Search results for: Interfacial crack
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 287

Search results for: Interfacial crack

167 Probabilistic Damage Tolerance Methodology for Solid Fan Blades and Discs

Authors: Andrej Golowin, Viktor Denk, Axel Riepe

Abstract:

Solid fan blades and discs in aero engines are subjected to high combined low and high cycle fatigue loads especially around the contact areas between blade and disc. Therefore, special coatings (e.g. dry film lubricant) and surface treatments (e.g. shot peening or laser shock peening) are applied to increase the strength with respect to combined cyclic fatigue and fretting fatigue, but also to improve damage tolerance capability. The traditional deterministic damage tolerance assessment based on fracture mechanics analysis, which treats service damage as an initial crack, often gives overly conservative results especially in the presence of vibratory stresses. A probabilistic damage tolerance methodology using crack initiation data has been developed for fan discs exposed to relatively high vibratory stresses in cross- and tail-wind conditions at certain resonance speeds for limited time periods. This Monte-Carlo based method uses a damage databank from similar designs, measured vibration levels at typical aircraft operations and wind conditions and experimental crack initiation data derived from testing of artificially damaged specimens with representative surface treatment under combined fatigue conditions. The proposed methodology leads to a more realistic prediction of the minimum damage tolerance life for the most critical locations applicable to modern fan disc designs.

Keywords: Damage tolerance, Monte-Carlo method, fan blade and disc, laser shock peening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
166 Comparison of Physical and Chemical Properties of Micro-Silica and Locally Produced Metakaolin and Effect on the Properties of Concrete

Authors: S. U. Khan, T. Ayub, N. Shafiq

Abstract:

The properties of locally produced metakaolin (MK) as cement replacing material and the comparison of reactivity with commercially available micro-silica have been investigated. Compressive strength, splitting tensile strength, and load-deflection behaviour under bending are the properties that have been studied. The amorphous phase of MK with micro-silica was compared through X-ray diffraction (XRD) pattern. Further, interfacial transition zone of concrete with micro-silica and MK was observed through Field Emission Scanning Electron Microscopy (FESEM). Three mixes of concrete were prepared. One of the mix is without cement replacement as control mix, and the remaining two mixes are 10% cement replacement with micro-silica and MK. It has been found that MK, due to its irregular structure and amorphous phase, has high reactivity with portlandite in concrete. The compressive strength at early age is higher with MK as compared to micro-silica. MK concrete showed higher splitting tensile strength and higher load carrying capacity as compared to control and micro-silica concrete at all ages respectively.

Keywords: Metakaolin, compressive strength, splitting tensile strength, load deflection, interfacial transition zone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
165 Microscopic Analysis of Interfacial Transition Zone of Cementitious Composites Prepared by Various Mixing Procedures

Authors: Josef Fládr, Jiří Němeček, Veronika Koudelková, Petr Bílý

Abstract:

Mechanical parameters of cementitious composites differ quite significantly based on the composition of cement matrix. They are also influenced by mixing times and procedure. The research presented in this paper was aimed at identification of differences in microstructure of normal strength (NSC) and differently mixed high strength (HSC) cementitious composites. Scanning electron microscopy (SEM) investigation together with energy dispersive X-ray spectroscopy (EDX) phase analysis of NSC and HSC samples was conducted. Evaluation of interfacial transition zone (ITZ) between the aggregate and cement matrix was performed. Volume share, thickness, porosity and composition of ITZ were studied. In case of HSC, samples obtained by several different mixing procedures were compared in order to find the most suitable procedure. In case of NSC, ITZ was identified around 40-50% of aggregate grains and its thickness typically ranged between 10 and 40 µm. Higher porosity and lower share of clinker was observed in this area as a result of increased water-to-cement ratio (w/c) and the lack of fine particles improving the grading curve of the aggregate. Typical ITZ with lower content of Ca was observed only in one HSC sample, where it was developed around less than 15% of aggregate grains. The typical thickness of ITZ in this sample was similar to ITZ in NSC (between 5 and 40 µm). In the remaining four HSC samples, no ITZ was observed. In general, the share of ITZ in HSC samples was found to be significantly smaller than in NSC samples. As ITZ is the weakest part of the material, this result explains to large extent the improved mechanical properties of HSC compared to NSC. Based on the comparison of characteristics of ITZ in HSC samples prepared by different mixing procedures, the most suitable mixing procedure from the point of view of properties of ITZ was identified.

