Search results for: BCM PFC circuit.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 560

Search results for: BCM PFC circuit.

440 Circuit Breaker and Transformer Monitoring

Authors: M.Nafar, A.H.Gheisari, A.Alesaadi

Abstract:

Since large power transformers are the most expensive and strategically important components of any power generator and transmission system, their reliability is crucially important for the energy system operation. Also, Circuit breakers are very important elements in the power transmission line so monitoring the events gives a knowledgebase to determine time to the next maintenance. This paper deals with the introduction of the comparative method of the state estimation of transformers and Circuit breakers using continuous monitoring of voltage, current. This paper gives details a new method based on wavelet to apparatus insulation monitoring. In this paper to insulation monitoring of transformer, a new method based on wavelet transformation and neutral point analysis is proposed. Using the EMTP tools, fault in transformer winding and the detailed transformer winding model were simulated. The current of neutral point of winding was analyzed by wavelet transformation. It is shown that the neutral current of the transformer winding has useful information about fault in insulation of the transformer.

Keywords: Wavelet, Power Transformer, EMTP, CircuitBreaker, Monitoring

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041
439 Versatile Dual-Mode Class-AB Four-Quadrant Analog Multiplier

Authors: Montree Kumngern, Kobchai Dejhan

Abstract:

Versatile dual-mode class-AB CMOS four-quadrant analog multiplier circuit is presented. The dual translinear loops and current mirrors are the basic building blocks in realization scheme. This technique provides; wide dynamic range, wide-bandwidth response and low power consumption. The major advantages of this approach are; its has single ended inputs; since its input is dual translinear loop operate in class-AB mode which make this multiplier configuration interesting for low-power applications; current multiplying, voltage multiplying, or current and voltage multiplying can be obtainable with balanced input. The simulation results of versatile analog multiplier demonstrate a linearity error of 1.2 %, a -3dB bandwidth of about 19MHz, a maximum power consumption of 0.46mW, and temperature compensated. Operation of versatile analog multiplier was also confirmed through an experiment using CMOS transistor array.

Keywords: Class-AB, dual-mode CMOS analog multiplier, CMOS analog integrated circuit, CMOS translinear integrated circuit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2286
438 A Comprehensive Evaluation of Supervised Machine Learning for the Phase Identification Problem

Authors: Brandon Foggo, Nanpeng Yu

Abstract:

Power distribution circuits undergo frequent network topology changes that are often left undocumented. As a result, the documentation of a circuit’s connectivity becomes inaccurate with time. The lack of reliable circuit connectivity information is one of the biggest obstacles to model, monitor, and control modern distribution systems. To enhance the reliability and efficiency of electric power distribution systems, the circuit’s connectivity information must be updated periodically. This paper focuses on one critical component of a distribution circuit’s topology - the secondary transformer to phase association. This topology component describes the set of phase lines that feed power to a given secondary transformer (and therefore a given group of power consumers). Finding the documentation of this component is call Phase Identification, and is typically performed with physical measurements. These measurements can take time lengths on the order of several months, but with supervised learning, the time length can be reduced significantly. This paper compares several such methods applied to Phase Identification for a large range of real distribution circuits, describes a method of training data selection, describes preprocessing steps unique to the Phase Identification problem, and ultimately describes a method which obtains high accuracy (> 96% in most cases, > 92% in the worst case) using only 5% of the measurements typically used for Phase Identification.

Keywords: Distribution network, machine learning, network topology, phase identification, smart grid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1074
437 Power Reduction by Automatic Monitoring and Control System in Active Mode

Authors: Somaye Abdollahi Pour, Mohsen Saneei

Abstract:

This paper describes a novel monitoring scheme to minimize total active power in digital circuits depend on the demand frequency, by adjusting automatically both supply voltage and threshold voltages based on circuit operating conditions such as temperature, process variations, and desirable frequency. The delay monitoring results, will be control and apply so as to be maintained at the minimum value at which the chip is able to operate for a given clock frequency. Design details of power monitor are examined using simulation framework in 32nm BTPM model CMOS process. Experimental results show the overhead of proposed circuit in terms of its power consumption is about 40 μW for 32nm technology; moreover the results show that our proposed circuit design is not far sensitive to the temperature variations and also process variations. Besides, uses the simple blocks which offer good sensitivity, high speed, the continuously feedback loop. This design provides up to 40% reduction in power consumption in active mode.

