Search results for: discrete event simulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4125

Search results for: discrete event simulation

2715 Feature Extraction for Surface Classification – An Approach with Wavelets

Authors: Smriti H. Bhandari, S. M. Deshpande

Abstract:

Surface metrology with image processing is a challenging task having wide applications in industry. Surface roughness can be evaluated using texture classification approach. Important aspect here is appropriate selection of features that characterize the surface. We propose an effective combination of features for multi-scale and multi-directional analysis of engineering surfaces. The features include standard deviation, kurtosis and the Canny edge detector. We apply the method by analyzing the surfaces with Discrete Wavelet Transform (DWT) and Dual-Tree Complex Wavelet Transform (DT-CWT). We used Canberra distance metric for similarity comparison between the surface classes. Our database includes the surface textures manufactured by three machining processes namely Milling, Casting and Shaping. The comparative study shows that DT-CWT outperforms DWT giving correct classification performance of 91.27% with Canberra distance metric.

Keywords: Dual-tree complex wavelet transform, surface metrology, surface roughness, texture classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2245
2714 Reliability of Eyewitness Statements in Fire and Explosion Investigations

Authors: Jeff D. Colwell, Benjamin W. Knox

Abstract:

While fire and explosion incidents are often observed by eyewitnesses, the weight that fire investigators should place on those observations in their investigations is a complex issue. There is no doubt that eyewitness statements can be an important component to an investigation, particularly when other evidence is sparse, as is often the case when damage to the scene is severe. However, it is well known that eyewitness statements can be incorrect for a variety of reasons, including deception. In this paper, we reviewed factors that can have an effect on the complex processes associated with the perception, retention, and retrieval of an event. We then review the accuracy of eyewitness statements from unique criminal and civil incidents, including fire and explosion incidents, in which the accuracy of the statements could be independently evaluated. Finally, the motives for deceptive eyewitness statements are described, along with techniques that fire and explosion investigators can employ, to increase the accuracy of the eyewitness statements that they solicit.

Keywords: Explosion, eyewitness, fire, reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 482
2713 Cold Flow Investigation of Primary Zone Characteristics in Combustor Utilizing Axial Air Swirler

Authors: Yehia A. Eldrainy, Mohammad Nazri Mohd. Jaafar, Tholudin Mat Lazim

Abstract:

This paper presents a cold flow simulation study of a small gas turbine combustor performed using laboratory scale test rig. The main objective of this investigation is to obtain physical insight of the main vortex, responsible for the efficient mixing of fuel and air. Such models are necessary for predictions and optimization of real gas turbine combustors. Air swirler can control the combustor performance by assisting in the fuel-air mixing process and by producing recirculation region which can act as flame holders and influences residence time. Thus, proper selection of a swirler is needed to enhance combustor performance and to reduce NOx emissions. Three different axial air swirlers were used based on their vane angles i.e., 30°, 45°, and 60°. Three-dimensional, viscous, turbulent, isothermal flow characteristics of the combustor model operating at room temperature were simulated via Reynolds- Averaged Navier-Stokes (RANS) code. The model geometry has been created using solid model, and the meshing has been done using GAMBIT preprocessing package. Finally, the solution and analysis were carried out in a FLUENT solver. This serves to demonstrate the capability of the code for design and analysis of real combustor. The effects of swirlers and mass flow rate were examined. Details of the complex flow structure such as vortices and recirculation zones were obtained by the simulation model. The computational model predicts a major recirculation zone in the central region immediately downstream of the fuel nozzle and a second recirculation zone in the upstream corner of the combustion chamber. It is also shown that swirler angles changes have significant effects on the combustor flowfield as well as pressure losses.