Keywords: Energy dispersive X-ray spectroscopy, high strength concrete, interfacial transition zone, mixing procedure, normal strength concrete, scanning electron microscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1279
164 Response of Wax Apple Cultivars by Applied GA3 and 2,4-D on Fruit Growth and Fruit Quality

Authors: Minh Tuan, Nguyen, Chung-Ruey Yen

Abstract:

The experiment was performed to evaluate the effect of GA3, 2,4-D on fruit growth and fruit quality of wax apple. The experiment consisted of Red A, Monulla, Atu, Red B cultivars. GA3 and 2,4-D were applied at the small bud and petal fall stage. Physiological, biochemical characters of fruit were recoded. The result showed application of GA3, 2,4-D greatly response in increasing fruit set for all treatment as compared to control. Fruit weight, fruit size were increased at 10 ppm 2,4-D in ‘Red A’, ‘Red B’, however it was also enhancing at 10 ppm GA3 in ‘Monulla’, ‘Atu’. For ‘Monulla’, ‘Atu’ fruit crack reduced by 10 ppm 2,4-D application, but ‘Red B’, ‘Red A’ gave least fruit crack at 10 and 30 ppm GA3, respectively. ‘Monulla’, ‘Atu’ and ‘Red B’ resulted in response well to 10 ppm GA3 on improving TSS, whereas application of 30 ppm GA3 greatly enhancing TSS in ‘Red A’. For ‘Atu’ titratable acidity markedly reduced by 10 ppm GA3 application, but spraying with 30 ppm GA3 greatly response in reducing titratable acidity in ‘Red A’, ‘Red B’ and ‘Monulla’. It was concluded that GA3, 2,4-D can be an effective tool to enhancing fruit set, fruit growth as well as improving fruit quality of wax apple.

Keywords: Wax apple, GA3, 2, 4-D, fruit growth, fruit quality. Abbreviations: GA3, gibberellic acid; 2, 4-D, 2, 4- dichlorophenoxyacetic acid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2656
163 Study of Debonding of Composite Material from a Deforming Concrete Beam Using Infrared Thermography

Authors: Igor Shardakov, Anton Bykov, Alexey Shestakov, Irina Glot

Abstract:

This article focuses on the cycle of experimental studies of the formation of cracks and debondings in the concrete reinforced with carbon fiber. This research was carried out in Perm National Research Polytechnic University. A series of CFRP-strengthened RC beams was tested to investigate the influence of preload and crack repairing factors on CFRP debonding. IRT was applied to detect the early stage of IC debonding during the laboratory bending tests. It was found that for the beams strengthened under load after crack injecting, СFRP debonding strain is 4-65% lower than for the preliminary strengthened beams. The beams strengthened under the load had a relative area of debonding of 2 times higher than preliminary strengthened beams. The СFRP debonding strain is weakly dependent on the strength of the concrete substrate. For beams with a transverse wrapping anchorage in support sections FRP debonding is not a failure mode.

Keywords: FRP, RC beams, strengthening, IC debonding, infrared thermography, quality control, non-destructive testing methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1339
162 Probe of Crack Initiate at the Toe of Concrete Gravity Dam using Numerical Analysis

Authors: M. S. Salimi, H. Kiamanesh, N. Hedayat

Abstract:

In this survey the process of crack propagation at the toe of concrete gravity dam is investigated by applying principals and criteria of linear elastic fracture mechanic. Simulating process of earthquake conditions for three models of dam with different geometrical condition, in empty reservoir under plain stress is calculated through special fracture mechanic software FRANNC2D [1] for determining fracture mechanic criteria. The outcomes showed that in spite of the primary expectations, the simultaneous existence of fillet in both toe and heel area (model 3), the rate of maximum principal stress has not been decreased; however, even the maximum principal stress has increased, so it caused stress intensity factors increase which is undesirable. On the other hand, the dam with heel fillet has shown the best attitude and it is because of items like decreasing the rates of maximum and minimum principal stresses and also is related to decreasing the rates of stress intensity factors for 1st & 2nd modes of the model.

Keywords: Stress intensity factor, concrete gravity dam, numerical analysis, geometry of toe.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
161 Post-Cracking Behaviour of High Strength Fiber Concrete Prediction and Validation

Authors: Andrejs Krasnikovs, Olga Kononova, Amjad Khabbaz, Edgar Machanovsky, Artur Machanovsky

Abstract:

Fracture process in mechanically loaded steel fiber reinforced high-strength (SFRHSC) concrete is characterized by fibers bridging the crack providing resistance to its opening. Structural SFRHSC fracture model was created; material fracture process was modeled, based on single fiber pull-out laws, which were determined experimentally (for straight fibers, fibers with end hooks (Dramix), and corrugated fibers (Tabix)) as well as obtained numerically ( using FEM simulations). For this purpose experimental program was realized and pull-out force versus pull-out fiber length was obtained (for fibers embedded into concrete at different depth and under different angle). Model predictions were validated by 15x15x60cm prisms 4 point bending tests. Fracture surfaces analysis was realized for broken prisms with the goal to improve elaborated model assumptions. Optimal SFRHSC structures were recognized.

