Search results for: Circular raft footing
204 Design of Liquid Crystal Based Tunable Reflectarray Antenna Using Slot Embedded Patch Element Configurations
Authors: M. Y. Ismail, M. Inam
Abstract:
This paper presents the design and analysis of Liquid Crystal (LC) based tunable reflectarray antenna with different design configurations within X-band frequency range. The effect of LC volume used for unit cell element on frequency tunability and reflection loss performance has been investigated. Moreover different slot embedded patch element configurations have been proposed for LC based tunable reflectarray antenna design with enhanced performance. The detailed fabrication and measurement procedure for different LC based unit cells has been presented. The waveguide scattering parameter measured results demonstrated that by using the circular slot embedded patch elements, the frequency tunability and dynamic phase range can be increased from 180MHz to 200MHz and 120° to 124° respectively. Furthermore the circular slot embedded patch element can be designed at 10GHz resonant frequency with a patch volume of 2.71mm3 as compared to 3.47mm3 required for rectangular patch without slot.
Keywords: Liquid crystal, Tunable reflectarray, Frequency tunability, Dynamic phase range.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2432203 Design of Liquid Crystal Based Tunable Reflectarray Antenna Using Slot Embedded Patch Element Configurations
Authors: M. Y. Ismail, M. Inam
Abstract:
This paper presents the design and analysis of Liquid Crystal (LC) based tunable reflectarray antenna with different design configurations within X-band frequency range. The effect of LC volume used for unit cell element on frequency tunability and reflection loss performance has been investigated. Moreover different slot embedded patch element configurations have been proposed for LC based tunable reflectarray antenna design with enhanced performance. The detailed fabrication and measurement procedure for different LC based unit cells has been presented. The waveguide scattering parameter measured results demonstrated that by using the circular slot embedded patch elements, the frequency tunability and dynamic phase range can be increased from 180MHz to 200MHz and 120° to 124° respectively. Furthermore the circular slot embedded patch element can be designed at 10GHz resonant frequency with a patch volume of 2.71mm3 as compared to 3.47mm3 required for rectangular patch without slot.
Keywords: Liquid crystal, Tunable reflectarray, Frequency tunability, Dynamic phase range.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222202 Computation and Validation of the Stress Distribution around a Circular Hole in a Slab Undergoing Plastic Deformation
Authors: S. D. El Wakil, J. Rice
Abstract:
The aim of the current work was to employ the finite element method to model a slab, with a small hole across its width, undergoing plastic plane strain deformation. The computational model had, however, to be validated by comparing its results with those obtained experimentally. Since they were in good agreement, the finite element method can therefore be considered a reliable tool that can help gain better understanding of the mechanism of ductile failure in structural members having stress raisers. The finite element software used was ANSYS, and the PLANE183 element was utilized. It is a higher order 2-D, 8-node or 6-node element with quadratic displacement behavior. A bilinear stress-strain relationship was used to define the material properties, with constants similar to those of the material used in the experimental study. The model was run for several tensile loads in order to observe the progression of the plastic deformation region, and the stress concentration factor was determined in each case. The experimental study involved employing the visioplasticity technique, where a circular mesh (each circle was 0.5 mm in diameter, with 0.05 mm line thickness) was initially printed on the side of an aluminum slab having a small hole across its width. Tensile loading was then applied to produce a small increment of plastic deformation. Circles in the plastic region became ellipses, where the directions of the principal strains and stresses coincided with the major and minor axes of the ellipses. Next, we were able to determine the directions of the maximum and minimum shear stresses at the center of each ellipse, and the slip-line field was then constructed. We were then able to determine the stress at any point in the plastic deformation zone, and hence the stress concentration factor. The experimental results were found to be in good agreement with the analytical ones.Keywords: Finite element method to model a slab, slab undergoing plastic deformation, stress distribution around a circular hole, visioplasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104201 Implementation of Generalized Plasticity in Load-Deformation Behavior of Foundation with Emphasis on Localization Problem
Authors: A. H. Akhaveissy
Abstract:
Nonlinear finite element method with eight noded isoparametric quadrilateral element is used for prediction of loaddeformation behavior including bearing capacity of foundations. Modified generalized plasticity model with non-associated flow rule is applied for analysis of soil-footing system. Also Von Mises and Tresca criterions are used for simulation of soil behavior. Modified generalized plasticity model is able to simulate load-deformation including softening behavior. Localization phenomena are considered by different meshes. Localization phenomena have not been seen in the examples. Predictions by modified generalized plasticity model show good agreement with laboratory data and theoretical prediction in comparison the other models.Keywords: Localization phenomena, Generalized plasticity, Non-associated Flow Rule
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1598200 Vortex-Induced Vibration Characteristics of an Elastic Circular Cylinder
Authors: T. Li, J.Y. Zhang, W.H. Zhang, M.H. Zhu
Abstract:
A numerical simulation of vortex-induced vibration of a 2-dimensional elastic circular cylinder with two degree of freedom under the uniform flow is calculated when Reynolds is 200. 2-dimensional incompressible Navier-Stokes equations are solved with the space-time finite element method, the equation of the cylinder motion is solved with the new explicit integral method and the mesh renew is achieved by the spring moving mesh technology. Considering vortex-induced vibration with the low reduced damping parameter, the variety trends of the lift coefficient, the drag coefficient, the displacement of cylinder are analyzed under different oscillating frequencies of cylinder. The phenomena of locked-in, beat and phases-witch were captured successfully. The evolution of vortex shedding from the cylinder with time is discussed. There are very similar trends in characteristics between the results of the one degree of freedom cylinder model and that of the two degree of freedom cylinder model. The streamwise vibrations have a certain effect on the lateral vibrations and their characteristics.Keywords: Fluid-structure interaction, Navier-Stokes equation, Space-time finite element method, vortex-induced vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2928199 Assessing the Effect of Underground Tunnel Diameter on Structure-Foundation-Soil Performance under the Kobe Earthquake
Authors: Masoud Mahdavi
Abstract:
Today, developed and industrial cities have all kinds of sewage and water transfer canals, subway tunnels, infrastructure facilities, etc., which have caused underground cavities to be created under the buildings. The presence of these cavities causes behavioral changes in the structural behavior that must be fully evaluated. In the present study, using Abaqus finite element software, the effect of cavities with 0.5 and 1.5 meters in diameter at a depth of 2.5 meters from the earth's surface (with a circular cross-section) on the performance of the foundation and the ground (soil) has been evaluated. For this purpose, the Kobe earthquake was applied to the models for 10 seconds. Also, pore water pressure and weight were considered on the models to get complete results. The results showed that by creating and increasing the diameter of circular cavities in the soil, three indicators; 1) von Mises stress, 2) displacement and 3) plastic strain have had oscillating, ascending and ascending processes, respectively, which shows the relationship between increasing the diameter index of underground cavities and structural indicators of structure-foundation-soil.
Keywords: Underground excavations, foundation, structural substrates, Abaqus software, Kobe earthquake, time history analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 696198 Numerical Simulations of Electronic Cooling with In-Line and Staggered Pin Fin Heat Sinks
Authors: Yue-Tzu Yang, Hsiang-Wen Tang, Jian-Zhang Yin, Chao-Han Wu
Abstract:
Three-dimensional incompressible turbulent fluid flow and heat transfer of pin fin heat sinks using air as a cooling fluid are numerically studied in this study. Two different kinds of pin fins are compared in the thermal performance, including circular and square cross sections, both are in-line and staggered arrangements. The turbulent governing equations are solved using a control-volume- based finite-difference method. Subsequently, numerical computations are performed with the realizable k - ԑ turbulence for the parameters studied, the fin height H, fin diameter D, and Reynolds number (Re) in the range of 7 ≤ H ≤ 10, 0.75 ≤ D ≤ 2, 2000 ≤ Re ≤ 126000 respectively. The numerical results are validated with available experimental data in the literature and good agreement has been found. It indicates that circular pin fins are streamlined in comparing with the square pin fins, the pressure drop is small than that of square pin fins, and heat transfer is not as good as the square pin fins. The thermal performance of the staggered pin fins is better than that of in-line pin fins because the staggered arrangements produce large disturbance. Both in-line and staggered arrangements show the same behavior for thermal resistance, pressure drop, and the entropy generation.