Keywords: active mode, delay monitor, body biasing, VDD scaling, low power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
436 Study on the Characteristics of the Measurement System for pH Array Sensors

Authors: Jung-Chuan Chou, Wei-Lun Hsia

Abstract:

A measurement system for pH array sensors is introduced to increase accuracy, and decrease non-ideal effects successfully. An array readout circuit reads eight potentiometric signals at the same time, and obtains an average value. The deviation value or the extreme value is counteracted and the output voltage is a relatively stable value. The errors of measuring pH buffer solutions are decreased obviously with this measurement system, and the non-ideal effects, drift and hysteresis, are lowered to 1.638mV/hr and 1.118mV, respectively. The efficiency and stability are better than single sensor. The whole sensing characteristics are improved.

Keywords: Array sensors, measurement system, non-ideal effects, pH sensor, readout circuit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
435 Analysis on Modeling and Simulink of DC Motor and its Driving System Used for Wheeled Mobile Robot

Authors: Wai Phyo Aung

Abstract:

Wheeled Mobile Robots (WMRs) are built with their Wheels- drive machine, Motors. Depend on their desire design of WMR, Technicians made used of DC Motors for motion control. In this paper, the author would like to analyze how to choose DC motor to be balance with their applications of especially for WMR. Specification of DC Motor that can be used with desire WMR is to be determined by using MATLAB Simulink model. Therefore, this paper is mainly focus on software application of MATLAB and Control Technology. As the driving system of DC motor, a Peripheral Interface Controller (PIC) based control system is designed including the assembly software technology and H-bridge control circuit. This Driving system is used to drive two DC gear motors which are used to control the motion of WMR. In this analyzing process, the author mainly focus the drive system on driving two DC gear motors that will control with Differential Drive technique to the Wheeled Mobile Robot . For the design analysis of Motor Driving System, PIC16F84A is used and five inputs of sensors detected data are tested with five ON/OFF switches. The outputs of PIC are the commands to drive two DC gear motors, inputs of Hbridge circuit .In this paper, Control techniques of PIC microcontroller and H-bridge circuit, Mechanism assignments of WMR are combined and analyzed by mainly focusing with the “Modeling and Simulink of DC Motor using MATLAB".

Keywords: Control System Design, DC Motors, DifferentialDrive, H-bridge control circuit, MATLAB Simulink model, Peripheral Interface Controller (PIC), Wheeled Mobile Robots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11304
434 Symmetrical Analysis of a Six-Phase Induction Machine Under Fault Conditions

Authors: E. K.Appiah, G. M'boungui, A. A. Jimoh, J. L. Munda, A.S.O. Ogunjuyigbe

Abstract:

The operational behavior of a six-phase squirrel cage induction machine with faulted stator terminals is presented in this paper. The study is carried out using the derived mathematical model of the machine in the arbitrary reference frame. Tests are conducted on a 1 kW experimental machine. Steady-state and dynamic performance are analyzed for the machine unloaded and loaded conditions. The results shows that with one of the stator phases experiencing either an open- circuit or short circuit fault the machine still produces starting torque, albeit the running performance is significantly derated.

Keywords: Performance, fault conditions, six-phase induction machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2830
433 A Direct Down-conversion Receiver for Low-power Wireless Sensor Networks

Authors: Gianluca Cornetta, Abdellah Touhafi, David J. Santos, Jose Manuel Vazquez

Abstract:

A direct downconversion receiver implemented in 0.13 μm 1P8M process is presented. The circuit is formed by a single-end LNA, an active balun for conversion into balanced mode, a quadrature double-balanced passive switch mixer and a quadrature voltage-controlled oscillator. The receiver operates in the 2.4 GHz ISM band and complies with IEEE 802.15.4 (ZigBee) specifications. The circuit exhibits a very low noise figure of only 2.27 dB and dissipates only 14.6 mW with a 1.2 V supply voltage and is hence suitable for low-power applications.