Keywords: crack, fiber concrete, fiber pull-out, strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102
160 Novel CFRP Adhesive Joints and Structures for Offshore Application

Authors: M. R. Abusrea, Shiyi Jiang, Dingding Chen, Kazuo Arakawa

Abstract:

Novel wind-lens turbine designs can augment power output. Vacuum-Assisted Resin Transfer Molding (VARTM) is used to form large and complex structures from a Carbon Fiber Reinforced Polymer (CFRP) composite. Typically, wind-lens turbine structures are fabricated in segments, and then bonded to form the final structure. This paper introduces five new adhesive joints, divided into two groups: one is constructed between dry carbon and CFRP fabrics, and the other is constructed with two dry carbon fibers. All joints and CFRP fabrics were made in our laboratory using VARTM manufacturing techniques. Specimens were prepared for tensile testing to measure joint performance. The results showed that the second group of joints achieved a higher tensile strength than the first group. On the other hand, the tensile fracture behavior of the two groups showed the same pattern of crack originating near the joint ends followed by crack propagation until fracture.

Keywords: Adhesive joints, CFRP, VARTM, resin transfer molding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1873
159 Strengthening of RC Beams Containing Large Opening at Flexure with CFRP laminates

Authors: S.C. Chin, N. Shafiq, M.F. Nuruddin

Abstract:

This paper presents the study of strengthening R/C beams with large circular and square opening located at flexure zone by Carbon Fiber Reinforced Polymer (CFRP) laminates. A total of five beams were tested to failure under four point loading to investigate the structural behavior including crack patterns, failure mode, ultimate load and load deflection behaviour. Test results show that large opening at flexure reduces the beam capacity and stiffness; and increases cracking and deflection. A strengthening configuration was designed for each un-strengthened beams based on their respective crack patterns. CFRP laminates remarkably restore the beam capacity of beam with large circular opening at flexure location while 10% re-gain of beam capacity with square opening. The use of CFRP laminates with the designed strengthening configuration could significantly reduce excessive cracking and deflection and increase the ultimate capacity and stiffness of beam.

Keywords: CFRP, large opening, R/C beam, strengthening

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3782
158 Study on Two Way Reinforced Concrete Slab Using ANSYS with Different Boundary Conditions and Loading

Authors: A. Gherbi, L. Dahmani, A. Boudjemia

Abstract:

This paper presents the Finite Element Method (FEM) for analyzing the failure pattern of rectangular slab with various edge conditions. Non-Linear static analysis is carried out using ANSYS 15 Software. Using SOLID65 solid elements, the compressive crushing of concrete is facilitated using plasticity algorithm, while the concrete cracking in tension zone is accommodated by the nonlinear material model. Smeared reinforcement is used and introduced as a percentage of steel embedded in concrete slab. The behavior of the analyzed concrete slab has been observed in terms of the crack pattern and displacement for various loading and boundary conditions. The finite element results are also compared with the experimental data. One of the other objectives of the present study is to show how similar the crack path found by ANSYS program to those observed for the yield line analysis. The smeared reinforcement method is found to be more practical especially for the layered elements like concrete slabs. The value of this method is that it does not require explicit modeling of the rebar, and thus a much coarser mesh can be defined.

Keywords: ANSYS, cracking pattern, displacements, RC Slab, smeared reinforcement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1277
157 Effect of Gibberellic Acid and 2,4- Dichlorophenoxyacetic Acid on Fruit Development and Fruit Quality of Wax Apple

Authors: Nguyen Minh Tuan, Yen Chung–Ruey

Abstract:

This study was conducted to evaluate the effects of gibberellic acid and 2,4- dichlorophenoxyacetic acid on flower number, fruit growth and fruit quality of wax apple. GA3 and 2,4-D were applied at small bud and petal fall stage. Number of flower, fruit set, fruit drop, fruit crack, fruit growth and fruit quality were recorded. Results indicated that spraying with 10 ppm GA3 had the best results in number of flower. GA3 spray at 30 ppm gave the faster rate of fruit growth than the other treatments. Fruit set, fruit size as well as fruit weight markedly improved by spraying 30 ppm GA3, followed by 10 ppm GA3 compared to untreated control. Moreover, spray GA3 at 30 ppm was the most effective and increased total soluble solids, reduced titratable acidity and fruit drop. On the other hand, it was noticed that with 10 ppm 2,4-D application also enhanced the fruit growth rate, improved physiological and biochemical characters of fruit compared to untreated control. It was concluded that both GA3 and 2,4-D spray have positive effects on fruit development, reduced fruit drop, fruit crack and improved fruit quality of wax apple under field conditions.

Keywords: Wax apple, GA3, 2, 4-D, fruit growth, fruit quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5450
156 Comparison of Double Unit Tunnel Form Building before and after Repair and Retrofit under in-Plane Cyclic Loading

Authors: S. A. Anuar, N. H. Hamid, M. H. Hashim, S. M. D. Salleh

Abstract:

This paper present the experimental work of double unit tunnel form building (TFB) subjected to in-plane lateral cyclic loading. A one third scale of 3-storey double unit of TFB is tested until its strength degradation. Then, the TFB is repaired and retrofitted using additional shear wall, steel angle and CFRP sheet. The crack patterns, lateral strength, stiffness, ductility and equivalent viscous damping (EVD) were analyzed and compared before and after repair and retrofit. The result indicates that the lateral strength increases by 22% in pushing and 27% in pulling direction. Moreover, the stiffness and ductility obtained before and after retrofit increase tremendously by 87.87% and 39.66%, respectively. Meanwhile, the energy absorption measured by equivalent viscous damping obtained after retrofit increase by 12.34% in pulling direction. It can be concluded that the proposed retrofit method is capable to increase the lateral strength capacity, stiffness and energy absorption of double unit TFB.