Keywords: Pin-fin, heat sinks, simulations, turbulent flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1272197 Air-Filled Circular Cross Sectional Cavity for Microwave Non-Destructive Testing
Authors: Mohd Tarmizi Ali, Mohd Khairul Mohd Salleh, Md. Mahfudz Md. Zan
Abstract:
Dielectric sheet perturbation to the dominant TE111 mode resonant frequency of a circular cavity is studied and presented in this paper. The dielectric sheet, placed at the middle of the airfilled cavity, introduces discontinuities and disturbs the configuration of electromagnetic fields in the cavity. For fixed dimensions of cavity and fixed thickness of the loading dielectric, the dominant resonant frequency varies quite linearly with the permittivity of the dielectric. This quasi-linear relationship is plotted using Maple software and verified using 3D electromagnetic simulations. Two probes are used in the simulation for wave excitation into and from the cavity. The best length of probe is found to be 3 mm, giving the closest resonant frequency to the one calculated using Maple. A total of fourteen different dielectrics of permittivity ranging from 1 to 12.9 are tested one by one in the simulation. The works show very close agreement between the results from Maple and the simulation. A constant difference of 0.04 GHz is found between the resonant frequencies collected during simulation and the ones from Maple. The success of this project may lead to the possibility of using the middle loaded cavity at TE111 mode as a microwave non-destructive testing of solid materials.Keywords: Middle-loaded cavity, dielectric sheet perturbation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2345196 The Effect of Geogrid Reinforcement Pre-Stressing on the Performance of Sand Bed Supporting a Strip Foundation
Authors: Ahmed M. Eltohamy
Abstract:
In this paper, an experimental and numerical study was adopted to investigate the effect geogrid soil reinforcement pre-stressing on the pressure settlement relation of sand bed supporting a strip foundation. The studied parameters include foundation depth and pre-stress ratio for the cases of one and two pre-stressed reinforcement layers. The study reflected that pre-stressing of soil reinforcement resulted in a marked enhancement in reinforced bed soil stiffness compared to the reinforced soil without pre-stress. The best benefit of pre-stressing reinforcement was obtained as the overburden pressure and pre-straining ratio increase. Pre-stressing of double reinforcement topmost layers results in further enhancement of stress strain relation of bed soil.Keywords: Geogrid reinforcement, strip footing, pre-stress, bearing capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657195 Study on a Nested Cartesian Grid Method
Authors: Yih-Ferng Peng
Abstract:
In this paper, the local grid refinement is focused by using a nested grid technique. The Cartesian grid numerical method is developed for simulating unsteady, viscous, incompressible flows with complex immersed boundaries. A finite volume method is used in conjunction with a two-step fractional-step procedure. The key aspects that need to be considered in developing such a nested grid solver are imposition of interface conditions on the inter-block and accurate discretization of the governing equation in cells that are with the inter-block as a control surface. A new interpolation procedure is presented which allows systematic development of a spatial discretization scheme that preserves the spatial accuracy of the underlying solver. The present nested grid method has been tested by two numerical examples to examine its performance in the two dimensional problems. The numerical examples include flow past a circular cylinder symmetrically installed in a Channel and flow past two circular cylinders with different diameters. From the numerical experiments, the ability of the solver to simulate flows with complicated immersed boundaries is demonstrated and the nested grid approach can efficiently speed up the numerical solutions.Keywords: local grid refinement, Cartesian grid, nested grid, fractional-step method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567194 The Search of Anomalous Higgs Boson Couplings at the Large Hadron Electron Collider and Future Circular Electron Hadron Collider
Authors: Ilkay Turk Cakir, Murat Altinli, Zekeriya Uysal, Abdulkadir Senol, Olcay Bolukbasi Yalcinkaya, Ali Yilmaz
Abstract:
The Higgs boson was discovered by the ATLAS and CMS experimental groups in 2012 at the Large Hadron Collider (LHC). Production and decay properties of the Higgs boson, Standard Model (SM) couplings, and limits on effective scale of the Higgs boson’s couplings with other bosons are investigated at particle colliders. Deviations from SM estimates are parametrized by effective Lagrangian terms to investigate Higgs couplings. This is a model-independent method for describing the new physics. In this study, sensitivity to neutral gauge boson anomalous couplings with the Higgs boson is investigated using the parameters of the Large Hadron electron Collider (LHeC) and the Future Circular electron-hadron Collider (FCC-eh) with a model-independent approach. By using MadGraph5_aMC@NLO multi-purpose event generator with the parameters of LHeC and FCC-eh, the bounds on the anomalous Hγγ, HγZ and HZZ couplings in e− p → e− q H process are obtained. Detector simulations are also taken into account in the calculations.Keywords: Anomalous Couplings, Effective Lagrangian, Electron-Proton Colliders, Higgs Boson.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 864193 Improving the Frequency Response of a Circular Dual-Mode Resonator with a Reconfigurable Bandwidth
Authors: Muhammad Haitham Albahnassi, Adnan Malki, Shokri Almekdad
Abstract:
In this paper, a method for reconfiguring bandwidth in a circular dual-mode resonator is presented. The method concerns the optimized geometry of a structure that may be used to host the tuning elements, which are typically RF (Radio Frequency) switches. The tuning elements themselves, and their performance during tuning, are not the focus of this paper. The designed resonator is able to reconfigure its fractional bandwidth by adjusting the inter-coupling level between the degenerate modes, while at the same time improving its response by adjusting the external-coupling level and keeping the center frequency fixed. The inter-coupling level has been adjusted by changing the dimensions of the perturbation element, while the external-coupling level has been adjusted by changing one of the feeder dimensions. The design was arrived at via optimization. Agreeing simulation and measurement results of the designed and implemented filters showed good improvements in return loss values and the stability of the center frequency.Keywords: Dual-mode resonators, perturbation element, perturbation theory, reconfigurable filters, software defined radio (SDR), cognitine radio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 634192 Assessing the Impact of Underground Cavities on Buildings with Stepped Foundations on Sloping Lands
Authors: Masoud Mahdavi
Abstract:
The use of sloping lands is increasing due to the reduction of suitable lands for the construction of buildings. In the design and construction of buildings on sloping lands, the foundation has special loading conditions that require the designer and executor to use the slopped foundation. The creation of underground cavities, including urban and subway tunnels, sewers, urban facilities, etc., inside the ground, causes the behavior of the foundation to be unknown. In the present study, using Abacus software, a 45-degree stepped foundation on the ground is designed. The foundations are placed on the ground in a cohesive (no-hole) manner with circular cavities that show the effect of increasing the cross-sectional area of the underground cavities on the foundation's performance. The Kobe earthquake struck the foundation and ground for two seconds. The underground cavities have a circular cross-sectional area with a radius of 5 m, which is located at a depth of 22.54 m above the ground. The results showed that as the number of underground cavities increased, von Mises stress (in the vertical direction) increased. With the increase in the number of underground cavities, the plastic strain on the ground has increased. Also, with the increase in the number of underground cavities, the change in location and speed in the foundation has increased.