Keywords: LNA, Active Balun, Passive Mixer, VCO, IEEE 802.15.4(ZigBee).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2350
432 Electrical Equivalent Analysis of Micro Cantilever Beams for Sensing Applications

Authors: B. G. Sheeparamatti, J. S. Kadadevarmath

Abstract:

Microcantilevers are the basic MEMS devices, which can be used as sensors, actuators and electronics can be easily built into them. The detection principle of microcantilever sensors is based on the measurement of change in cantilever deflection or change in its resonance frequency. The objective of this work is to explore the analogies between mechanical and electrical equivalent of microcantilever beams. Normally scientists and engineers working in MEMS use expensive software like CoventorWare, IntelliSuite, ANSYS/Multiphysics etc. This paper indicates the need of developing electrical equivalent of the MEMS structure and with that, one can have a better insight on important parameters, and their interrelation of the MEMS structure. In this work, considering the mechanical model of microcantilever, equivalent electrical circuit is drawn and using force-voltage analogy, it is analyzed with circuit simulation software. By doing so, one can gain access to powerful set of intellectual tools that have been developed for understanding electrical circuits Later the analysis is performed using ANSYS/Multiphysics - software based on finite element method (FEM). It is observed that both mechanical and electrical domain results for a rectangular microcantlevers are in agreement with each other.

Keywords: Electrical equivalent circuit analogy, FEM analysis, micro cantilevers, micro sensors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2459
431 Optimization by Means of Genetic Algorithm of the Equivalent Electrical Circuit Model of Different Order for Li-ion Battery Pack

Authors: V. Pizarro-Carmona, S. Castano-Solis, M. Cortés-Carmona, J. Fraile-Ardanuy, D. Jimenez-Bermejo

Abstract:

The purpose of this article is to optimize the Equivalent Electric Circuit Model (EECM) of different orders to obtain greater precision in the modeling of Li-ion battery packs. Optimization includes considering circuits based on 1RC, 2RC and 3RC networks, with a dependent voltage source and a series resistor. The parameters are obtained experimentally using tests in the time domain and in the frequency domain. Due to the high non-linearity of the behavior of the battery pack, Genetic Algorithm (GA) was used to solve and optimize the parameters of each EECM considered (1RC, 2RC and 3RC). The objective of the estimation is to minimize the mean square error between the measured impedance in the real battery pack and those generated by the simulation of different proposed circuit models. The results have been verified by comparing the Nyquist graphs of the estimation of the complex impedance of the pack. As a result of the optimization, the 2RC and 3RC circuit alternatives are considered as viable to represent the battery behavior. These battery pack models are experimentally validated using a hardware-in-the-loop (HIL) simulation platform that reproduces the well-known New York City cycle (NYCC) and Federal Test Procedure (FTP) driving cycles for electric vehicles. The results show that using GA optimization allows obtaining EECs with 2RC or 3RC networks, with high precision to represent the dynamic behavior of a battery pack in vehicular applications.

Keywords: Li-ion battery packs modeling optimized, EECM, GA, electric vehicle applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544
430 SCR-Based Advanced ESD Protection Device for Low Voltage Application

Authors: Bo Bae Song, Byung Seok Lee, Hyun Young Kim, Chung Kwang Lee, Yong Seo Koo

Abstract:

This paper proposed a silicon controller rectifier (SCR) based ESD protection device to protect low voltage ESD for integrated circuit. The proposed ESD protection device has low trigger voltage and high holding voltage compared with conventional SCR-based ESD protection devices. The proposed ESD protection circuit is verified and compared by TCAD simulation. This paper verified effective low voltage ESD characteristics with low trigger voltage of 5.79V and high holding voltage of 3.5V through optimization depending on design variables (D1, D2, D3 and D4).

Keywords: ESD, SCR, Holding voltage, Latch-up.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2890
429 Perturbation Based Modelling of Differential Amplifier Circuit

Authors: Rahul Bansal, Sudipta Majumdar

Abstract:

This paper presents the closed form nonlinear expressions of bipolar junction transistor (BJT) differential amplifier (DA) using perturbation method. Circuit equations have been derived using Kirchhoff’s voltage law (KVL) and Kirchhoff’s current law (KCL). The perturbation method has been applied to state variables for obtaining the linear and nonlinear terms. The implementation of the proposed method is simple. The closed form nonlinear expressions provide better insights of physical systems. The derived equations can be used for signal processing applications.

