60 Half-Circle Fuzzy Number Threshold Determination via Swarm Intelligence Method
Authors: P.-W. Tsai, J.-W. Chen, C.-W. Chen, C.-Y. Chen
Abstract:
In recent years, many researchers are involved in the field of fuzzy theory. However, there are still a lot of issues to be resolved. Especially on topics related to controller design such as the field of robot, artificial intelligence, and nonlinear systems etc. Besides fuzzy theory, algorithms in swarm intelligence are also a popular field for the researchers. In this paper, a concept of utilizing one of the swarm intelligence method, which is called Bacterial-GA Foraging, to find the stabilized common P matrix for the fuzzy controller system is proposed. An example is given in in the paper, as well.
Keywords: Half-circle fuzzy numbers, predictions, swarm intelligence, Lyapunov method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 192159 Stability Criteria for Uncertainty Markovian Jumping Parameters of BAM Neural Networks with Leakage and Discrete Delays
Authors: Qingqing Wang, Baocheng Chen, Shouming Zhong
Abstract:
In this paper, the problem of stability criteria for Markovian jumping BAM neural networks with leakage and discrete delays has been investigated. Some new sufficient condition are derived based on a novel Lyapunov-Krasovskii functional approach. These new criteria based on delay partitioning idea are proved to be less conservative because free-weighting matrices method and a convex optimization approach are considered. Finally, one numerical example is given to illustrate the the usefulness and feasibility of the proposed main results.
Keywords: Stability, Markovian jumping neural networks, Timevarying delays, Linear matrix inequality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 514058 Exponential State Estimation for Neural Networks with Leakage, Discrete and Distributed Delays
Authors: Liyuan Wang, Shouming Zhong
Abstract:
In this paper, the design problem of state estimator for neural networks with the mixed time-varying delays are investigated by constructing appropriate Lyapunov-Krasovskii functionals and using some effective mathematical techniques. In order to derive several conditions to guarantee the estimation error systems to be globally exponential stable, we transform the considered systems into the neural-type time-delay systems. Then with a set of linear inequalities(LMIs), we can obtain the stable criteria. Finally, three numerical examples are given to show the effectiveness and less conservatism of the proposed criterion.
Keywords: State estimator, Neural networks, Globally exponential stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166557 Delay-Dependent Stability Analysis for Neutral Type Neural Networks with Uncertain Parameters and Time-Varying Delay
Authors: Qingqing Wang, Shouming Zhong
Abstract:
In this paper, delay-dependent stability analysis for neutral type neural networks with uncertain paramters and time-varying delay is studied. By constructing new Lyapunov-Krasovskii functional and dividing the delay interval into multiple segments, a novel sufficient condition is established to guarantee the globally asymptotically stability of the considered system. Finally, a numerical example is provided to illustrate the usefulness of the proposed main results.
Keywords: Neutral type neural networks, Time-varying delay, Stability, Linear matrix inequality(LMI).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 181956 Exponential Stability Analysis for Switched Cellular Neural Networks with Time-varying Delays and Impulsive Effects
Authors: Zixin Liu, Fangwei Chen
Abstract:
In this Letter, a class of impulsive switched cellular neural networks with time-varying delays is investigated. At the same time, parametric uncertainties assumed to be norm bounded are considered. By dividing the network state variables into subgroups according to the characters of the neural networks, some sufficient conditions guaranteeing exponential stability for all admissible parametric uncertainties are derived via constructing appropriate Lyapunov functional. One numerical example is provided to illustrate the validity of the main results obtained in this paper.
Keywords: Switched systems, exponential stability, cellular neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 141855 Improved Robust Stability and Stabilization Conditions of Discrete-time Delayed System
Authors: Zixin Liu
Abstract:
The problem of robust stability and robust stabilization for a class of discrete-time uncertain systems with time delay is investigated. Based on Tchebychev inequality, by constructing a new augmented Lyapunov function, some improved sufficient conditions ensuring exponential stability and stabilization are established. These conditions are expressed in the forms of linear matrix inequalities (LMIs), whose feasibility can be easily checked by using Matlab LMI Toolbox. Compared with some previous results derived in the literature, the new obtained criteria have less conservatism. Two numerical examples are provided to demonstrate the improvement and effectiveness of the proposed method.
