Comparative Evaluation of Ice Adhesion Behavior
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Comparative Evaluation of Ice Adhesion Behavior

Authors: T. Strobl, D. Raps, M. Hornung

Abstract:

In this study, the adhesion of ice to solid substrates with different surface properties is compared. Clear ice, similar to atmospheric in-flight icing encounters, is accreted on the different substrates under controlled conditions. The ice adhesion behavior is investigated by means of a dynamic vibration testing technique with an electromagnetic shaker initiating ice de-bonding in the interface between the substrate and the ice. The results of the experiments reveal that the affinity for ice accretion is significantly influenced by the water contact angle of the respective sample.

Keywords: Contact angle, dynamic vibration measurement, ice adhesion, interfacial shear stress.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1078559

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2292

References:


[1] Aviatas. (2011). Stall Angles (Ice). Retrieved May 16, 2011, from http://www.aviatas.com/worksamples/ice_stall.php.
[2] Civil Aviation Authority. (2000, June 14). Aircraft Icing Handbook. Retrieved April 09, 2011, from http://www.caa.govt.nz/search/query.asp.
[3] Federal Aviation Administration. (2007, December 31). Advisory Circular AC 91-74A - Pilot Guide: Flight in Icing Conditions. Retrieved April 09, 2011, from http://rgl.faa.gov/REGULATORY_AND_GUIDANCE_LIBRARY%5C RGADVISORYCIRCULAR.NSF/0/4C8192BB0B733862862573D2005 E7151?OpenDocument.
[4] AOPA-Germany. (2001, January). AOPA-Letter 1/ 2001 - Flugzeugvereisung. Retrieved April 09, 2011, from www.aopa.de/DE/upload/pdf/PDFLetter/2001-Letter_1/Letter_1-2001- 16-18%2B38.pdf.
[5] Akitegetse, C., Volat, C., & Farzaneh, M. (2008). Measuring bending stress on an ice/aluminium composite beam interface using an embedded piezoelectric PVDF (polyvinylidene-fluoride) film sensor. Meas. Sci. Technol. (19), 1-9.
[6] Hassan, M. F., Lee, H. P., & Lim, S. P. (2010). The variation of ice adhesion strength with substrate surface roughness. Meas. Sci. Technol. (21), 1-9.
[7] Javan-Mashmool, M., Volat, C., & Farzaneh, M. (2006). A new method for measuring ice adhesion strength at an ice-substrate interface. Hydrol. Process. (20), 645-655.
[8] Gross, D., Hauger, W., Schnell, W., & Schröder, J. (2005). Technische Mechanik 2 Elastostatik (Vol. 2). Darmstadt und Essen: Springer Verlag.
[9] Mojtaba, E. (2005). Ice shedding from overhead electrical lines by mechanical breaking: a ductile model for viscoplastic behaviour of atmospheric ice. Chicoutimi: Université du Québec.
[10] Wriggers, P., Nackenhorst, U., Beuermann, S., Spiess, H., & Löhnert, S. (2006). Technische Mechanik kompakt Starrkörperstatik Elastostatik Kinetik (2. Auflage ed.). Wiesbaden: Teubner.
[11] Ganci, S. (2009). A simple experiment on flexural vibrations and Young-s modulus measurement. Physics Education , 44 (3), 236-240.
[12] Archer, P., & Gupta, V. (1998). Measurement and control of ice adhesion to aluminum 6061 alloy. J. Mech. Phys. Solids (46), 1745-71.
[13] Hobbs, P. V. (1974). Ice Physics. London: Oxford University Press.
[14] Ginnings, D. C., & Corruccini, R. J. (1947). An improved ice calorimeter - the determination of its calibration factor and the density of ice at 0┬░C. J. Res. natn Bur. Stand (38), 583-91.
[15] Gammon, P. H., Kiefte, H., Clouter, M. J., & Denner, W. W. (1983). Elastic Constants of Artificial and Natural Ice Samples by Brillouin Spectroscopy. Journal of Glaciology , 29 (103), 433-60.
[16] Lechler GmbH. (1995). Operation Instruction Ultrasonic atomizer US 1. Precision Nozzles; Nozzle Systems. Metzingen / Germany: Lechler GmbH.
[17] Lechler GmbH. (2008). Ultrasonic atomizer. Precision Nozzles; Nozzle Systems. Metzingen / Germany: Lechler GmbH.
[18] Raraty, L. E., & Tabor, D. (1958). The adhesion and strength properties of ice. Proc. R. Soc. (A 245), 184-201.
[19] Sivas, S. L., Riegler, B., Thomaier, R., & Hoover, K. (2004). A Silicone- Based Ice Phobic Coating for Aircraft. The Department of the Army, Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory (CRREL). Hanover, NH, U.S.: Pratt & Whitney.