Keywords: Differential amplifier, perturbation method, Taylor series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1017
428 Accurate Time Domain Method for Simulation of Microstructured Electromagnetic and Photonic Structures

Authors: Vijay Janyani, Trevor M. Benson, Ana Vukovic

Abstract:

A time-domain numerical model within the framework of transmission line modeling (TLM) is developed to simulate electromagnetic pulse propagation inside multiple microcavities forming photonic crystal (PhC) structures. The model developed is quite general and is capable of simulating complex electromagnetic problems accurately. The field quantities can be mapped onto a passive electrical circuit equivalent what ensures that TLM is provably stable and conservative at a local level. Furthermore, the circuit representation allows a high level of hybridization of TLM with other techniques and lumped circuit models of components and devices. A photonic crystal structure formed by rods (or blocks) of high-permittivity dieletric material embedded in a low-dielectric background medium is simulated as an example. The model developed gives vital spatio-temporal information about the signal, and also gives spectral information over a wide frequency range in a single run. The model has wide applications in microwave communication systems, optical waveguides and electromagnetic materials simulations.

Keywords: Computational Electromagnetics, Numerical Simulation, Transmission Line Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
427 Optimizing the Number of Bits/Stage in 10-Bit, 50Ms/Sec Pipelined A/D Converter Considering Area, Speed, Power and Linearity

Authors: P. Prasad Rao, K. Lal Kishore

Abstract:

Pipeline ADCs are becoming popular at high speeds and with high resolution. This paper discusses the options of number of bits/stage conversion techniques in pipelined ADCs and their effect on Area, Speed, Power Dissipation and Linearity. The basic building blocks like op-amp, Sample and Hold Circuit, sub converter, DAC, Residue Amplifier used in every stage is assumed to be identical. The sub converters use flash architectures. The design is implemented using 0.18

Keywords: 1.5 bits/stage, Conversion Frequency, Redundancy Switched Capacitor Sample and Hold Circuit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
426 A Fault-Tolerant Full Adder in Double Pass CMOS Transistor

Authors: Abdelmonaem Ayachi, Belgacem Hamdi

Abstract:

This paper presents a fault-tolerant implementation for adder schemes using the dual duplication code. To prove the efficiency of the proposed method, the circuit is simulated in double pass transistor CMOS 32nm technology and some transient faults are voluntary injected in the Layout of the circuit. This fully differential implementation requires only 20 transistors which mean that the proposed design involves 28.57% saving in transistor count compared to standard CMOS technology.

Keywords: Semiconductors, digital electronics, double pass transistor technology, Full adder, fault tolerance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2107
425 Very High Speed Data Driven Dynamic NAND Gate at 22nm High K Metal Gate Strained Silicon Technology Node

Authors: Shobha Sharma, Amita Dev

Abstract:

Data driven dynamic logic is the high speed dynamic circuit with low area. The clock of the dynamic circuit is removed and data drives the circuit instead of clock for precharging purpose. This data driven dynamic nand gate is given static forward substrate biasing of Vsupply/2 as well as the substrate bias is connected to the input data, resulting in dynamic substrate bias. The dynamic substrate bias gives the shortest propagation delay with a penalty on the power dissipation. Propagation delay is reduced by 77.8% compared to the normal reverse substrate bias Data driven dynamic nand. Also dynamic substrate biased D3nand’s propagation delay is reduced by 31.26% compared to data driven dynamic nand gate with static forward substrate biasing of Vdd/2. This data driven dynamic nand gate with dynamic body biasing gives us the highest speed with no area penalty and finds its applications where power penalty is acceptable. Also combination of Dynamic and static Forward body bias can be used with reduced propagation delay compared to static forward biased circuit and with comparable increase in an average power. The simulations were done on hspice simulator with 22nm High-k metal gate strained Si technology HP models of Arizona State University, USA.