Keywords: cold flow, numerical simulation, combustor;turbulence, axial swirler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205
2712 PI Controller for Automatic Generation Control Based on Performance Indices

Authors: Kalyan Chatterjee

Abstract:

The optimal design of PI controller for Automatic Generation Control in two area is presented in this paper. The concept of Dual mode control is applied in the PI controller, such that the proportional mode is made active when the rate of change of the error is sufficiently larger than a specified limit otherwise switched to the integral mode. A digital simulation is used in conjunction with the Hooke-Jeeve’s optimization technique to determine the optimum parameters (individual gain of proportional and integral controller) of the PI controller. Integrated Square of the Error (ISE), Integrated Time multiplied by Absolute Error(ITAE) , and Integrated Absolute Error(IAE) performance indices are considered to measure the appropriateness of the designed controller.  The proposed controller are tested for a two area single nonreheat thermal system considering the practical aspect of the problem such as Deadband and Generation Rate Constraint(GRC). Simulation results show that  dual mode with optimized values of the gains improved the control performance than the commonly used Variable Structure .

Keywords: Load Frequency Control, Area Control Error(ACE), Dual Mode PI Controller, Performance Index

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2115
2711 Manufacturing of Full Automatic Carwash Using with Intelligent Control Algorithms

Authors: Amir Hossein Daei Sorkhabi, Bita Khazini

Abstract:

In this paper the intelligent control of full automatic car wash using a programmable logic controller (PLC) has been investigated and designed to do all steps of carwashing. The Intelligent control of full automatic carwash has the ability to identify and profile the geometrical dimensions of the vehicle chassis. Vehicle dimension identification is an important point in this control system to adjust the washing brushes position and time duration. The study also tries to design a control set for simulating and building the automatic carwash. The main purpose of the simulation is to develop criteria for designing and building this type of carwash in actual size to overcome challenges of automation. The results of this research indicate that the proposed method in process control not only increases productivity, speed, accuracy and safety but also reduce the time and cost of washing based on dynamic model of the vehicle. A laboratory prototype based on an advanced intelligent control has been built to study the validity of the design and simulation which it’s appropriate performance confirms the validity of this study.

Keywords: Automatic Carwash, Dimension, PLC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6824
2710 Networked Implementation of Milling Stability Optimization with Bayesian Learning

Authors: C. Ramsauer, J. Karandikar, D. Leitner, T. Schmitz, F. Bleicher

Abstract:

Machining instability, or chatter, can impose an important limitation to discrete part machining. In this work, a networked implementation of milling stability optimization with Bayesian learning is presented. The milling process was monitored with a wireless sensory tool holder instrumented with an accelerometer at the TU Wien, Vienna, Austria. The recorded data from a milling test cut were used to classify the cut as stable or unstable based on a frequency analysis. The test cut result was used in a Bayesian stability learning algorithm at the University of Tennessee, Knoxville, Tennessee, USA. The algorithm calculated the probability of stability as a function of axial depth of cut and spindle speed based on the test result and recommended parameters for the next test cut. The iterative process between two transatlantic locations was repeated until convergence to a stable optimal process parameter set was achieved.

Keywords: Bayesian learning, instrumented tool holder, machining stability, optimization strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 539
2709 An Analysis of Dynamic Economic Dispatch Using Search Space Reduction Based Gravitational Search Algorithm

Authors: K. C. Meher, R. K. Swain, C. K. Chanda

Abstract:

This paper presents the performance analysis of dynamic search space reduction (DSR) based gravitational search algorithm (GSA) to solve dynamic economic dispatch of thermal generating units with valve point effects. Dynamic economic dispatch basically dictates the best setting of generator units with anticipated load demand over a definite period of time. In this paper, the presented technique is considered that deals an inequality constraints treatment mechanism known as DSR strategy to accelerate the optimization process. The presented method is demonstrated through five-unit test systems to verify its effectiveness and robustness. The simulation results are compared with other existing evolutionary methods reported in the literature. It is intuited from the comparison that the fuel cost and other performances of the presented approach yield fruitful results with marginal value of simulation time.

