Search results for: Passive optical networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2626

Search results for: Passive optical networks

1246 Analyzing the Factors that Cause Parallel Performance Degradation in Parallel Graph-Based Computations Using Graph500

Authors: Mustafa Elfituri, Jonathan Cook

Abstract:

Recently, graph-based computations have become more important in large-scale scientific computing as they can provide a methodology to model many types of relations between independent objects. They are being actively used in fields as varied as biology, social networks, cybersecurity, and computer networks. At the same time, graph problems have some properties such as irregularity and poor locality that make their performance different than regular applications performance. Therefore, parallelizing graph algorithms is a hard and challenging task. Initial evidence is that standard computer architectures do not perform very well on graph algorithms. Little is known exactly what causes this. The Graph500 benchmark is a representative application for parallel graph-based computations, which have highly irregular data access and are driven more by traversing connected data than by computation. In this paper, we present results from analyzing the performance of various example implementations of Graph500, including a shared memory (OpenMP) version, a distributed (MPI) version, and a hybrid version. We measured and analyzed all the factors that affect its performance in order to identify possible changes that would improve its performance. Results are discussed in relation to what factors contribute to performance degradation.

Keywords: Graph computation, Graph500 benchmark, parallel architectures, parallel programming, workload characterization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 548
1245 Sensorless Commutation Control of Switched Reluctance Motor

Authors: N.H. Mvungi

Abstract:

This paper addresses control of commutation of switched reluctance (SR) motor without the use of a physical position detector. Rotor position detection schemes for SR motor based on magnetisation characteristics of the motor use normal excitation or applied current /voltage pulses. The resulting schemes are referred to as passive or active methods respectively. The research effort is in realizing an economical sensorless SR rotor position detector that is accurate, reliable and robust to suit a particular application. An effective and reliable means of generating commutation signals of an SR motor based on inductance profile of its stator windings determined using active probing technique is presented. The scheme has been validated online using a 4-phase 8/6 SR motor and an 8-bit processor.

Keywords: Position detection, rotor position, sensorless, switched reluctance, SR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2865
1244 Passive Cooling of Building by using Solar Chimney

Authors: Insaf Mehani, N. Settou

Abstract:

Natural ventilation is an important means to improve indoor thermal comfort and reduce the energy consumption. A solar chimney system is an enhancing natural draft device, which uses solar radiation to heat the air inside the chimney, thereby converting the thermal energy into kinetic energy. The present study considered some parameters such as chimney width and solar intensity, which were believed to have a significant effect on space ventilation. Fluent CFD software was used to predict buoyant air flow and flow rates in the cavities. The results were compared with available published experimental and theoretical data from the literature. There was an acceptable trend match between the present results and the published data for the room air change per hour, ACH. Further, it was noticed that the solar intensity has a more significant effect on ACH.

Keywords: Solar chimney, numerical simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4409
1243 An Efficient Energy Adaptive Hybrid Error Correction Technique for Underwater Wireless Sensor Networks

Authors: Ammar Elyas babiker, M.Nordin B. Zakaria, Hassan Yosif, Samir B. Ibrahim

Abstract:

Variable channel conditions in underwater networks, and variable distances between sensors due to water current, leads to variable bit error rate (BER). This variability in BER has great effects on energy efficiency of error correction techniques used. In this paper an efficient energy adaptive hybrid error correction technique (AHECT) is proposed. AHECT adaptively changes error technique from pure retransmission (ARQ) in a low BER case to a hybrid technique with variable encoding rates (ARQ & FEC) in a high BER cases. An adaptation algorithm depends on a precalculated packet acceptance rate (PAR) look-up table, current BER, packet size and error correction technique used is proposed. Based on this adaptation algorithm a periodically 3-bit feedback is added to the acknowledgment packet to state which error correction technique is suitable for the current channel conditions and distance. Comparative studies were done between this technique and other techniques, and the results show that AHECT is more energy efficient and has high probability of success than all those techniques.

Keywords: Underwater communication, wireless sensornetworks, error correction technique, energy efficiency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2151
1242 Co-tier and Co-channel Interference Avoidance Algorithm for Femtocell Networks

Authors: S. Padmapriya, M. Tamilarasi

Abstract:

Femtocells are regarded as a milestone for next generation cellular networks. As femtocells are deployed in an unplanned manner, there is a chance of assigning same resource to neighboring femtocells. This scenario may induce co-channel interference and may seriously affect the service quality of neighboring femtocells. In addition, the dominant transmit power of a femtocell will induce co-tier interference to neighboring femtocells. Thus to jointly handle co-tier and co-channel interference, we propose an interference-free power and resource block allocation (IFPRBA) algorithm for closely located, closed access femtocells. Based on neighboring list, inter-femto-base station distance and uplink noise power, the IFPRBA algorithm assigns non-interfering power and resource to femtocells. The IFPRBA algorithm also guarantees the quality of service to femtouser based on the knowledge of resource requirement, connection type, and the tolerable delay budget. Simulation result shows that the interference power experienced in IFPRBA algorithm is below the tolerable interference power and hence the overall service success ratio, PRB efficiency and network throughput are maximum when compared to conventional resource allocation framework for femtocell (RAFF) algorithm.