Keywords: Data driven nand gate, dynamic substrate biasing, nand gate, static substrate biasing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
424 A Simple and Efficient Method for Accurate Measurement and Control of Power Frequency Deviation

Authors: S. J. Arif

Abstract:

In the presented technique, a simple method is given for accurate measurement and control of power frequency deviation. The sinusoidal signal for which the frequency deviation measurement is required is transformed to a low voltage level and passed through a zero crossing detector to convert it into a pulse train. Another stable square wave signal of 10 KHz is obtained using a crystal oscillator and decade dividing assemblies (DDA). These signals are combined digitally and then passed through decade counters to give a unique combination of pulses or levels, which are further encoded to make them equally suitable for both control applications and display units. The developed circuit using discrete components has a resolution of 0.5 Hz and completes measurement within 20 ms. The realized circuit is simulated and synthesized using Verilog HDL and subsequently implemented on FPGA. The results of measurement on FPGA are observed on a very high resolution logic analyzer. These results accurately match the simulation results as well as the results of same circuit implemented with discrete components. The proposed system is suitable for accurate measurement and control of power frequency deviation.

Keywords: Digital encoder for frequency measurement, frequency deviation measurement, measurement and control systems, power systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
423 A Local Invariant Generalized Hough Transform Method for Integrated Circuit Visual Positioning

Authors: Fei Long Wei, Hua Yang, Hai Tao Zhang, Zhou Ping Yin

Abstract:

In this study, an local invariant generalized Houghtransform (LI-GHT) method is proposed for integrated circuit (IC) visual positioning. The original generalized Hough transform (GHT) is robust to external noise; however, it is not suitable for visual positioning of IC chips due to the four-dimensionality (4D) of parameter space which leads to the substantial storage requirement and high computational complexity. The proposed LI-GHT method can reduce the dimensionality of parameter space to 2D thanks to the rotational invariance of local invariant geometric feature and it can estimate the accuracy position and rotation angle of IC chips in real-time under noise and blur influence. The experiment results show that the proposed LI-GHT can estimate position and rotation angle of IC chips with high accuracy and fast speed. The proposed LI-GHT algorithm was implemented in IC visual positioning system of radio frequency identification (RFID) packaging equipment.

Keywords: Integrated Circuit Visual Positioning, Generalized Hough Transform, Local invariant Generalized Hough Transform, ICpacking equipment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208
422 Design and Study of a DC/DC Converter for High Power, 14.4 V and 300 A for Automotive Applications

Authors: Julio Cesar Lopes de Oliveira, Carlos Henrique Gonc¸alves Treviso

Abstract:

The shortage of the automotive market in relation to options for sources of high power car audio systems, led to development of this work. Thus, we developed a source with stabilized voltage with 4320 W effective power. Designed to the voltage of 14.4 V and a choice of two currents: 30 A load option in battery banks and 300 A at full load. This source can also be considered as a source of general use dedicated commercial with a simple control circuit in analog form based on discrete components. The assembly of power circuit uses a methodology for higher power than the initially stipulated.

Keywords: DC-DC power converters, converters, power convertion, pulse width modulation converters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2908
421 A Novel Multiple Valued Logic OHRNS Modulo rn Adder Circuit

Authors: Mehdi Hosseinzadeh, Somayyeh Jafarali Jassbi, Keivan Navi

Abstract:

Residue Number System (RNS) is a modular representation and is proved to be an instrumental tool in many digital signal processing (DSP) applications which require high-speed computations. RNS is an integer and non weighted number system; it can support parallel, carry-free, high-speed and low power arithmetic. A very interesting correspondence exists between the concepts of Multiple Valued Logic (MVL) and Residue Number Arithmetic. If the number of levels used to represent MVL signals is chosen to be consistent with the moduli which create the finite rings in the RNS, MVL becomes a very natural representation for the RNS. There are two concerns related to the application of this Number System: reaching the most possible speed and the largest dynamic range. There is a conflict when one wants to resolve both these problem. That is augmenting the dynamic range results in reducing the speed in the same time. For achieving the most performance a method is considere named “One-Hot Residue Number System" in this implementation the propagation is only equal to one transistor delay. The problem with this method is the huge increase in the number of transistors they are increased in order m2 . In real application this is practically impossible. In this paper combining the Multiple Valued Logic and One-Hot Residue Number System we represent a new method to resolve both of these two problems. In this paper we represent a novel design of an OHRNS-based adder circuit. This circuit is useable for Multiple Valued Logic moduli, in comparison to other RNS design; this circuit has considerably improved the number of transistors and power consumption.