Keywords: Dynamic economic dispatch, dynamic search space reduction strategy, gravitational search algorithm, ramp rate limits, valve-point effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
2708 Agent/Group/Role Organizational Model to Simulate an Industrial Control System

Authors: Noureddine Seddari, Mohamed Belaoued, Salah Bougueroua

Abstract:

The modeling of complex systems is generally based on the decomposition of their components into sub-systems easier to handle. This division has to be made in a methodical way. In this paper, we introduce an industrial control system modeling and simulation based on the Multi-Agent System (MAS) methodology AALAADIN and more particularly the underlying conceptual model Agent/Group/Role (AGR). Indeed, in this division using AGR model, the overall system is decomposed into sub-systems in order to improve the understanding of regulation and control systems, and to simplify the implementation of the obtained agents and their groups, which are implemented using the Multi-Agents Development KIT (MAD-KIT) platform. This approach appears to us to be the most appropriate for modeling of this type of systems because, due to the use of MAS, it is possible to model real systems in which very complex behaviors emerge from relatively simple and local interactions between many different individuals, therefore a MAS is well adapted to describe a system from the standpoint of the activity of its components, that is to say when the behavior of the individuals is complex (difficult to describe with equations). The main aim of this approach is the take advantage of the performance, the scalability and the robustness that are intuitively provided by MAS.

Keywords: Complex systems, modeling and simulation, industrial control system, MAS, AALAADIN, AGR, MAD-KIT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1189
2707 Magnet Position Variation of the Electromagnetic Actuation System in a Torsional Scanner

Authors: Loke Kean Koay, Mani Maran Ratnam

Abstract:

A mechanically-resonant torsional spring scanner was developed in a recent study. Various methods were developed to improve the angular displacement of the scanner while maintaining the scanner frequency. However the effects of rotor magnet radial position on scanner characteristics were not well investigated. In this study, the relationships between the magnet position and the scanner characteristics such as natural frequency, angular displacement and stress level were studied. A finite element model was created and an average deviation of 3.18% was found between the simulation and experimental results, qualifying the simulation results as a guide for further investigations. Three magnet positions on the transverse oscillating suspended plate were investigated by finite element analysis (FEA) and one of the positions were selected as the design position. The magnet position with the longest distance from the twist axis of mirror was selected since it attains minimum stress level, while exceeding the minimum critical flicker frequency and delivering the targeted angular displacement to the scanner.

Keywords: Computer-aided design, design optimization, torsional scanner.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1966
2706 A Simulation Study into the Use of Polymer Based Materials for Core Exoskeleton Applications

Authors: Matthew Dickinson

Abstract:

A core/trunk exoskeleton design has been produced that is aimed to assist the raise to stand motion. A 3D model was produced to examine the use of additive manufacturing as a core method for producing structural components for the exoskeleton presented. The two materials that were modelled for this simulation work were Polylatic acid (PLA) and polyethylene terephthalate with carbon (PET-C), and the central spinal cord of the design being Nitrile rubber. The aim of this study was to examine the use of 3D printed materials as the main skeletal structure to support the core of a human when moving raising from a resting position. The objective in this work was to identify if the 3D printable materials could be offered as an equivalent alternative to conventional more expensive materials, thus allow for greater access for production for home maintenance. A maximum load of lift force was calculated, and this was incrementally reduced to study the effects on the material. The results showed a total number of 8 simulations were run to study the core in conditions with no muscular support through to 90% of operational support. The study presents work in the form of a core/trunk exoskeleton that presents 3D printing as a possible alternative to conventional manufacturing.

Keywords: 3D printing, Exo-Skeleton, PLA, PETC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 441
2705 Modeling and Simulation of Acoustic Link Using Mackenize Propagation Speed Equation

Authors: Christhu Raj M. R., Rajeev Sukumaran

Abstract:

Underwater acoustic networks have attracted great attention in the last few years because of its numerous applications. High data rate can be achieved by efficiently modeling the physical layer in the network protocol stack. In Acoustic medium, propagation speed of the acoustic waves is dependent on many parameters such as temperature, salinity, density, and depth. Acoustic propagation speed cannot be modeled using standard empirical formulas such as Urick and Thorp descriptions. In this paper, we have modeled the acoustic channel using real time data of temperature, salinity, and speed of Bay of Bengal (Indian Coastal Region). We have modeled the acoustic channel by using Mackenzie speed equation and real time data obtained from National Institute of Oceanography and Technology. It is found that acoustic propagation speed varies between 1503 m/s to 1544 m/s as temperature and depth differs. The simulation results show that temperature, salinity, depth plays major role in acoustic propagation and data rate increases with appropriate data sets substituted in the simulated model.