Keywords: Robust stabilization, robust stability, discrete-time system, time delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153154 Stability Criteria for Neural Networks with Two Additive Time-varying Delay Components
Authors: Qingqing Wang, Shouming Zhong
Abstract:
This paper is concerned with the stability problem with two additive time-varying delay components. By choosing one augmented Lyapunov-Krasovskii functional, using some new zero equalities, and combining linear matrix inequalities (LMI) techniques, two new sufficient criteria ensuring the global stability asymptotic stability of DNNs is obtained. These stability criteria are present in terms of linear matrix inequalities and can be easily checked. Finally, some examples are showed to demonstrate the effectiveness and less conservatism of the proposed method.
Keywords: Neural networks, Globally asymptotic stability, LMI approach, Additive time-varying delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156653 Bifurcation and Chaos of the Memristor Circuit
Authors: Wang Zhulin, Min Fuhong, Peng Guangya, Wang Yaoda, Cao Yi
Abstract:
In this paper, a magnetron memristor model based on hyperbolic sine function is presented and the correctness proved by studying the trajectory of its voltage and current phase, and then a memristor chaotic system with the memristor model is presented. The phase trajectories and the bifurcation diagrams and Lyapunov exponent spectrum of the magnetron memristor system are plotted by numerical simulation, and the chaotic evolution with changing the parameters of the system is also given. The paper includes numerical simulations and mathematical model, which confirming that the system, has a wealth of dynamic behavior.
Keywords: Memristor, chaotic circuit, dynamical behavior, chaotic system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 179852 Analysis of Periodic Solution of Delay Fuzzy BAM Neural Networks
Authors: Qianhong Zhang, Lihui Yang, Daixi Liao
Abstract:
In this paper, by employing a new Lyapunov functional and an elementary inequality analysis technique, some sufficient conditions are derived to ensure the existence and uniqueness of periodic oscillatory solution for fuzzy bi-directional memory (BAM) neural networks with time-varying delays, and all other solutions of the fuzzy BAM neural networks converge the uniqueness periodic solution. These criteria are presented in terms of system parameters and have important leading significance in the design and applications of neural networks. Moreover an example is given to illustrate the effectiveness and feasible of results obtained.Keywords: Fuzzy BAM neural networks, Periodic solution, Global exponential stability, Time-varying delays
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 151551 Delay-range-Dependent Exponential Synchronization of Lur-e Systems with Markovian Switching
Authors: Xia Zhou, Shouming Zhong
Abstract:
The problem of delay-range-dependent exponential synchronization is investigated for Lur-e master-slave systems with delay feedback control and Markovian switching. Using Lyapunov- Krasovskii functional and nonsingular M-matrix method, novel delayrange- dependent exponential synchronization in mean square criterions are established. The systems discussed in this paper is advanced system, and takes all the features of interval systems, Itˆo equations, Markovian switching, time-varying delay, as well as the environmental noise, into account. Finally, an example is given to show the validity of the main result.
Keywords: Synchronization, delay-range-dependent, Markov chain, generalized Itō's formula, brownian motion, M-matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156850 New Approaches on Stability Analysis for Neural Networks with Time-Varying Delay
Authors: Qingqing Wang, Shouming Zhong
Abstract:
Utilizing the Lyapunov functional method and combining linear matrix inequality (LMI) techniques and integral inequality approach (IIA) to analyze the global asymptotic stability for delayed neural networks (DNNs),a new sufficient criterion ensuring the global stability of DNNs is obtained.The criteria are formulated in terms of a set of linear matrix inequalities,which can be checked efficiently by use of some standard numercial packages.In order to show the stability condition in this paper gives much less conservative results than those in the literature,numerical examples are considered.
Keywords: Neural networks, Globally asymptotic stability , LMI approach , IIA approach , Time-varying delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193949 Anti-periodic Solutions for Cohen-Grossberg Shunting Inhibitory Neural Networks with Delays
Authors: Yongkun Li, Tianwei Zhang, Shufa Bai
Abstract:
By using the method of coincidence degree theory and constructing suitable Lyapunov functional, several sufficient conditions are established for the existence and global exponential stability of anti-periodic solutions for Cohen-Grossberg shunting inhibitory neural networks with delays. An example is given to illustrate our feasible results.