Keywords: Computer Arithmetic, Residue Number System, Multiple Valued Logic, One-Hot, VLSI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
420 Digital Encoder Based Power Frequency Deviation Measurement

Authors: Syed Javed Arif, Mohd Ayyub Khan, Saleem Anwar Khan

Abstract:

In this paper, a simple method is presented for measurement of power frequency deviations. A phase locked loop (PLL) is used to multiply the signal under test by a factor of 100. The number of pulses in this pulse train signal is counted over a stable known period, using decade driving assemblies (DDAs) and flip-flops. These signals are combined using logic gates and then passed through decade counters to give a unique combination of pulses or levels, which are further encoded. These pulses are equally suitable for both control applications and display units. The experimental circuit developed gives a resolution of 1 Hz within the measurement period of 20 ms. The proposed circuit is also simulated in Verilog Hardware Description Language (VHDL) and implemented using Field Programing Gate Arrays (FPGAs). A Mixed signal Oscilloscope (MSO) is used to observe the results of FPGA implementation. These results are compared with the results of the proposed circuit of discrete components. The proposed system is useful for frequency deviation measurement and control in power systems.

Keywords: Frequency measurement, digital control, phase locked loop, encoding, Verilog HDL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 615
419 Bifurcation and Chaos of the Memristor Circuit

Authors: Wang Zhulin, Min Fuhong, Peng Guangya, Wang Yaoda, Cao Yi

Abstract:

In this paper, a magnetron memristor model based on hyperbolic sine function is presented and the correctness proved by studying the trajectory of its voltage and current phase, and then a memristor chaotic system with the memristor model is presented. The phase trajectories and the bifurcation diagrams and Lyapunov exponent spectrum of the magnetron memristor system are plotted by numerical simulation, and the chaotic evolution with changing the parameters of the system is also given. The paper includes numerical simulations and mathematical model, which confirming that the system, has a wealth of dynamic behavior.

Keywords: Memristor, chaotic circuit, dynamical behavior, chaotic system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
418 A Very High Speed, High Resolution Current Comparator Design

Authors: Neeraj K. Chasta

Abstract:

This paper presents an idea for analog current comparison which compares input signal and reference currents with high speed and accuracy. Proposed circuit utilizes amplification properties of common gate configuration, where voltage variations of input current are amplified and a compared output voltage is developed. Cascaded inverter stages are used to generate final CMOS compatible output voltage. Power consumption of circuit can be controlled by the applied gate bias voltage. The comparator is designed and studied at 180nm CMOS process technology for a supply voltage of 3V.

Keywords: Current Mode, Comparator, High Resolution, High Speed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4707
417 Parameter Estimation of Diode Circuit Using Extended Kalman Filter

Authors: Amit Kumar Gautam, Sudipta Majumdar

Abstract:

This paper presents parameter estimation of a single-phase rectifier using extended Kalman filter (EKF). The state space model has been obtained using Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law (KVL). The capacitor voltage and diode current of the circuit have been estimated using EKF. Simulation results validate the better accuracy of the proposed method as compared to the least mean square method (LMS). Further, EKF has the advantage that it can be used for nonlinear systems.

Keywords: Extended Kalman filter, parameter estimation, single phase rectifier, state space modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 903
416 Low Frequency Multiple Divider Using Resonant Model

Authors: Chih Chin Yang, Chih Yu Lee, Jing Yi Wang, Mei Zhen Xue, Chia Yueh Wu

Abstract:

A well-defined frequency multiple dividing (FMD) circuit using a resonant model is presented in this research. The basic component of a frequency multiple divider as used in a resonant model is established by compositing a well-defined resonant effect of negative differential resistance (NDR) characteristics which possesses a wider operational region and high operational current at a bias voltage of about 1.15 V. The resonant model is then applied in the frequency dividing circuit with the above division ratio (RD) of 200 at the signal input of middle frequency. The division ratio also exists at the input of a low frequency signal.