Keywords: Underwater Acoustics, Mackenzie Speed Equation, Temperature, Salinity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199
2704 New Efficient Method for Coding Color Images

Authors: Walaa M.Abd-Elhafiez, Wajeb Gharibi

Abstract:

In this paper a novel color image compression technique for efficient storage and delivery of data is proposed. The proposed compression technique started by RGB to YCbCr color transformation process. Secondly, the canny edge detection method is used to classify the blocks into the edge and non-edge blocks. Each color component Y, Cb, and Cr compressed by discrete cosine transform (DCT) process, quantizing and coding step by step using adaptive arithmetic coding. Our technique is concerned with the compression ratio, bits per pixel and peak signal to noise ratio, and produce better results than JPEG and more recent published schemes (like CBDCT-CABS and MHC). The provided experimental results illustrate the proposed technique that is efficient and feasible in terms of compression ratio, bits per pixel and peak signal to noise ratio.

Keywords: Image compression, color image, Q-coder, quantization, edge-detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
2703 Spatial Behavioral Model-Based Dynamic Data-Driven Diagram Information Model

Authors: Chiung-Hui Chen

Abstract:

Diagram and drawing are important ways to communicate and the reproduce of architectural design, Due to the development of information and communication technology, the professional thinking of architecture and interior design are also change rapidly. In development process of design, diagram always play very important role. This study is based on diagram theories, observe and record interaction between man and objects, objects and space, and space and time in a modern nuclear family. Construct a method for diagram to systematically and visualized describe the space plan of a modern nuclear family toward an intelligent design, to assist designer to retrieve information and review event pattern of past and present.

Keywords: Digital diagram, information model, context aware, data analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
2702 Comparison of Conventional Control and Robust Control on Double-Pipe Heat Exchanger

Authors: Hanan Rizk

Abstract:

Heat exchanger is a device used to mix liquids having different temperatures. In this case, the temperature control becomes a critical objective. This research work presents the temperature control of the double-pipe heat exchanger (multi-input multi-output (MIMO) system), which is modeled as first-order coupled hyperbolic partial differential equations (PDEs), using conventional and advanced control techniques, and develops appropriate robust control strategy to meet stability requirements and performance objectives. We designed the proportional–integral–derivative (PID) controller and H-infinity controller for a heat exchanger (HE) system. Frequency characteristics of sensitivity functions and open-loop and closed-loop time responses are simulated using MATLAB software and the stability of the system is analyzed using Kalman's test. The simulation results have demonstrated that the H-infinity controller is more efficient than PID in terms of robustness and performance.

Keywords: heat exchanger, multi-input multi-output system, MATLAB simulation, partial differential equations, PID controller, robust control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 696
2701 The Application of FSI Techniques in Modeling of Realist Pulmonary Systems

Authors: Abdurrahim Bolukbasi, Hassan Athari, Dogan Ciloglu

Abstract:

The modeling lung respiratory system that has complex anatomy and biophysics presents several challenges including tissue-driven flow patterns and wall motion. Also, the pulmonary lung system because of that they stretch and recoil with each breath, has not static walls and structures. The direct relationship between air flow and tissue motion in the lung structures naturally prefers an FSI simulation technique. Therefore, in order to toward the realistic simulation of pulmonary breathing mechanics the development of a coupled FSI computational model is an important step. A simple but physiologically relevant three-dimensional deep long geometry is designed and fluid-structure interaction (FSI) coupling technique is utilized for simulating the deformation of the lung parenchyma tissue that produces airflow fields. The real understanding of respiratory tissue system as a complex phenomenon have been investigated with respect to respiratory patterns, fluid dynamics and tissue viscoelasticity and tidal breathing period. 