Keywords: Crack pattern, stiffness, ductility, equivalent viscous damping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2383
155 Surface Activation of Carbon Nanotubes Generating a Chemical Interaction in Epoxy Nanocomposite

Authors: Mohamed Eldessouki, Ebraheem Shady, Yasser Gowayed

Abstract:

Carbon nanotubes (CNTs) are known for having high elastic properties with high surface area that promote them as good candidates for reinforcing polymeric matrices. In composite materials, CNTs lack chemical bonding with the surrounding matrix which decreases the possibility of better stress transfer between the components. In this work, a chemical treatment for activating the surface of the multi-wall carbon nanotubes (MWCNT) was applied and the effect of this functionalization on the elastic properties of the epoxy nanocomposites was studied. Functional amino-groups were added to the surface of the CNTs and it was evaluated to be about 34% of the total weight of the CNTs. Elastic modulus was found to increase by about 40% of the neat epoxy resin at CNTs’ weight fraction of 0.5%. The elastic modulus was found to decrease after reaching a certain concentration of CNTs which was found to be 1% wt. The scanning electron microscopic pictures showed the effect of the CNTs on the crack propagation through the sample by forming stress concentrated spots at the nanocomposite samples.

Keywords: Carbon nanotubes functionalization, crack propagation, elastic modulus, epoxy nanocomposites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981
154 Stabilizer Fillet Weld Strength under Multiaxial Loading (Effect of Force, Size and Residual Stress)

Authors: Iman Hadipour, Javad Marzbanrad

Abstract:

In this paper, the strength of a stabilizer is determined when the static and fatigue multiaxial loading are applied. Stabilizer is a part of suspension system in the heavy truck for stabilizing the cabin against the vibration of the road which composes of a thin-walled tube joined to a forge component by fillet weld. The component is loaded by non proportional random sequence of torsion and bending. Residual stress of welding process is considered here for static loading. This static loading with road irregularities are applied in this study as fatigue case that can affected in the fillet welded area of this part. The stresses in the welded structure are calculated using FEA. In addition, the fatigue with multi axial loading in the fillet weld is also investigated and the critical zone of the stabilizer is specified and presented by graphs. Residual stresses that have been resulted by the thermal forces are considered in FEA. Force increasing is the element of finding the critical point of the component.

Keywords: Fillet weld, fatigue, weld toe crack, weld root crack, S-N curve, multiaxial load, residual stress, combined force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
153 An Experimental Study on Behavior of Transverse Connection Appropriate for Modular Girder Bridge

Authors: Dong-Hyun Kim, Jin-Woong Choi, Hyeong-Yeol Kim, Sun-Kyu Park

Abstract:

This study is to evaluate the behavior of integral and segmental specimens through static and cyclic tests. Integral specimens were made with the same size to be compared with segmental specimens that were made by connected precast members. To evaluate its bending performance and serviceability, 1 integral and 3 segmental specimens were tested under static load. And 1 integral and 2 segmental specimens were tested under cyclic load, respectively. Different load ranges were considered in the cyclic tests to evaluate the safety and serviceability. The test results showed that under static loading, segmental specimens had about 94% of the integral specimen's maximum moment, averagely. Under cyclic loading, the segmental specimens showed that had enough safety in the range of higher than service load and enough serviceability. In conclusion, the maximum crack width (0.16mm) satisfied the allowable crack width (0.30mm) in the range of service load.

Keywords: Modular bridge, Transverse connection, Precast concrete, Static and cyclic test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
152 Failure Analysis of Pipe System at a Hydroelectric Power Plant

Authors: Ali Göksenli, Barlas Eryürek

Abstract:

In this study, failure analysis of pipe system at a micro hydroelectric power plant is investigated. Failure occurred at the pipe system in the powerhouse during shut down operation of the water flow by a valve. This locking had caused a sudden shock wave, also called “Water-hammer effect”, resulting in noise and inside pressure increase. After visual investigation of the effect of the shock wave on the system, a circumference crack was observed at the pipe flange weld region. To establish the reason for crack formation, calculations of pressure and stress values at pipe, flange and welding seams were carried out and concluded that safety factor was high (2.2), indicating that no faulty design existed. By further analysis, pipe system and hydroelectric power plant was examined. After observations it is determined that the plant did not include a ventilation nozzle (air trap), that prevents the system of sudden pressure increase inside the pipes which is caused by water-hammer effect. Analyses were carried out to identify the influence of water-hammer effect on inside pressure increase and it was concluded that, according Jowkowsky’s equation, shut down time is effective on inside pressure increase. The valve closing time was uncertain but by a shut down time of even one minute, inside pressure would increase by 7.6 bar (working pressure was 34.6 bar). Detailed investigations were also carried out on the assembly of the pipe-flange system by considering technical drawings. It was concluded that the pipe-flange system was not installed according to the instructions. Two of five weld seams were not applied and one weld was carried out faulty. This incorrect and inadequate weld seams resulted in; insufficient connection of the pipe to the flange constituting a strong notch effect at weld seam regions, increase in stress values and the decrease of strength and safety factor.