Keywords: Divider, frequency, resonant model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1226
415 Online Battery Equivalent Circuit Model Estimation on Continuous-Time Domain Using Linear Integral Filter Method

Authors: Cheng Zhang, James Marco, Walid Allafi, Truong Q. Dinh, W. D. Widanage

Abstract:

Equivalent circuit models (ECMs) are widely used in battery management systems in electric vehicles and other battery energy storage systems. The battery dynamics and the model parameters vary under different working conditions, such as different temperature and state of charge (SOC) levels, and therefore online parameter identification can improve the modelling accuracy. This paper presents a way of online ECM parameter identification using a continuous time (CT) estimation method. The CT estimation method has several advantages over discrete time (DT) estimation methods for ECM parameter identification due to the widely separated battery dynamic modes and fast sampling. The presented method can be used for online SOC estimation. Test data are collected using a lithium ion cell, and the experimental results show that the presented CT method achieves better modelling accuracy compared with the conventional DT recursive least square method. The effectiveness of the presented method for online SOC estimation is also verified on test data.

Keywords: Equivalent circuit model, continuous time domain estimation, linear integral filter method, parameter and SOC estimation, recursive least square.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344
414 Parameters Extraction for Pseudomorphic HEMTs Using Genetic Algorithms

Authors: Mazhar B. Tayel, Amr H. Yassin

Abstract:

A proposed small-signal model parameters for a pseudomorphic high electron mobility transistor (PHEMT) is presented. Both extrinsic and intrinsic circuit elements of a smallsignal model are determined using genetic algorithm (GA) as a stochastic global search and optimization tool. The parameters extraction of the small-signal model is performed on 200-μm gate width AlGaAs/InGaAs PHEMT. The equivalent circuit elements for a proposed 18 elements model are determined directly from the measured S- parameters. The GA is used to extract the parameters of the proposed small-signal model from 0.5 up to 18 GHz.

Keywords: PHEMT, Genetic Algorithms, small signal modeling, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262
413 Numerical Simulation of a Pressure Regulated Valve to Find Out the Characteristics of Passive Control Circuit

Authors: Binod Kumar Saha

Abstract:

The objective of the present paper is a numerical analysis of the flow forces acting on spool surfaces of a pressure regulated valve. The transient, compressible and turbulent flow structures inside the valve are simulated using ANSYS FLUENT coupled with a special UDF. Here, valve inlet pressure is varied in a stepwise manner. For every value of inlet pressure, transient analysis leads to a quasi-static flow through the valve. Spool forces are calculated based on different pressures at inlet. From this information of spool forces, pressure characteristic of the passive control circuit has been derived.

Keywords: Pressure Regulating Valve, Spool Opening, Spool Movement, Force Balance, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3865
412 Low Voltage Squarer Using Floating Gate MOSFETs

Authors: Rishikesh Pandey, Maneesha Gupta

Abstract:

A new low-voltage floating gate MOSFET (FGMOS) based squarer using square law characteristic of the FGMOS is proposed in this paper. The major advantages of the squarer are simplicity, rail-to-rail input dynamic range, low total harmonic distortion, and low power consumption. The proposed circuit is biased without body effect. The circuit is designed and simulated using SPICE in 0.25μm CMOS technology. The squarer is operated at the supply voltages of ±0.75V . The total harmonic distortion (THD) for the input signal 0.75Vpp at 25 KHz, and maximum power consumption were found to be less than 1% and 319μW respectively.

Keywords: Analog signal processing, floating gate MOSFETs, low-voltage, Spice, squarer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1987
411 An Analytical Comparison between Open Loop, PID and Fuzzy Logic Based DC-DC Boost Convertor

Authors: Muhammad Mujtaba Asad, Razali Bin Hassan, Fahad Sherwani

Abstract:

This paper explains about the voltage output for DC to DC boost converter between open loop, PID controller and fuzzy logic controller through Matlab Simulink. Simulink input voltage was set at 12V and the voltage reference was set at 24V. The analysis on the deviation of voltage resulted that the difference between reference voltage setting and the output voltage is always lower. Comparison between open loop, PID and FLC shows that, the open loop circuit having a bit higher on the deviation of voltage. The PID circuit boosts for FLC has a lesser deviation of voltage and proved that it is such a better performance on control the deviation of voltage during the boost mode.

Keywords: Boost Convertors, Power Electronics, PID, Fuzzy logic, Open loop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3858