Keywords: Co-channel interference, co-tier interference, femtocells, guaranteed QoS, power optimization, resource assignment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2466
1241 Parkinsons Disease Classification using Neural Network and Feature Selection

Authors: Anchana Khemphila, Veera Boonjing

Abstract:

In this study, the Multi-Layer Perceptron (MLP)with Back-Propagation learning algorithm are used to classify to effective diagnosis Parkinsons disease(PD).It-s a challenging problem for medical community.Typically characterized by tremor, PD occurs due to the loss of dopamine in the brains thalamic region that results in involuntary or oscillatory movement in the body. A feature selection algorithm along with biomedical test values to diagnose Parkinson disease.Clinical diagnosis is done mostly by doctor-s expertise and experience.But still cases are reported of wrong diagnosis and treatment. Patients are asked to take number of tests for diagnosis.In many cases,not all the tests contribute towards effective diagnosis of a disease.Our work is to classify the presence of Parkinson disease with reduced number of attributes.Original,22 attributes are involved in classify.We use Information Gain to determine the attributes which reduced the number of attributes which is need to be taken from patients.The Artificial neural networks is used to classify the diagnosis of patients.Twenty-Two attributes are reduced to sixteen attributes.The accuracy is in training data set is 82.051% and in the validation data set is 83.333%.

Keywords: Data mining, classification, Parkinson disease, artificial neural networks, feature selection, information gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3778
1240 Image Transmission in Low-Power Networks in Mobile Communications Channel

Authors: M. A. M. El-Bendary, H. Kazimian, A. E. Abo-El-azm, N. A. El-Fishawy, F. El-Samie, F. Shawki

Abstract:

This paper studies a vital issue in wireless communications, which is the transmission of images over Wireless Personal Area Networks (WPANs) through the Bluetooth network. It presents a simple method to improve the efficiency of error control code of old Bluetooth versions over mobile WPANs through Interleaved Error Control Code (IECC) technique. The encoded packets are interleaved by simple block interleaver. Also, the paper presents a chaotic interleaving scheme as a tool against bursts of errors which depends on the chaotic Baker map. Also, the paper proposes using the chaotic interleaver instead of traditional block interleaver with Forward Error Control (FEC) scheme. A comparison study between the proposed and standard techniques for image transmission over a correlated fading channel is presented. Simulation results reveal the superiority of the proposed chaotic interleaving scheme to other schemes. Also, the superiority of FEC with proposed chaotic interleaver to the conventional interleavers with enhancing the security level with chaotic interleaving packetby- packet basis.

Keywords: Mobile Bluetooth terminals, WPANs, Jackes' model, Interleaving technique, chaotic interleaver

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935
1239 Memristor: The Missing Circuit Element and its Application

Authors: Vishnu Pratap Singh Kirar

Abstract:

Memristor is also known as the fourth fundamental passive circuit element. When current flows in one direction through the device, the electrical resistance increases and when current flows in the opposite direction, the resistance decreases. When the current is stopped, the component retains the last resistance that it had, and when the flow of charge starts again, the resistance of the circuit will be what it was when it was last active. It behaves as a nonlinear resistor with memory. Recently memristors have generated wide research interest and have found many applications. In this paper we survey the various applications of memristors which include non volatile memory, nanoelectronic memories, computer logic, neuromorphic computer architectures low power remote sensing applications, crossbar latches as transistor replacements, analog computations and switches.

Keywords: Memristor, non-volatile memory, arithmatic operation, programmable resistor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3997
1238 A New DIDS Design Based on a Combination Feature Selection Approach

Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman

Abstract:

Feature selection has been used in many fields such as classification, data mining and object recognition and proven to be effective for removing irrelevant and redundant features from the original dataset. In this paper, a new design of distributed intrusion detection system using a combination feature selection model based on bees and decision tree. Bees algorithm is used as the search strategy to find the optimal subset of features, whereas decision tree is used as a judgment for the selected features. Both the produced features and the generated rules are used by Decision Making Mobile Agent to decide whether there is an attack or not in the networks. Decision Making Mobile Agent will migrate through the networks, moving from node to another, if it found that there is an attack on one of the nodes, it then alerts the user through User Interface Agent or takes some action through Action Mobile Agent. The KDD Cup 99 dataset is used to test the effectiveness of the proposed system. The results show that even if only four features are used, the proposed system gives a better performance when it is compared with the obtained results using all 41 features.