Keywords: Failure analysis, hydroelectric plant, water-hammer, crack, welding seam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2738
151 Wear and Friction Analysis of Sintered Metal Powder Self Lubricating Bush Bearing

Authors: J. K. Khare, Abhay Kumar Sharma, Ajay Tiwari, Amol A. Talankar

Abstract:

Powder metallurgy (P/M) is the only economic way to produce porous parts/products. P/M can produce near net shape parts hence reduces wastage of raw material and energy, avoids various machining operations. The most vital use of P/M is in production of metallic filters and self lubricating bush bearings and siding surfaces. The porosity of the part can be controlled by varying compaction pressure, sintering temperature and composition of metal powder mix. The present work is aimed for experimental analysis of friction and wear properties of self lubricating copper and tin bush bearing. Experimental results confirm that wear rate of sintered component is lesser for components having 10% tin by weight percentage. Wear rate increases for high tin percentage (experimented for 20% tin and 30% tin) at same sintering temperature. Experimental results also confirms that wear rate of sintered component is also dependent on sintering temperature, soaking period, composition of the preform, compacting pressure, powder particle shape and size. Interfacial friction between die and punch, between inter powder particles, between die face and powder particle depends on compaction pressure, powder particle size and shape, size and shape of component which decides size & shape of die & punch, material of die & punch and material of powder particles.

Keywords: Interfacial friction, porous bronze bearing, sintering temperature, wear rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3978
150 Geometry Calibration Factors of Modified Arcan Fracture Test for Welded Joint

Authors: S. R. Hosseini, N. Choupani, A. R. M. Gharabaghi

Abstract:

In this study the mixed mode fracture mechanics parameters were investigated for high tensile steel butt welded joint based on modified Arcan test and finite element analysis was used to evaluate the effect of crack length on fracture criterion. The nondimensional stress intensity factors, strain energy release rates and Jintegral energy on crack tip were obtained for various in-plane loading combinations on Arcan specimen starting from pure mode-I to pure mode-II loading conditions. The specimen and apparatus were modeled by finite element method and analyzed under various loading angles (between 0 to 90 degrees with 15 degree interval) to simulate the pure mode-I, II and mixed mode fracture. Since the analytical results are independent from elasticity modules for isotropic materials, therefore the results in elastic fields can be used for Arcan specimens. The main objective of this study was to evaluate the geometric calibration factors for modified Arcan test specimen in order to obtain fracture toughness under mixed mode loading conditions.

Keywords: Arcan specimen, Geometric calibration factors, Mixed Mode, Fracture mechanics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1971
149 Scatter Analysis of Fatigue Life and Pore Size Data of Die-Cast AM60B Magnesium Alloy

Authors: S. Mohd, Y. Mutoh, Y. Otsuka, Y. Miyashita, T. Koike, T. Suzuki

Abstract:

Scatter behavior of fatigue life in die-cast AM60B alloy was investigated. For comparison, those in rolled AM60B alloy and die-cast A365-T5 aluminum alloy were also studied. Scatter behavior of pore size was also investigated to discuss dominant factors for fatigue life scatter in die-cast materials. Three-parameter Weibull function was suitable to explain the scatter behavior of both fatigue life and pore size. The scatter of fatigue life in die-cast AM60B alloy was almost comparable to that in die-cast A365-T5 alloy, while it was significantly large compared to that in the rolled AM60B alloy. Scatter behavior of pore size observed at fracture nucleation site on the fracture surface was comparable to that observed on the specimen cross-section and also to that of fatigue life. Therefore, the dominant factor for large scatter of fatigue life in die-cast alloys would be the large scatter of pore size. This speculation was confirmed by the fracture mechanics fatigue life prediction, where the pore observed at fatigue crack nucleation site was assumed as the pre-existing crack.

Keywords: Fatigue life, Pore size, Scatter, Weibull distribution, Die-cast magnesium alloy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2397
148 Response of Wax Apple Cultivars by Applied S-Girdling on Fruit Development and Fruit Quality

Authors: Nguyen Minh, Tuan, Chung-Ruey, Yen, Bui Lan, Anh

Abstract:

The study was carried out to evaluated effect of S-gridling on fruit growth and quality of wax apple. The study was laid in Random completed block design with four replicated. Four treatment were applied as follows: S-girdling, fruit thinning plus bagging with 2,4-D sprayed, fruit thinning plus bagging and the control treatment. 2,4D was sprayed at the small bud and petal fall stage. Girdling was applied three week before flowering. The effect of all treatments on fruit growth was measured weekly. Number of flower, fruit set, fruit drop, fruit crack, and fruit quality were recorded. The result indicated that S-girdling, 2,4D application produced the lowest bud drop, fruit drop compared to untreated control. S-girdling improved faster fruit growth producing the best final fruit length and diameter compared to untreated control. S-girdling also markedly enhanced fruit set, fruit weight, and total soluble solid, reduced fruit crack, titratable acidity. On the other hand, it was noticed that with 2,4-D application also increased the fruit growth rate, improved physiological and biochemical characters of fruit than control treatment. It was concluded that S-girdling was recommended as the industry norm to increase fruit set, fruit quality in wax apple. 2,4D application had a distinctive and significant effect on most of the fruit quality characteristics assessed.