Keywords: Lung deformation and mechanics, tissue mechanics, viscoelasticity, fluid-structure interactions, ANSYS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2328
2700 Numerical Analysis of Plate Heat Exchanger Performance in Co-Current Fluid Flow Configuration

Authors: H. Dardour, S. Mazouz, A. Bellagi

Abstract:

For many industrial applications plate heat exchangers are demonstrating a large superiority over the other types of heat exchangers. The efficiency of such a device depends on numerous factors the effect of which needs to be analysed and accurately evaluated. In this paper we present a theoretical analysis of a cocurrent plate heat exchanger and the results of its numerical simulation. Knowing the hot and the cold fluid streams inlet temperatures, the respective heat capacities mCp and the value of the overall heat transfer coefficient, a 1-D mathematical model based on the steady flow energy balance for a differential length of the device is developed resulting in a set of N first order differential equations with boundary conditions where N is the number of channels.For specific heat exchanger geometry and operational parameters, the problem is numerically solved using the shooting method. The simulation allows the prediction of the temperature map in the heat exchanger and hence, the evaluation of its performances. A parametric analysis is performed to evaluate the influence of the R-parameter on the e-NTU values. For practical purposes effectiveness-NTU graphs are elaborated for specific heat exchanger geometry and different operating conditions.

Keywords: Plate heat exchanger, thermal performance, NTU, effectiveness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9651
2699 Grid-Connected Inverter Experimental Simulation and Droop Control Implementation

Authors: Nur Aisyah Jalalludin, Arwindra Rizqiawan, Goro Fujita

Abstract:

In this study, we aim to demonstrate a microgrid system experimental simulation for an easy understanding of a large-scale microgrid system. This model is required for industrial training and learning environments. However, in order to create an exact representation of a microgrid system, the laboratory-scale system must fulfill the requirements of a grid-connected inverter, in which power values are assigned to the system to cope with the intermittent output from renewable energy sources. Aside from that, during fluctuations in load capacity, the grid-connected system must be able to supply power from the utility grid side and microgrid side in a balanced manner. Therefore, droop control is installed in the inverter’s control board to maintain a balanced power sharing in both sides. This power control in a stand-alone condition and droop control in a grid-connected condition must be implemented in order to maintain a stabilized system. Based on the experimental results, power control and droop control can both be applied in the system by comparing the experimental and reference values.

Keywords: Droop control, droop characteristic, grid-connected inverter, microgrid, power control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3075
2698 Statistical Analysis of Stresses in Rigid Pavement

Authors: Aleš Florian, Lenka Ševelová, Rudolf Hela

Abstract:

Complex statistical analysis of stresses in concrete slab of the real type of rigid pavement is performed. The computational model of the pavement is designed as a spatial (3D) model, is based on a nonlinear variant of the finite element method that respects the structural nonlinearity, enables to model different arrangement of joints, and the entire model can be loaded by the thermal load. Interaction of adjacent slabs in joints and contact of the slab and the subsequent layer are modeled with help of special contact elements. Four concrete slabs separated by transverse and longitudinal joints and the additional subgrade layers and soil to the depth of about 3m are modeled. The thickness of individual layers, physical and mechanical properties of materials, characteristics of joints, and the temperature of the upper and lower surface of slabs are supposed to be random variables. The modern simulation technique Updated Latin Hypercube Sampling with 20 simulations is used for statistical analysis. As results, the estimates of basic statistics of the principal stresses s1 and s3 in 53 points on the upper and lower surface of the slabs are obtained.

Keywords: concrete, FEM, pavement, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
2697 Pore Model Prediction of CH4 Separation from HS Using PTMSP and γ -Alumina Membranes

Authors: H. Mukhtar, N. M. Noor, R. Nasir, D. F. Mohshim

Abstract:

The main aim of this work is to develop a model of hydrogen sulfide (H2S) separation from natural gas by using membrane separation technology. The model is developed by incorporating three diffusion mechanisms which are Knudsen, viscous and surface diffusion towards membrane selectivity and permeability. The findings from the simulation result shows that the permeability of the gas is dependent toward the pore size of the membrane, operating pressure, operating temperature as well as feed composition. The permeability of methane has the highest value for Poly (1-trimethylsilyl-1-propyne ) PTMSP membrane at pore size of 0.1nm and decreasing toward a minimum peak at pore range 1 to 1.5 nm as pore size increased before it increase again for pore size is greater than 1.5 nm. On the other hand, the permeability of hydrogen sulfide is found to increase almost proportionally with the increase of membrane pore size. Generally, the increase of pressure will increase the permeability of gas since more driving force is provided to the system while increasing of temperature would decrease the permeability due to the surface diffusion drop off effect. A corroboration of the simulation result also showed a good agreement with the experimental data.