Keywords: Anti-periodic solution, coincidence degree, global exponential stability, Cohen-Grossberg shunting inhibitory cellular neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150448 Robust Nonlinear Control of a Miniature Autonomous Helicopter using Sliding Mode Control Structure
Authors: H. Ifassiouen, M. Guisser, H.Medromi
Abstract:
This paper presents an investigation into the design of a flight control system, using a robust sliding mode control structure, designed using the exact feedback linearization procedure of the dynamic of a small-size autonomous helicopter in hover. The robustness of the controller in the context of stabilization and trajectory tracking with respect to small body forces and air resistance on the main and tail rotor, is analytically proved using Lyapunov approach. Some simulation results are presented to illustrate the performance and robustness of such controller in the presence of small body forces and air resistance.
Keywords: Robust control, sliding mode, stability, Lyapunovapproach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 180347 PTH Moment Exponential Stability of Stochastic Recurrent Neural Networks with Distributed Delays
Authors: Zixin Liu, Jianjun Jiao Wanping Bai
Abstract:
In this paper, the issue of pth moment exponential stability of stochastic recurrent neural network with distributed time delays is investigated. By using the method of variation parameters, inequality techniques, and stochastic analysis, some sufficient conditions ensuring pth moment exponential stability are obtained. The method used in this paper does not resort to any Lyapunov function, and the results derived in this paper generalize some earlier criteria reported in the literature. One numerical example is given to illustrate the main results.
Keywords: Stochastic recurrent neural networks, pth moment exponential stability, distributed time delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 125546 Improved Robust Stability Criteria of a Class of Neutral Lur’e Systems with Interval Time-Varying Delays
Authors: Longqiao Zhou, Zixin Liu, Shu Lü
Abstract:
This paper addresses the robust stability problem of a class of delayed neutral Lur’e systems. Combined with the property of convex function and double integral Jensen inequality, a new tripe integral Lyapunov functional is constructed to derive some new stability criteria. Compared with some related results, the new criteria established in this paper are less conservative. Finally, two numerical examples are presented to illustrate the validity of the main results.
Keywords: Lur’e system, Convex function, Jensen integral inequality, Triple-integral method, Exponential stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 151745 Delay-Dependent Stability Criteria for Linear Time-Delay System of Neutral Type
Authors: Myeongjin Park, Ohmin Kwon, Juhyun Park, Sangmoon Lee
Abstract:
This paper proposes improved delay-dependent stability conditions of the linear time-delay systems of neutral type. The proposed methods employ a suitable Lyapunov-Krasovskii’s functional and a new form of the augmented system. New delay-dependent stability criteria for the systems are established in terms of Linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Numerical examples showed that the proposed method is effective and can provide less conservative results.
Keywords: Neutral systems, Time-delay, Stability, Lyapunovmethod, LMI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188344 Observer Based Control of a Class of Nonlinear Fractional Order Systems using LMI
Authors: Elham Amini Boroujeni, Hamid Reza Momeni
Abstract:
Design of an observer based controller for a class of fractional order systems has been done. Fractional order mathematics is used to express the system and the proposed observer. Fractional order Lyapunov theorem is used to derive the closed-loop asymptotic stability. The gains of the observer and observer based controller are derived systematically using the linear matrix inequality approach. Finally, the simulation results demonstrate validity and effectiveness of the proposed observer based controller.Keywords: Fractional order calculus, Fractional order observer, Linear matrix inequality, Nonlinear Systems, Observer based Controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 288243 Periodic Solutions of Recurrent Neural Networks with Distributed Delays and Impulses on Time Scales
Authors: Yaping Ren, Yongkun Li
Abstract:
In this paper, by using the continuation theorem of coincidence degree theory, M-matrix theory and constructing some suitable Lyapunov functions, some sufficient conditions are obtained for the existence and global exponential stability of periodic solutions of recurrent neural networks with distributed delays and impulses on time scales. Without assuming the boundedness of the activation functions gj, hj , these results are less restrictive than those given in the earlier references.
Keywords: Recurrent neural networks, global exponential stability, periodic solutions, distributed delays, impulses, time scales.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159542 Stability Analysis in a Fractional Order Delayed Predator-Prey Model
Authors: Changjin Xu, Peiluan Li
Abstract:
In this paper, we study the stability of a fractional order delayed predator-prey model. By using the Laplace transform, we introduce a characteristic equation for the above system. It is shown that if all roots of the characteristic equation have negative parts, then the equilibrium of the above fractional order predator-prey system is Lyapunov globally asymptotical stable. An example is given to show the effectiveness of the approach presented in this paper.