Keywords: Stepped foundation, sloping ground, Kobe earthquake, Abaqus software, underground excavations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 622191 Perspectives on Sustainable Bioeconomy in the Baltic Sea Region
Authors: Susanna Vanhamäki, Gabor Schneider, Kati Manskinen
Abstract:
‘Bioeconomy’ is a complex concept that cuts across many sectors and covers several policy areas. To achieve an overall understanding and support a successful bioeconomy, a cross-sectorial approach is necessary. In practice, due to the concept’s wide scope and varying international approaches, fully understanding bioeconomy is challenging on policy level. This paper provides a background of the topic through an analysis of bioeconomy strategies in the Baltic Sea region. Expert interviews and a small survey were conducted to discover the current and intended focuses of these countries’ bioeconomy sectors. The research shows that supporting sustainability is one of the keys in developing the future bioeconomy. The results highlighted that the bioeconomy has to be sustainable and based on circular economy principles. Currently, traditional bioeconomy sectors like food, wood, fish & waters as well as fuel & energy, which are in the core of national bioeconomy strategies, are best known and are considered more relevant than other bioeconomy industries. However, there is increasing potential for novel sectors, such as textiles and pharmaceuticals. The present research indicates that the opportunities presented by these bioeconomy sectors should be recognised and promoted. Education, research and innovation can play key roles in developing transformative and sustainable improvements in primary production and renewable resources. Furthermore, cooperation between businesses and educators is important.Keywords: Bioeconomy, circular economy, policy, strategy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 807190 Online Control of Knitted Fabric Quality: Loop Length Control
Authors: Dariush Semnani, Mohammad Sheikhzadeh
Abstract:
Circular knitting machine makes the fabric with more than two knitting tools. Variation of yarn tension between different knitting tools causes different loop length of stitches duration knitting process. In this research, a new intelligent method is applied to control loop length of stitches in various tools based on ideal shape of stitches and real angle of stitches direction while different loop length of stitches causes stitches deformation and deviation those of angle. To measure deviation of stitch direction against variation of tensions, image processing technique was applied to pictures of different fabrics with constant front light. After that, the rate of deformation is translated to needed compensation of loop length cam degree to cure stitches deformation. A fuzzy control algorithm was applied to loop length modification in knitting tools. The presented method was experienced for different knitted fabrics of various structures and yarns. The results show that presented method is useable for control of loop length variation between different knitting tools based on stitch deformation for various knitted fabrics with different fabric structures, densities and yarn types.Keywords: Circular knitting, Radon transformation, Knittedfabric, Regularity, Fuzzy control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3679189 Dynamic Variational Multiscale LES of Bluff Body Flows on Unstructured Grids
Authors: Carine Moussaed, Stephen Wornom, Bruno Koobus, Maria Vittoria Salvetti, Alain Dervieux,
Abstract:
The effects of dynamic subgrid scale (SGS) models are investigated in variational multiscale (VMS) LES simulations of bluff body flows. The spatial discretization is based on a mixed finite element/finite volume formulation on unstructured grids. In the VMS approach used in this work, the separation between the largest and the smallest resolved scales is obtained through a variational projection operator and a finite volume cell agglomeration. The dynamic version of Smagorinsky and WALE SGS models are used to account for the effects of the unresolved scales. In the VMS approach, these effects are only modeled in the smallest resolved scales. The dynamic VMS-LES approach is applied to the simulation of the flow around a circular cylinder at Reynolds numbers 3900 and 20000 and to the flow around a square cylinder at Reynolds numbers 22000 and 175000. It is observed as in previous studies that the dynamic SGS procedure has a smaller impact on the results within the VMS approach than in LES. But improvements are demonstrated for important feature like recirculating part of the flow. The global prediction is improved for a small computational extra cost.Keywords: variational multiscale LES, dynamic SGS model, unstructured grids, circular cylinder, square cylinder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828188 Human Face Detection and Segmentation using Eigenvalues of Covariance Matrix, Hough Transform and Raster Scan Algorithms