Keywords: Hydrogen Sulfide, Methane, Inorganic Membrane, Organic Membrane, Pore Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3708
2696 CFD Simulation for Flow Behavior in Boiling Water Reactor Vessel and Upper Pool under Decommissioning Condition

Authors: Y. T. Ku, S. W. Chen, J. R. Wang, C. Shih, Y. F. Chang

Abstract:

In order to respond the policy decision of non-nuclear homes, Tai Power Company (TPC) will provide the decommissioning project of Kuosheng Nuclear power plant (KSNPP) to meet the regulatory requirement in near future. In this study, the computational fluid dynamics (CFD) methodology has been employed to develop a flow prediction model for boiling water reactor (BWR) with upper pool under decommissioning stage. The model can be utilized to investigate the flow behavior as the vessel combined with upper pool and continuity cooling system. At normal operating condition, different parameters are obtained for the full fluid area, including velocity, mass flow, and mixing phenomenon in the reactor pressure vessel (RPV) and upper pool. Through the efforts of the study, an integrated simulation model will be developed for flow field analysis of decommissioning KSNPP under normal operating condition. It can be expected that a basis result for future analysis application of TPC can be provide from this study.

Keywords: CFD, BWR, decommissioning, upper pool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 755
2695 Integration of Fixed and Variable Speed Wind Generator Dynamics with Multimachine AC Systems

Authors: A.H.M.A.Rahim

Abstract:

The impact of fixed speed squirrel cage type as well as variable speed doubly fed induction generators (DFIG) on dynamic performance of a multimachine power system has been investigated. Detailed models of the various components have been presented and the integration of asynchronous and synchronous generators has been carried out through a rotor angle based transform. Simulation studies carried out considering the conventional dynamic model of squirrel cage asynchronous generators show that integration, as such, could degrade to the AC system performance transiently. This article proposes a frequency or power controller which can effectively control the transients and restore normal operation of fixed speed induction generator quickly. Comparison of simulation results between classical cage and doubly-fed induction generators indicate that the doubly fed induction machine is more adaptable to multimachine AC system. Frequency controller installed in the DFIG system can also improve its transient profile.

Keywords: Doubly-fed generator, Induction generator, Multimachine system modeling, Wind energy systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2355
2694 Numerical Simulation of Fluid-Structure Interaction on Wedge Slamming Impact Using Particle Method

Authors: Sung-Chul Hwang, Di Ren, Sang-Moon Yoon, Jong-Chun Park, Abbas Khayyer, Hitoshi Gotoh

Abstract:

This paper presents a fully Lagrangian coupled Fluid-Structure Interaction (FSI) solver for simulations of fluid-structure interactions, which is based on the Moving Particle Semi-implicit (MPS) method to solve the governing equations corresponding to incompressible flows as well as elastic structures. The developed solver is verified by reproducing the high velocity impact loads of deformable thin wedges with three different materials such as mild steel, aluminium and tin during water entry. The present simulation results for aluminium are compared with analytical solution derived from the hydrodynamic Wagner model and linear Wan’s theory. And also, the impact pressure and strain on the water entry wedge with three different materials, such as mild steel, aluminium and tin, are simulated and the effects of hydro-elasticity are discussed.

Keywords: Fluid-structure interaction (FSI), Moving Particle Semi-implicit (MPS) method, Elastic structure, Incompressible fluid Wedge slamming impact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100
2693 Effect of Medium Capacity on the Relationship between Chemical Heterogeneity and Linearly Adsorbed Solute Dispersion into Fixed Beds

Authors: K. Kaabeche-Djerafi, N. Bendjaballah-Lalaoui, S. Semra

Abstract:

The paper aims at investigating influence of medium capacity on linear adsorbed solute dispersion into chemically heterogeneous fixed beds. A discrete chemical heterogeneity distribution is considered in the one-dimensional advectivedispersive equation. The partial differential equation is solved using finite volumes method based on the Adam-Bashforth algorithm. Increased dispersion is estimated by comparing breakthrough curves second order moments and keeping identical hydrodynamic properties. As a result, dispersion increase due to chemical heterogeneity depends on the column size and surprisingly on the solid capacity. The more intense capacity is, the more important solute dispersion is. Medium length which is known to favour this effect vanishing according to the linear adsorption in fixed bed seems to create nonmonotonous variation of dispersion because of the heterogeneity. This nonmonotonous behaviour is also favoured by high capacities.