Keywords: Distributed intrusion detection system, mobile agent, feature selection, Bees Algorithm, decision tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
1237 Preliminary Evaluation of Passive UHF-Band RFID for Identifying Floating Objects on the Sea

Authors: Yasuhiro Sato, Kodai Noma, Kenta Sawada, Kazumasa Adachi, Yoshinori Matruura, Saori Iwanaga

Abstract:

RFID system is used to identify objects such as passenger identification in public transportation, instead of linear or 2-dimensional barcodes. Key advantages of RFID system are to identify objects without physical contact, and to write arbitrary information into RFID tag. These advantages may help to improve maritime safety and efficiency of activity on the sea. However, utilization of RFID system for maritime scenes has not been considered. In this paper, we evaluate the availability of a generic RFID system operating on the sea. We measure RSSI between RFID tag floating on the sea and RFID antenna, and check whether a RFID reader can access a tag or not, while the distance between a floating buoy and the ship, and the angle are changed. Finally, we discuss the feasibility and the applicability of RFID system on the sea through the results of our preliminary experiment.

Keywords: RFID, Experimental Evaluation, RSSI, Maritime use.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037
1236 Illumination Invariant Face Recognition using Supervised and Unsupervised Learning Algorithms

Authors: Shashank N. Mathur, Anil K. Ahlawat, Virendra P. Vishwakarma

Abstract:

In this paper, a comparative study of application of supervised and unsupervised learning algorithms on illumination invariant face recognition has been carried out. The supervised learning has been carried out with the help of using a bi-layered artificial neural network having one input, two hidden and one output layer. The gradient descent with momentum and adaptive learning rate back propagation learning algorithm has been used to implement the supervised learning in a way that both the inputs and corresponding outputs are provided at the time of training the network, thus here is an inherent clustering and optimized learning of weights which provide us with efficient results.. The unsupervised learning has been implemented with the help of a modified Counterpropagation network. The Counterpropagation network involves the process of clustering followed by application of Outstar rule to obtain the recognized face. The face recognition system has been developed for recognizing faces which have varying illumination intensities, where the database images vary in lighting with respect to angle of illumination with horizontal and vertical planes. The supervised and unsupervised learning algorithms have been implemented and have been tested exhaustively, with and without application of histogram equalization to get efficient results.

Keywords: Artificial Neural Networks, back propagation, Counterpropagation networks, face recognition, learning algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686
1235 Probabilistic Modeling of Network-induced Delays in Networked Control Systems

Authors: Manoj Kumar, A.K. Verma, A. Srividya

Abstract:

Time varying network induced delays in networked control systems (NCS) are known for degrading control system-s quality of performance (QoP) and causing stability problems. In literature, a control method employing modeling of communication delays as probability distribution, proves to be a better method. This paper focuses on modeling of network induced delays as probability distribution. CAN and MIL-STD-1553B are extensively used to carry periodic control and monitoring data in networked control systems. In literature, methods to estimate only the worst-case delays for these networks are available. In this paper probabilistic network delay model for CAN and MIL-STD-1553B networks are given. A systematic method to estimate values to model parameters from network parameters is given. A method to predict network delay in next cycle based on the present network delay is presented. Effect of active network redundancy and redundancy at node level on network delay and system response-time is also analyzed.

Keywords: NCS (networked control system), delay analysis, response-time distribution, worst-case delay, CAN, MIL-STD-1553B, redundancy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
1234 Heuristic Search Algorithm (HSA) for Enhancing the Lifetime of Wireless Sensor Networks

Authors: Tripatjot S. Panag, J. S. Dhillon

Abstract:

The lifetime of a wireless sensor network can be effectively increased by using scheduling operations. Once the sensors are randomly deployed, the task at hand is to find the largest number of disjoint sets of sensors such that every sensor set provides complete coverage of the target area. At any instant, only one of these disjoint sets is switched on, while all other are switched off. This paper proposes a heuristic search method to find the maximum number of disjoint sets that completely cover the region. A population of randomly initialized members is made to explore the solution space. A set of heuristics has been applied to guide the members to a possible solution in their neighborhood. The heuristics escalate the convergence of the algorithm. The best solution explored by the population is recorded and is continuously updated. The proposed algorithm has been tested for applications which require sensing of multiple target points, referred to as point coverage applications. Results show that the proposed algorithm outclasses the existing algorithms. It always finds the optimum solution, and that too by making fewer number of fitness function evaluations than the existing approaches.