Authors: J. Prakash, K. Rajesh
Abstract:
In this paper we propose a novel method for human face segmentation using the elliptical structure of the human head. It makes use of the information present in the edge map of the image. In this approach we use the fact that the eigenvalues of covariance matrix represent the elliptical structure. The large and small eigenvalues of covariance matrix are associated with major and minor axial lengths of an ellipse. The other elliptical parameters are used to identify the centre and orientation of the face. Since an Elliptical Hough Transform requires 5D Hough Space, the Circular Hough Transform (CHT) is used to evaluate the elliptical parameters. Sparse matrix technique is used to perform CHT, as it squeeze zero elements, and have only a small number of non-zero elements, thereby having an advantage of less storage space and computational time. Neighborhood suppression scheme is used to identify the valid Hough peaks. The accurate position of the circumference pixels for occluded and distorted ellipses is identified using Bresenham-s Raster Scan Algorithm which uses the geometrical symmetry properties. This method does not require the evaluation of tangents for curvature contours, which are very sensitive to noise. The method has been evaluated on several images with different face orientations.Keywords: Circular Hough Transform, Covariance matrix, Eigenvalues, Elliptical Hough Transform, Face segmentation, Raster Scan Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2520187 Experimental Investigation of Convective Heat Transfer and Pressure Drop of Al2O3/Water Nanofluid in Laminar Flow Regime inside a Circular Tube
Authors: H. Almohammadi, Sh. Nasiri Vatan, E. Esmaeilzadeh, A. Motezaker, A. Nokhosteen
Abstract:
In the present study, Convective heat transfer coefficient and pressure drop of Al2O3/water nanofluid in laminar flow regime under constant heat flux conditions inside a circular tube were experimentally investigated. Al2O3/water nanofluid with 0.5% and 1% volume concentrations with 15 nm diameter nanoparticles were used as working fluid. The effect of different volume concentrations on convective heat transfer coefficient and friction factor was studied. The results emphasize that increasing of particle volume concentration leads to enhance convective heat transfer coefficient. Measurements show the average heat transfer coefficient enhanced about 11-20% with 0.5% volume concentration and increased about 16-27% with 1% volume concentration compared to distilled water. In addition, the convective heat transfer coefficient of nanofluid enhances with increase in heat flux. From the results, the average ratio of (fnf/fbf) was about 1.10 for 0.5% volume concentration. Therefore, there is no significant increase in friction factor for nanofluids.Keywords: Convective heat transfer, Laminar flow regime, Nanofluids, Pressure drop
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3773186 Weakened Vortex Shedding from a Rotating Cylinder
Authors: Sharul S. Dol
Abstract:
An experimental study of the turbulent near wake of a rotating circular cylinder was made at a Reynolds number of 2000 for velocity ratios, λ between 0 and 2.7. Particle image velocimetry data are analyzed to study the effects of rotation on the flow structures behind the cylinder. The results indicate that the rotation of the cylinder causes significant changes in the vortex formation. Kármán vortex shedding pattern of alternating vortices gives rise to strong periodic fluctuations of a vortex street for λ < 2.0. Alternate vortex shedding is weak and close to being suppressed at λ = 2.0 resulting a distorted street with vortices of alternating sense subsequently being found on opposite sides. Only part of the circulation is shed due to the interference in the separation point, mixing in the base region, re-attachment, and vortex cut-off phenomenon. Alternating vortex shedding pattern diminishes and completely disappears when the velocity ratio is 2.7. The shed vortices are insignificant in size and forming a single line of vortex street. It is clear that flow asymmetries will deteriorate vortex shedding, and when the asymmetries are large enough, total inhibition of a periodic street occurs.