Keywords: linear adsorption; chemical heterogeneity;dispersion; fixed bed; porous media

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
2692 A Review on Design and Fabrication of Fuel Fired Crucible Furnace

Authors: Oluwaseyi O. Taiwo, Adeolu A. Adediran, Abayomi A. Akinwande, Frank C. Okoyeh

Abstract:

The use of fuel fired crucible furnace is essential in the foundries of developing countries owing to the luxury of electricity. Fuel fired crucible furnace are commonly used in recycling, casting, research and training activities in tertiary institutions, therefore, several attempts are being made to improve the performance and service life of fuel fired crucible. The current study reviews the sequential stages involved in the designs and fabrication of fuel fired crucible furnace which include; design, material selection, modelling and simulation as well as performance evaluation. The study shows that selecting appropriate materials for the different units in the fabrication process is important to the efficiency and service life of fuel fired crucible furnaces. Also, efficiency and performance of fuel fired furnaces are independent of cost of fabrication and their capacity. The importance of modelling and simulation tools in the fabrication process are identified while their non-frequent usage in several works is observed. The need to widen performance evaluations in further studies beyond efficiency determination to give a more detailed assessment of fuel fired crucible furnaces is also observed.

Keywords: Crucible furnace, furnace design, fabrication, fuel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 478
2691 Performance Complexity Measurement of Tightening Equipment Based on Kolmogorov Entropy

Authors: Guoliang Fan, Aiping Li, Xuemei Liu, Liyun Xu

Abstract:

The performance of the tightening equipment will decline with the working process in manufacturing system. The main manifestations are the randomness and discretization degree increasing of the tightening performance. To evaluate the degradation tendency of the tightening performance accurately, a complexity measurement approach based on Kolmogorov entropy is presented. At first, the states of performance index are divided for calibrating the discrete degree. Then the complexity measurement model based on Kolmogorov entropy is built. The model describes the performance degradation tendency of tightening equipment quantitatively. At last, a study case is applied for verifying the efficiency and validity of the approach. The research achievement shows that the presented complexity measurement can effectively evaluate the degradation tendency of the tightening equipment. It can provide theoretical basis for preventive maintenance and life prediction of equipment.

Keywords: Complexity measurement, Kolmogorov entropy, manufacturing system, performance evaluation, tightening equipment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 962
2690 Assessment of Multi-Domain Energy Systems Modelling Methods

Authors: M. Stewart, Ameer Al-Khaykan, J. M. Counsell

Abstract:

Emissions are a consequence of electricity generation. A major option for low carbon generation, local energy systems featuring Combined Heat and Power with solar PV (CHPV) has significant potential to increase energy performance, increase resilience, and offer greater control of local energy prices while complementing the UK’s emissions standards and targets. Recent advances in dynamic modelling and simulation of buildings and clusters of buildings using the IDEAS framework have successfully validated a novel multi-vector (simultaneous control of both heat and electricity) approach to integrating the wide range of primary and secondary plant typical of local energy systems designs including CHP, solar PV, gas boilers, absorption chillers and thermal energy storage, and associated electrical and hot water networks, all operating under a single unified control strategy. Results from this work indicate through simulation that integrated control of thermal storage can have a pivotal role in optimizing system performance well beyond the present expectations. Environmental impact analysis and reporting of all energy systems including CHPV LES presently employ a static annual average carbon emissions intensity for grid supplied electricity. This paper focuses on establishing and validating CHPV environmental performance against conventional emissions values and assessment benchmarks to analyze emissions performance without and with an active thermal store in a notional group of non-domestic buildings. Results of this analysis are presented and discussed in context of performance validation and quantifying the reduced environmental impact of CHPV systems with active energy storage in comparison with conventional LES designs.