Keywords: S-girdling, 2, 4D, wax apple, fruit growth, fruit quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
147 Study on the Pavement Structural Performance of Highways in the North China Region Based on Pavement Distress and Ground Penetrating Radar

Authors: Mingwei Yi, Liujie Guo, Zongjun Pan, Xiang Lin, Xiaoming Yi

Abstract:

With the rapid expansion of road construction mileage in China, the scale of road maintenance needs has concurrently escalated. As the service life of roads extends, the design of pavement repair and maintenance emerges as a crucial component in preserving the excellent performance of the pavement. The remaining service life of asphalt pavement structure is a vital parameter in the lifecycle maintenance design of asphalt pavements. Based on an analysis of pavement structural integrity, this study presents a characterization and assessment of the remaining life of existing asphalt pavement structures. It proposes indicators such as the transverse crack spacing and the length of longitudinal cracks. The transverse crack spacing decreases with an increase in maintenance intervals and with the extended use of semi-rigid base layer structures, although this trend becomes less pronounced after maintenance intervals exceed 4 years. The length of longitudinal cracks increases with longer maintenance intervals, but this trend weakens after five years. This system can support the enhancement of standardization and scientific design in highway maintenance decision-making processes.

Keywords: Structural integrity, highways, pavement evaluation, asphalt concrete pavement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39
146 Corrosion Analysis and Interfacial Characterization of Al – Steel Metal Inert Gas Weld - Braze Dissimilar Joints by Micro Area X-Ray Diffraction Technique

Authors: S. S. Sravanthi, Swati Ghosh Acharyya

Abstract:

Automotive light weighting is of major prominence in the current times due to its contribution in improved fuel economy and reduced environmental pollution. Various arc welding technologies are being employed in the production of automobile components with reduced weight. The present study is of practical importance since it involves preferential substitution of Zinc coated mild steel with a light weight alloy such as 6061 Aluminium by means of Gas Metal Arc Welding (GMAW) – Brazing technique at different processing parameters. However, the fabricated joints have shown the generation of Al – Fe layer at the interfacial regions which was confirmed by the Scanning Electron Microscope and Energy Dispersion Spectroscopy. These Al-Fe compounds not only affect the mechanical strength, but also predominantly deteriorate the corrosion resistance of the joints. Hence, it is essential to understand the phases formed in this layer and their crystal structure. Micro area X - ray diffraction technique has been exclusively used for this study. Moreover, the crevice corrosion analysis at the joint interfaces was done by exposing the joints to 5 wt.% FeCl3 solution at regular time intervals as per ASTM G 48-03. The joints have shown a decreased crevice corrosion resistance with increased heat intensity. Inner surfaces of welds have shown severe oxide cracking and a remarkable weight loss when exposed to concentrated FeCl3. The weight loss was enhanced with decreased filler wire feed rate and increased heat intensity. 

Keywords: Automobiles, welding, corrosion, lap joints, Micro XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 653
145 Finite Element Approach to Evaluate Time Dependent Shear Behavior of Connections in Hybrid Steel-PC Girder under Sustained Loading

Authors: Mohammad Najmol Haque, Takeshi Maki, Jun Sasaki

Abstract:

Headed stud shear connections are widely used in the junction or embedded zone of hybrid girder to achieve whole composite action with continuity that can sustain steel-concrete interfacial tensile and shear forces. In Japan, Japan Road Association (JRA) specifications are used for hybrid girder design that utilizes very low level of stud capacity than those of American Institute of Steel Construction (AISC) specifications, Japan Society of Civil Engineers (JSCE) specifications and EURO code. As low design shear strength is considered in design of connections, the time dependent shear behavior due to sustained external loading is not considered, even not fully studied. In this study, a finite element approach was used to evaluate the time dependent shear behavior for headed studs used as connections at the junction. This study clarified, how the sustained loading distinctively impacted on changing the interfacial shear of connections with time which was sensitive to lodging history, positions of flanges, neighboring studs, position of prestress bar and reinforcing bar, concrete strength, etc. and also identified a shear influence area. Stud strength was also confirmed through pushout tests. The outcome obtained from the study may provide an important basis and reference data in designing connections of hybrid girders with enhanced stud capacity with due consideration of their long-term shear behavior.