Keywords: Circulation, particle image velocimetry, rotating circular cylinder, smoke-wire flow visualization, Strouhal number, vortex shedding, vortex street.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2868185 Static Response of Homogeneous Clay Stratum to Imposed Structural Loads
Authors: Aaron Aboshio
Abstract:
Numerical study of the static response of homogeneous clay stratum considering a wide range of cohesion and subject to foundation loads is presented. The linear elastic–perfectly plastic constitutive relation with the von Mises yield criterion were utilised to develop a numerically cost effective finite element model for the soil while imposing a rigid body constrain to the foundation footing. From the analyses carried out, estimate of the bearing capacity factor, Nc as well as the ultimate load-carrying capacities of these soils, effect of cohesion on foundation settlements, stress fields and failure propagation were obtained. These are consistent with other findings in the literature and hence can be a useful guide in design of safe foundations in clay soils for buildings and other structure.Keywords: Bearing capacity factors, finite element method, safe bearing pressure, structure-soil interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001184 Enhancement of Recycled Concrete Aggregate Properties by Mechanical Treatment and Verification in Concrete Mixes with Replacement up to 100%
Authors: Iveta Nováková, Martin-Andrè S. Husby, Boy-Arne Buyle
Abstract:
The building industry has one of the most significant contributions to global warming due to the production of building materials, transportation, building activities, and demolition of structures when they reach the end of their life. Implementation of circular material flow and circular economy can significantly reduce greenhouse gasses and simultaneously reduce the need for natural resources. The use of recycled concrete aggregates (RCA) is one of the possibilities for reducing the depletion of raw materials for concrete production. Concrete is the most used building material worldwide, and aggregates constitute large part of its volume. RCA can replace a certain amount of natural aggregates (NA), and concrete will still perform as required. The aim of this scientific paper is to evaluate RCA properties with and without mechanical treatment. Analysis of RCA itself will be followed by compressive strength of concrete containing various amounts of treated and non-treated RCA. Results showed improvement in compressive strength of the mix with mechanically treated RCA compared to standard RCA, and even the strength of concrete with mechanically treated RCA in dose 50% of coarse aggregates was higher than the reference mix by 4%. Based on obtained results, it can be concluded that integration of RCA in industrial concrete production is feasible, at a replacement ratio of 50% for mechanically treated RCA and 30% if untreated RCA is used, without affecting the compressive strength negatively.
Keywords: Recycled concrete aggregates, RCA, mechanical treatment, aggregate properties, compression strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 482183 Certain Data Dimension Reduction Techniques for application with ANN based MCS for Study of High Energy Shower
Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta
Abstract:
Cosmic showers, from their places of origin in space, after entering earth generate secondary particles called Extensive Air Shower (EAS). Detection and analysis of EAS and similar High Energy Particle Showers involve a plethora of experimental setups with certain constraints for which soft-computational tools like Artificial Neural Network (ANN)s can be adopted. The optimality of ANN classifiers can be enhanced further by the use of Multiple Classifier System (MCS) and certain data - dimension reduction techniques. This work describes the performance of certain data dimension reduction techniques like Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Self Organizing Map (SOM) approximators for application with an MCS formed using Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN). The data inputs are obtained from an array of detectors placed in a circular arrangement resembling a practical detector grid which have a higher dimension and greater correlation among themselves. The PCA, ICA and SOM blocks reduce the correlation and generate a form suitable for real time practical applications for prediction of primary energy and location of EAS from density values captured using detectors in a circular grid.Keywords: EAS, Shower, Core, ANN, Location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611182 Modeling of Microelectromechanical Systems Diaphragm Based Acoustic Sensor
Authors: Vasudha Hegde, Narendra Chaulagain, H. M. Ravikumar, Sonu Mishra, Siva Yellampalli
Abstract:
Acoustic sensors are extensively used in recent days not only for sensing and condition monitoring applications but also for small scale energy harvesting applications to power wireless sensor networks (WSN) due to their inherent advantages. The natural frequency of the structure plays a major role in energy harvesting applications since the sensor key element has to operate at resonant frequency. In this paper, circular diaphragm based MEMS acoustic sensor is modelled by Lumped Element Model (LEM) and the natural frequency is compared with the simulated model using Finite Element Method (FEM) tool COMSOL Multiphysics. The sensor has the circular diaphragm of 3000 µm radius and thickness of 30 µm to withstand the high SPL (Sound Pressure Level) and also to withstand the various fabrication steps. A Piezoelectric ZnO layer of thickness of 1 µm sandwiched between two aluminium electrodes of thickness 0.5 µm and is coated on the diaphragm. Further, a channel with radius 3000 µm radius and length 270 µm is connected at the bottom of the diaphragm. The natural frequency of the structure by LEM method is approximately 16.6 kHz which is closely matching with that of simulated structure with suitable approximations.