Keywords: Fractional predator-prey model, laplace transform, characteristic equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 249841 Delay-Distribution-Dependent Stability Criteria for BAM Neural Networks with Time-Varying Delays
Authors: J.H. Park, S. Lakshmanan, H.Y. Jung, S.M. Lee
Abstract:
This paper is concerned with the delay-distributiondependent stability criteria for bidirectional associative memory (BAM) neural networks with time-varying delays. Based on the Lyapunov-Krasovskii functional and stochastic analysis approach, a delay-probability-distribution-dependent sufficient condition is derived to achieve the globally asymptotically mean square stable of the considered BAM neural networks. The criteria are formulated in terms of a set of linear matrix inequalities (LMIs), which can be checked efficiently by use of some standard numerical packages. Finally, a numerical example and its simulation is given to demonstrate the usefulness and effectiveness of the proposed results.Keywords: BAM neural networks, Probabilistic time-varying delays, Stability criteria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 141840 Sampled-Data Model Predictive Tracking Control for Mobile Robot
Authors: Wookyong Kwon, Sangmoon Lee
Abstract:
In this paper, a sampled-data model predictive tracking control method is presented for mobile robots which is modeled as constrained continuous-time linear parameter varying (LPV) systems. The presented sampled-data predictive controller is designed by linear matrix inequality approach. Based on the input delay approach, a controller design condition is derived by constructing a new Lyapunov function. Finally, a numerical example is given to demonstrate the effectiveness of the presented method.Keywords: Model predictive control, sampled-data control, linear parameter varying systems, LPV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 128139 Sampling Effects on Secondary Voltage Control of Microgrids Based on Network of Multiagent
Authors: M. J. Park, S. H. Lee, C. H. Lee, O. M. Kwon
Abstract:
This paper studies a secondary voltage control framework of the microgrids based on the consensus for a communication network of multiagent. The proposed control is designed by the communication network with one-way links. The communication network is modeled by a directed graph. At this time, the concept of sampling is considered as the communication constraint among each distributed generator in the microgrids. To analyze the sampling effects on the secondary voltage control of the microgrids, by using Lyapunov theory and some mathematical techniques, the sufficient condition for such problem will be established regarding linear matrix inequality (LMI). Finally, some simulation results are given to illustrate the necessity of the consideration of the sampling effects on the secondary voltage control of the microgrids.Keywords: Microgrids, secondary control, multiagent, sampling, LMI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 145138 Robust Adaptive Observer Design for Lipschitz Class of Nonlinear Systems
Authors: M. Pourgholi, V.J.Majd
Abstract:
This paper addresses parameter and state estimation problem in the presence of the perturbation of observer gain bounded input disturbances for the Lipschitz systems that are linear in unknown parameters and nonlinear in states. A new nonlinear adaptive resilient observer is designed, and its stability conditions based on Lyapunov technique are derived. The gain for this observer is derived systematically using linear matrix inequality approach. A numerical example is provided in which the nonlinear terms depend on unmeasured states. The simulation results are presented to show the effectiveness of the proposed method.
Keywords: Adaptive observer, linear matrix inequality, nonlinear systems, nonlinear observer, resilient observer, robust estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 261537 Delay-independent Stabilization of Linear Systems with Multiple Time-delays
Authors: Ping He, Heng-You Lan, Gong-Quan Tan
Abstract:
The multidelays linear control systems described by difference differential equations are often studied in modern control theory. In this paper, the delay-independent stabilization algebraic criteria and the theorem of delay-independent stabilization for linear systems with multiple time-delays are established by using the Lyapunov functional and the Riccati algebra matrix equation in the matrix theory. An illustrative example and the simulation result, show that the approach to linear systems with multiple time-delays is effective.Keywords: Linear system, Delay-independent stabilization, Lyapunovfunctional, Riccati algebra matrix equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176336 Motion Planning and Posture Control of the General 3-Trailer System
Authors: K. Raghuwaiya, B. Sharma, J. Vanualailai
Abstract:
This paper presents a set of artificial potential field functions that improves upon, in general, the motion planning and posture control, with theoretically guaranteed point and posture stabilities, convergence and collision avoidance properties of the general3-trailer system in a priori known environment. We basically design and inject two new concepts; ghost walls and the distance optimization technique (DOT) to strengthen point and posture stabilities, in the sense of Lyapunov, of our dynamical model. This new combination of techniques emerges as a convenient mechanism for obtaining feasible orientations at the target positions with an overall reduction in the complexity of the navigation laws. Simulations are provided to demonstrate the effectiveness of the controls laws.