Keywords: Finite element approach, hybrid girder, headed stud shear connections, sustained loading, time dependent shear behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 632
144 Plasma Spraying of 316 Stainless Steel on Aluminum and Investigation of Coat/Substrate Interface

Authors: P. Abachi, T. W. Coyle, P. S. Musavi Gharavi

Abstract:

By applying coating onto a structural component, the corrosion and/or wear resistance requirements of the surface can be fulfilled. Since the layer adhesion of the coating influences the mechanical integrity of the coat/substrate interface during the service time, it should be examined accurately. At the present work, the tensile bonding strength of the 316 stainless steel plasma sprayed coating on aluminum substrate was determined by using tensile adhesion test, TAT, specimen. The interfacial fracture toughness was specified using four-point bend specimen containing a saw notch and modified chevron-notched short-bar (SB) specimen. The coating microstructure and fractured specimen surface were examined by using scanning electron- and optical-microscopy. The investigation of coated surface after tensile adhesion test indicates that the failure mechanism is mostly cohesive and rarely adhesive type. The calculated value of critical strain energy release rate proposes relatively good interface status. It seems that four-point bending test offers a potentially more sensitive means for evaluation of mechanical integrity of coating/substrate interfaces than is possible with the tensile test. The fracture toughness value reported for the modified chevron-notched short-bar specimen testing cannot be taken as absolute value because its calculation is based on the minimum stress intensity coefficient value which has been suggested for the fracture toughness determination of homogeneous parts in the ASTM E1304-97 standard. 

Keywords: Bonding strength, four-point bend test, interfacial fracture toughness, modified chevron-notched short-bar specimen, plasma sprayed coating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
143 A Dynamic Mechanical Thermal T-Peel Test Approach to Characterize Interfacial Behavior of Polymeric Textile Composites

Authors: J. R. Büttler, T. Pham

Abstract:

Basic understanding of interfacial mechanisms is of importance for the development of polymer composites. For this purpose, we need techniques to analyze the quality of interphases, their chemical and physical interactions and their strength and fracture resistance. In order to investigate the interfacial phenomena in detail, advanced characterization techniques are favorable. Dynamic mechanical thermal analysis (DMTA) using a rheological system is a sensitive tool. T-peel tests were performed with this system, to investigate the temperature-dependent peel behavior of woven textile composites. A model system was made of polyamide (PA) woven fabric laminated with films of polypropylene (PP) or PP modified by grafting with maleic anhydride (PP-g-MAH). Firstly, control measurements were performed with solely PP matrixes. Polymer melt investigations, as well as the extensional stress, extensional viscosity and extensional relaxation modulus at -10°C, 100 °C and 170 °C, demonstrate similar viscoelastic behavior for films made of PP-g-MAH and its non-modified PP-control. Frequency sweeps have shown that PP-g-MAH has a zero phase viscosity of around 1600 Pa·s and PP-control has a similar zero phase viscosity of 1345 Pa·s. Also, the gelation points are similar at 2.42*104 Pa (118 rad/s) and 2.81*104 Pa (161 rad/s) for PP-control and PP-g-MAH, respectively. Secondly, the textile composite was analyzed. The extensional stress of PA66 fabric laminated with either PP-control or PP-g-MAH at -10 °C, 25 °C and 170 °C for strain rates of 0.001 – 1 s-1 was investigated. The laminates containing the modified PP need more stress for T-peeling. However, the strengthening effect due to the modification decreases by increasing temperature and at 170 °C, just above the melting temperature of the matrix, the difference disappears. Independent of the matrix used in the textile composite, there is a decrease of extensional stress by increasing temperature. It appears that the more viscous is the matrix, the weaker the laminar adhesion. Possibly, the measurement is influenced by the fact that the laminate becomes stiffer at lower temperatures. Adhesive lap-shear testing at room temperature supports the findings obtained with the T-peel test. Additional analysis of the textile composite at the microscopic level ensures that the fibers are well embedded in the matrix. Atomic force microscopy (AFM) imaging of a cross section of the composite shows no gaps between the fibers and matrix. Measurements of the water contact angle show that the MAH grafted PP is more polar than the virgin-PP, and that suggests a more favorable chemical interaction of PP-g-MAH with PA, compared to the non-modified PP. In fact, this study indicates that T-peel testing by DMTA is a technique to achieve more insights into polymeric textile composites.

Keywords: Dynamic mechanical thermal analysis, interphase, polyamide, polypropylene, textile composite, T-peel test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 735
142 Impact Temperature in Splat and Splat-Substrate Interface in HVOF Thermal Spraying

Authors: M. Jalali Azizpour, D. Sajedipour, H. Mohammadi Majd, M.R. Tahmasbi Birgani, M.Rabiae

Abstract:

An explicit axisymmetrical FE methodology is developed here to study the particle temperature arising in WC-Co particle on an AISI 1045 steel substrate. Parameters of constitutive Johnson-cook model were used for simulation. The results show that particle velocity and kinetic energy have important role in temperature arising of particles.