Keywords: Acoustic sensor, diaphragm based, lumped element modeling, natural frequency, piezoelectric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1033181 Evaluation of a Remanufacturing for Lithium Ion Batteries from Electric Cars
Authors: Achim Kampker, Heiner H. Heimes, Mathias Ordung, Christoph Lienemann, Ansgar Hollah, Nemanja Sarovic
Abstract:
Electric cars with their fast innovation cycles and their disruptive character offer a high degree of freedom regarding innovative design for remanufacturing. Remanufacturing increases not only the resource but also the economic efficiency by a prolonged product life time. The reduced power train wear of electric cars combined with high manufacturing costs for batteries allow new business models and even second life applications. Modular and intermountable designed battery packs enable the replacement of defective or outdated battery cells, allow additional cost savings and a prolongation of life time. This paper discusses opportunities for future remanufacturing value chains of electric cars and their battery components and how to address their potentials with elaborate designs. Based on a brief overview of implemented remanufacturing structures in different industries, opportunities of transferability are evaluated. In addition to an analysis of current and upcoming challenges, promising perspectives for a sustainable electric car circular economy enabled by design for remanufacturing are deduced. Two mathematical models describe the feasibility of pursuing a circular economy of lithium ion batteries and evaluate remanufacturing in terms of sustainability and economic efficiency. Taking into consideration not only labor and material cost but also capital costs for equipment and factory facilities to support the remanufacturing process, cost benefit analysis prognosticate that a remanufacturing battery can be produced more cost-efficiently. The ecological benefits were calculated on a broad database from different research projects which focus on the recycling, the second use and the assembly of lithium ion batteries. The results of this calculations show a significant improvement by remanufacturing in all relevant factors especially in the consumption of resources and greenhouse warming potential. Exemplarily suitable design guidelines for future remanufacturing lithium ion batteries, which consider modularity, interfaces and disassembly, are used to illustrate the findings. For one guideline, potential cost improvements were calculated and upcoming challenges are pointed out.
Keywords: Circular economy, electric mobility, lithium ion batteries, remanufacturing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5398180 Mathieu Stability of Offshore Buoyant Leg Storage and Regasification Platform
Authors: S. Chandrasekaran, P. A. Kiran
Abstract:
Increasing demand for large-sized Floating, Storage and Regasification Units (FSRUs) for oil and gas industries led to the development of novel geometric form of Buoyant Leg Storage and Regasification Platform (BLSRP). BLSRP consists of a circular deck supported by six buoyant legs placed symmetrically with respect to wave direction. Circular deck is connected to buoyant legs using hinged joints, which restrain transfer of rotational response from the legs to deck and vice-versa. Buoyant legs are connected to seabed using taut moored system with high initial pretension, enabling rigid body motion in vertical plane. Encountered environmental loads induce dynamic tether tension variations, which in turn affect stability of the platform. The present study investigates Mathieu stability of BLSRP under the postulated tether pullout cases by inducing additional tension in the tethers. From the numerical studies carried out, it is seen that postulated tether pullout on any one of the buoyant legs does not result in Mathieu type instability even under excessive tether tension. This is due to the presence of hinged joints, which are capable of dissipating the unbalanced loads to other legs. However, under tether pullout of consecutive buoyant legs, Mathieu-type instability is observed.Keywords: Offshore platforms, stability, postulated failure, dynamic tether tension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 905179 Seismic Behavior of Steel Moment-Resisting Frames for Uplift Permitted in Near-Fault Regions
Authors: M. Tehranizadeh, E. Shoushtari Rezvani
Abstract:
Seismic performance of steel moment-resisting frame structures is investigated considering nonlinear soil-structure interaction (SSI) effects. 10-, 15-, and 20-story planar building frames with aspect ratio of 3 are designed in accordance with current building codes. Inelastic seismic demands of the superstructure are considered using concentrated plasticity model. The raft foundation system is designed for different soil types. Beam-on-nonlinear Winkler foundation (BNWF) is used to represent dynamic impedance of the underlying soil. Two sets of pulse-like as well as no-pulse near-fault earthquakes are used as input ground motions. The results show that the reduction in drift demands due to nonlinear SSI is characterized by a more uniform distribution pattern along the height when compared to the fixed-base and linear SSI condition. It is also concluded that beneficial effects of nonlinear SSI on displacement demands is more significant in case of pulse-like ground motions and performance level of the steel moment-resisting frames can be enhanced.
Keywords: Soil-structure interaction, uplifting, soil plasticity, near-fault earthquake, tall building.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1141178 Predictive Maintenance of Industrial Shredders: Efficient Operation through Real-Time Monitoring Using Statistical Machine Learning
Authors: Federico Pittino, Dominik Holzmann, Krithika Sayar-Chand, Stefan Moser, Sebastian Pliessnig, Thomas Arnold
Abstract:
The shredding of waste materials is a key step in the recycling process towards circular economy. Industrial shredders for waste processing operate in very harsh operating conditions, leading to the need of frequent maintenance of critical components. The maintenance optimization is particularly important also to increase the machine’s efficiency, thereby reducing the operational costs. In this work, a monitoring system has been developed and deployed on an industrial shredder located at a waste recycling plant in Austria. The machine has been monitored for several months and methods for predictive maintenance have been developed for two key components: the cutting knives and the drive belt. The large amount of collected data is leveraged by statistical machine learning techniques, thereby not requiring a very detailed knowledge of the machine or its live operating conditions. The results show that, despite the wide range of operating conditions, a reliable estimate of the optimal time for maintenance can be derived. Moreover, the trade-off between the cost of maintenance and the increase in power consumption due to the wear state of the monitored components of the machine is investigated. This work proves the benefits of real-time monitoring system for efficient operation of industrial shredders.