Keywords: Artificial potential fields, 3-trailer systems, motion planning, posture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 215135 Adaptive Integral Backstepping Motion Control for Inverted Pendulum
Authors: Ö. Tolga Altınöz
Abstract:
The adaptive backstepping controller for inverted pendulum is designed by using the general motion control model. Backstepping is a novel nonlinear control technique based on the Lyapunov design approach, used when higher derivatives of parameter estimation appear. For easy parameter adaptation, the mathematical model of the inverted pendulum converted into the motion control model. This conversion is performed by taking functions of unknown parameters and dynamics of the system. By using motion control model equations, inverted pendulum is simulated without any information about not only parameters but also measurable dynamics. Also these results are compare with the adaptive backstepping controller which extended with integral action that given from [1].
Keywords: Adaptive backstepping, inverted pendulum, nonlinear adaptive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 349234 Adaptive Impedance Control for Unknown Non-Flat Environment
Authors: Norsinnira Zainul Azlan, Hiroshi Yamaura
Abstract:
This paper presents a new adaptive impedance control strategy, based on Function Approximation Technique (FAT) to compensate for unknown non-flat environment shape or time-varying environment location. The target impedance in the force controllable direction is modified by incorporating adaptive compensators and the uncertainties are represented by FAT, allowing the update law to be derived easily. The force error feedback is utilized in the estimation and the accurate knowledge of the environment parameters are not required by the algorithm. It is shown mathematically that the stability of the controller is guaranteed based on Lyapunov theory. Simulation results presented to demonstrate the validity of the proposed controller.Keywords: Adaptive impedance control, Function Approximation Technique (FAT), impedance control, unknown environment position.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158233 Applying Half-Circle Fuzzy Numbers to Control System: A Preliminary Study on Development of Intelligent System on Marine Environment and Engineering
Authors: Chen-Yuan Chen, Wan-I Lee, Yi-Chaio Sui, Cheng-Wu Chen
Abstract:
This study focuses on the development of triangular fuzzy numbers, the revising of triangular fuzzy numbers, and the constructing of a HCFN (half-circle fuzzy number) model which can be utilized to perform more plural operations. They are further transformed for trigonometric functions and polar coordinates. From half-circle fuzzy numbers we can conceive cylindrical fuzzy numbers, which work better in algebraic operations. An example of fuzzy control is given in a simulation to show the applicability of the proposed half-circle fuzzy numbers.
Keywords: triangular fuzzy number, half-circle fuzzy numbers, predictions, polar coordinates, Lyapunov method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 243632 Stability Analysis of Linear Fractional Order Neutral System with Multiple Delays by Algebraic Approach
Authors: Lianglin Xiong, Yun Zhao, Tao Jiang
Abstract:
In this paper, we study the stability of n-dimensional linear fractional neutral differential equation with time delays. By using the Laplace transform, we introduce a characteristic equation for the above system with multiple time delays. We discover that if all roots of the characteristic equation have negative parts, then the equilibrium of the above linear system with fractional order is Lyapunov globally asymptotical stable if the equilibrium exist that is almost the same as that of classical differential equations. An example is provided to show the effectiveness of the approach presented in this paper.
Keywords: Fractional neutral differential equation, Laplace transform, characteristic equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 229931 Modeling and Stability Analysis of Delayed Game Network
Authors: Zixin Liu, Jian Yu, Daoyun Xu
Abstract:
This paper aims to establish a delayed dynamical relationship between payoffs of players in a zero-sum game. By introducing Markovian chain and time delay in the network model, a delayed game network model with sector bounds and slope bounds restriction nonlinear function is first proposed. As a result, a direct dynamical relationship between payoffs of players in a zero-sum game can be illustrated through a delayed singular system. Combined with Finsler-s Lemma and Lyapunov stable theory, a sufficient condition guaranteeing the unique existence and stability of zero-sum game-s Nash equilibrium is derived. One numerical example is presented to illustrate the validity of the main result.
Keywords: Game networks, zero-sum game, delayed singular system, nonlinear perturbation, time delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1439