Keywords: CHPV, thermal storage, control, dynamic simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
2689 Study of the Process of Climate Change According to Data Simulation Using LARS-WG Software during 2010-2030: Case Study of Semnan Province

Authors: Leila Rashidian

Abstract:

Temperature rise on Earth has had harmful effects on the Earth's surface and has led to change in precipitation patterns all around the world. The present research was aimed to study the process of climate change according to the data simulation in future and compare these parameters with current situation in the studied stations in Semnan province including Garmsar, Shahrood and Semnan. In this regard, LARS-WG software, HADCM3 model and A2 scenario were used for the 2010-2030 period. In this model, climatic parameters such as maximum and minimum temperature, precipitation and radiation were used daily. The obtained results indicated that there will be a 4.4% increase in precipitation in Semnan province compared with the observed data, and in general, there will be a 1.9% increase in temperature. This temperature rise has significant impact on precipitation patterns. Most of precipitation will be raining (torrential rains in some cases). According to the results, from west to east, the country will experience more temperature rise and will be warmer.

Keywords: Climate change, Semnan province, LARS-WG model, climate parameters, HADCM3 model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1151
2688 Numerical Optimization Design of PEM Fuel Cell Performance Applying the Taguchi Method

Authors: Shan-Jen Cheng, Jr-Ming Miao, Sheng-Ju Wu

Abstract:

The purpose of this paper is applied Taguchi method on the optimization for PEMFC performance, and a representative Computational Fluid Dynamics (CFD) model is selectively performed for statistical analysis. The studied factors in this paper are pressure of fuel cell, operating temperature, the relative humidity of anode and cathode, porosity of gas diffusion electrode (GDE) and conductivity of GDE. The optimal combination for maximum power density is gained by using a three-level statistical method. The results confirmed that the robustness of the optimum design parameters influencing the performance of fuel cell are founded by pressure of fuel cell, 3atm; operating temperature, 353K; the relative humidity of anode, 50%; conductivity of GDE, 1000 S/m, but the relative humidity of cathode and porosity of GDE are pooled as error due to a small sum of squares. The present simulation results give designers the ideas ratify the effectiveness of the proposed robust design methodology for the performance of fuel cell.

Keywords: PEMFC, numerical simulation, optimization, Taguchi method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2552
2687 Neural Network Control of a Biped Robot Model with Composite Adaptation Low

Authors: Ahmad Forouzantabar

Abstract:

this paper presents a novel neural network controller with composite adaptation low to improve the trajectory tracking problems of biped robots comparing with classical controller. The biped model has 5_link and 6 degrees of freedom and actuated by Plated Pneumatic Artificial Muscle, which have a very high power to weight ratio and it has large stoke compared to similar actuators. The proposed controller employ a stable neural network in to approximate unknown nonlinear functions in the robot dynamics, thereby overcoming some limitation of conventional controllers such as PD or adaptive controllers and guarantee good performance. This NN controller significantly improve the accuracy requirements by retraining the basic PD/PID loop, but adding an inner adaptive loop that allows the controller to learn unknown parameters such as friction coefficient, therefore improving tracking accuracy. Simulation results plus graphical simulation in virtual reality show that NN controller tracking performance is considerably better than PD controller tracking performance.

Keywords: Biped robot, Neural network, Plated Pneumatic Artificial Muscle, Composite adaptation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846
2686 Scenario Analysis of Indonesia's Energy Security by using a System-Dynamics Approach

Authors: Yudha Prambudia, Masaru Nakano

Abstract:

Due to rapid economic growth, Indonesia's energy needs is rapidly increasing. Indonesia-s primary energy consumption has doubled in 2007 compared to 2003. Indonesia's status change from oil net-exporter to oil net-importer country recently has increased Indonesia's concern over energy security. Due to this, oil import becomes center of attention in the dynamics of Indonesia's energy security. Conventional studies addressing Indonesia's energy security have focused on energy production sector. This study explores Indonesia-s energy security considering energy import sector by modeling and simulating Indonesia-s energy-related policies using system dynamics. Simulation result of Indonesia's energy security in 2020 in Business-As-Usual scenario shows that in term of supply demand ratio, energy security will be very high, but also it poses high dependence on energy import. The Alternative scenario result shows lower energy security in term of supply demand ratio and much lower dependence on energy import. It is also found that the Alternative scenario produce lower GDP growth.

Keywords: Energy security, modeling, simulation, system dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127