Keywords: predictive maintenance, circular economy, industrial shredder, cost optimization, statistical machine learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 645177 Working Children and Adolescents and the Vicious Circle of Poverty from the Perspective of Gunnar Myrdal’s Theory of Circular Cumulative Causation: Analysis and Implementation of a Probit Model to Brazil
Authors: J. Leige Lopes, L. Aparecida Bastos, R. Monteiro da Silva
Abstract:
The objective of this paper is to study the work of children and adolescents and the vicious circle of poverty from the perspective of Guinar Myrdal’s Theory of Circular Cumulative Causation. The objective is to show that if a person starts working in the juvenile phase of life they will be classified as poor or extremely poor when they are adult, which can to be observed in the case of Brazil, more specifically in the north and northeast. To do this, the methodology used was statistical and econometric analysis by applying a probit model. The main results show that: if people reside in the northeastern region of Brazil, and if they have a low educational level and if they start their professional life before the age 18, they will increase the likelihood that they will be poor or extremely poor. There is a consensus in the literature that one of the causes of the intergenerational transmission of poverty is related to child labor, this because when one starts their professional life while still in the toddler or adolescence stages of life, they end up sacrificing their studies. Because of their low level of education, children or adolescents are forced to perform low-paid functions and abandon school, becoming in the future, people who will be classified as poor or extremely poor. As a result of poverty, parents may be forced to send their children out to work when they are young, so that in the future they will also become poor adults, a process that is characterized as the "vicious circle of poverty."Keywords: Children, adolescents, Gunnar Myrdal, poverty, vicious circle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693176 Industry Symbiosis and Waste Glass Upgrading: A Feasibility Study in Liverpool towards Circular Economy
Authors: Han-Mei Chen, Rongxin Zhou, Taige Wang
Abstract:
Glass is widely used in everyday life, from glass bottles for beverages, to architectural glass for various forms of glazing. Although the mainstream of used glass is recycled in the UK, the single-use and then recycling procedure results in a lot of waste as it incorporates intact glass with smashing, re-melting and remanufacturing. These processes bring massive energy consumption with a huge loss of high embodied energy and economic value, compared to re-use which’s towards a ‘zero carbon’ target. As a tourism city, Liverpool has more glass bottle consumption than most less leisure focused cities. It is therefore vital for Liverpool to find an upgrading approach for the single-use glass bottles with a low carbon output. This project aims to assess the feasibility of an industrial symbiosis and upgrading framework of glass and to investigate the ways of achieving them. It is significant to Liverpool’s future industry strategy since it provides an opportunity to target on economy recovery for post-COVID by industry symbiosis and an up-grading waste management in Liverpool to respond to the climate emergency. In addition, it will influence the local government policy for glass bottle reuse and recycling in North West England, and as a good practice to be further recommended to other areas of the UK. First, critical literature review of glass waste strategies has been conducted in the UK, and world-wide industrial symbiosis practices. Second, mapping, data collection and analysis have shown the current life cycle chain and the strong links of glass reuse and upgrading potentials via site visits to 16 local waste recycling centres. The results of this research have demonstrated the understanding the influence of key factors on the development of a circular industrial symbiosis business model for beverage glass bottles. The current waste management procedures of glass bottle industry, its business model, supply chain and the material flow have been reviewed. The various potential opportunities for glass bottle up-valuing have been investigated towards an industrial symbiosis in Liverpool. Finally, an up-valuing business model has been developed for an industrial symbiosis framework of glass in Liverpool. For glass bottles, there are two possibilities: 1) focus on upgrading processes towards re-use rather than single-use and recycling, 2) focus on ‘smart’ re-use and recycling leading to optimised values in other sectors to create a wider industry symbiosis for a multi-level and circular economy.
Keywords: Glass bottles, industry symbiosis, smart reuse, waste upgrading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 245175 A New Center of Motion in Cabling Robots
Authors: A. Abbasi Moshaii, F. Najafi
Abstract:
In this paper a new model for center of motion creating is proposed. This new method uses cables. So, it is very useful in robots because it is light and has easy assembling process. In the robots which need to be in touch with some things this method is so useful. It will be described in the following. The accuracy of the idea is proved by two experiments. This system could be used in the robots which need a fixed point in the contact with some things and make a circular motion.Keywords: Center of Motion, Robotic cables, permanent touching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670