Keywords: FEM, HVOF, Interfacial Temperature, Splat

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
141 Performance of Concrete Grout under Aggressive Chloride Environment in Sabah

Authors: S. Imbin, S. Dullah, H. Asrah, P. S. Kumar, M. E. Rahman, M. A. Mannan

Abstract:

Service life of existing reinforced concrete (RC) structures in coastal towns of Sabah has been affected very much. Concrete crack, spalling of concrete cover and reinforcement rusting of RC buildings are seen even within 5 years of construction in Sabah. Hence, in this study a new mix design of concrete grout was developed using locally available materials and investigated under two curing conditions and workability, compressive strength, Accelerated Mortar Bar Test (AMBT), water absorption, volume of permeable voids (VPV), Sorptivity and 90-days salt ponding test were conducted. The compressive strength of concrete grout at the age 90 days was found to be 44.49 N/mm2 under water curing. It was observed that the percentage of mortar bar length change was below 1% for developed concrete grout. The water absorption of the concrete grout was in between the range of 0.88 % to 3.60 % under two different curing up to the age 90 days. It was also observed that the VPV of concrete was in the range of 0 % to 9.75 and 2.44% to 13.05% under water curing and site curing respectively. It was found that the Sorptivity of the concrete grout under water curing at the age of 28 days is 0.211mm/√min and at the age 90 day are 0.067 mm/√min. The chloride content decreased greatly, 90% after a depth of 15 mm. It was noticed that the site cured samples showed higher chloride contents near surface compared to water cured samples. This investigation suggested that the developed mix design of concrete grout using locally available construction materials can be used for crack repairing of existing RC structures in Sabah.

Keywords: Concrete grout, Salt ponding, Sorptivity, Water absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2866
140 Experimental Investigation on Shear Behaviour of Fibre Reinforced Concrete Beams Using Steel Fibres

Authors: G. Beulah Gnana Ananthi, A. Jaffer Sathick, M. Abirami

Abstract:

Fibre reinforced concrete (FRC) has been widely used in industrial pavements and non-structural elements such as pipes, culverts, tunnels, and precast elements. The strengthening effect of fibres in the concrete matrix is achieved primarily due to the bridging effect of fibres at the crack interfaces. The workability of the concrete was reduced on addition of high percentages of steel fibres. The optimum percentage of addition of steel fibres varies with its aspect ratio. For this study, 1% addition of steel has resulted to be the optimum percentage for both Hooked and Crimped Steel Fibres and was added to the beam specimens. The fibres restrain efficiently the cracks and take up residual stresses beyond the cracking. In this sense, diagonal cracks are effectively stitched up by fibres crossing it. The failure of beams within the shear failure range changed from shear to flexure in the presence of sufficient steel fibre quantity. The shear strength is increased with the addition of steel fibres and had exceeded the enhancement obtained with the transverse reinforcement. However, such increase is not directly in proportion with the quantity of fibres used. Considering all the clarification made in the present experimental investigation, it is concluded that 1% of crimped steel fibres with an aspect ratio of 50 is the best type of steel fibres for replacement of transverse stirrups in high strength concrete beams when compared to the steel fibres with hooked ends.

Keywords: Fibre reinforced concrete, steel fibre, shear strength, crack pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 803
139 Site Inspection and Evaluation Behavior of Qing Shang Concrete Bridge

Authors: Haleem K. Hussain, Liu Gui Wei, Zhang Lian Zhen, Yongxue Li

Abstract:

It is necessary to evaluate the bridges conditions and strengthen bridges or parts of them. The reinforcement necessary due to some reasons can be summarized as: First, a changing in use of bridge could produce internal forces in a part of structural which exceed the existing cross-sectional capacity. Second, bridges may also need reinforcement because damage due to external factors which reduced the cross-sectional resistance to external loads. One of other factors could listed here its misdesign in some details, like safety of bridge or part of its.This article identify the design demands of Qing Shan bridge located in is in Heilongjiang Province He gang - Nen Jiang Road 303 provincial highway, Wudalianchi area, China, is an important bridge in the urban areas. The investigation program was include the observation and evaluate the damage in T- section concrete beams , prestressed concrete box girder bridges section in additional evaluate the whole state of bridge includes the pier , abutments , bridge decks, wings , bearing and capping beam, joints, ........etc. The test results show that the bridges in general structural condition are good. T beam span No 10 were observed, crack extended upward along the ribbed T beam, and continue to the T beam flange. Crack width varying between 0.1mm to 0.4mm, the maximum about 0.4mm. The bridge needs to be improved flexural bending strength especially at for T beam section.

Keywords: Field investigation, prestressed concrete box girder, maintenance, Qing Shan Bridge

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
138 Comparative Evaluation of Ice Adhesion Behavior

Authors: T. Strobl, D. Raps, M. Hornung

Abstract:

In this study, the adhesion of ice to solid substrates with different surface properties is compared. Clear ice, similar to atmospheric in-flight icing encounters, is accreted on the different substrates under controlled conditions. The ice adhesion behavior is investigated by means of a dynamic vibration testing technique with an electromagnetic shaker initiating ice de-bonding in the interface between the substrate and the ice. The results of the experiments reveal that the affinity for ice accretion is significantly influenced by the water contact angle of the respective sample.

Keywords: Contact angle, dynamic vibration measurement, ice adhesion, interfacial shear stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2347