Keywords: Coverage, disjoint sets, heuristic, lifetime, scheduling, wireless sensor networks, WSN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
1233 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection

Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra, Abdus Sobur

Abstract:

In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of artificial intelligence (AI), specifically deep learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images, representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our approach presents a hybrid model, amalgamating the strengths of two renowned convolutional neural networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.

Keywords: Artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
1232 RadMote: A Mobile Framework for Radiation Monitoring in Nuclear Power Plants

Authors: Javier Barbaran, Manuel Dıaz, Inaki Esteve, Bartolome Rubio

Abstract:

Wireless Sensor Networks (WSNs) have attracted the attention of many researchers. This has resulted in their rapid integration in very different areas such as precision agriculture,environmental monitoring, object and event detection and military surveillance. Due to the current WSN characteristics this technology is specifically useful in industrial areas where security, reliability and autonomy are basic, such as nuclear power plants, chemical plants, and others. In this paper we present a system based on WSNs to monitor environmental conditions around and inside a nuclear power plant, specifically, radiation levels. Sensor nodes, equipped with radiation sensors, are deployed in fixed positions throughout the plant. In addition, plant staff are also equipped with mobile devices with higher capabilities than sensors such as for example PDAs able to monitor radiation levels and other conditions around them. The system enables communication between PDAs, which form a Mobile Ad-hoc Wireless Network (MANET), and allows workers to monitor remote conditions in the plant. It is particularly useful during stoppage periods for inspection or in the event of an accident to prevent risk situations.

Keywords: MANETs, Mobile computing, Radiation monitoring, Wireless Sensor Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017
1231 A Markov Chain Model for Load-Balancing Based and Service Based RAT Selection Algorithms in Heterogeneous Networks

Authors: Abdallah Al Sabbagh

Abstract:

Next Generation Wireless Network (NGWN) is expected to be a heterogeneous network which integrates all different Radio Access Technologies (RATs) through a common platform. A major challenge is how to allocate users to the most suitable RAT for them. An optimized solution can lead to maximize the efficient use of radio resources, achieve better performance for service providers and provide Quality of Service (QoS) with low costs to users. Currently, Radio Resource Management (RRM) is implemented efficiently for the RAT that it was developed. However, it is not suitable for a heterogeneous network. Common RRM (CRRM) was proposed to manage radio resource utilization in the heterogeneous network. This paper presents a user level Markov model for a three co-located RAT networks. The load-balancing based and service based CRRM algorithms have been studied using the presented Markov model. A comparison for the performance of load-balancing based and service based CRRM algorithms is studied in terms of traffic distribution, new call blocking probability, vertical handover (VHO) call dropping probability and throughput.

Keywords: Heterogeneous Wireless Network, Markov chain model, load-balancing based and service based algorithm, CRRM algorithms, Beyond 3G network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2486
1230 Completion Latin Square for Wavelength Routing

Authors: Ali Habiboghli, Rouhollah Mostafaei, Vasif Nabiyev

Abstract:

Optical network uses a tool for routing called Latin router. These routers use particular algorithms for routing. For example, we can refer to LDF algorithm that uses backtracking (one of CSP methods) for problem solving. In this paper, we proposed new approached for completion routing table (DRA&CRA algorithm) and compare with pervious proposed ways and showed numbers of backtracking, blocking and run time for DRA algorithm less than LDF and CRA algorithm.

Keywords: Latin Router, Constraint Satisfaction Problem, Wavelength Routing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
1229 Dynamic Routing to Multiple Destinations in IP Networks using Hybrid Genetic Algorithm (DRHGA)

Authors: K. Vijayalakshmi, S. Radhakrishnan

Abstract:

In this paper we have proposed a novel dynamic least cost multicast routing protocol using hybrid genetic algorithm for IP networks. Our protocol finds the multicast tree with minimum cost subject to delay, degree, and bandwidth constraints. The proposed protocol has the following features: i. Heuristic local search function has been devised and embedded with normal genetic operation to increase the speed and to get the optimized tree, ii. It is efficient to handle the dynamic situation arises due to either change in the multicast group membership or node / link failure, iii. Two different crossover and mutation probabilities have been used for maintaining the diversity of solution and quick convergence. The simulation results have shown that our proposed protocol generates dynamic multicast tree with lower cost. Results have also shown that the proposed algorithm has better convergence rate, better dynamic request success rate and less execution time than other existing algorithms. Effects of degree and delay constraints have also been analyzed for the multicast tree interns of search success rate.

Keywords: Dynamic Group membership change, Hybrid Genetic Algorithm, Link / node failure, QoS Parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448
1228 The Effect of Molybdate on Corrosion Behaviour of AISI 316Ti Stainless Steel in Chloride Environment

Authors: Viera Zatkalíková, Lenka Markovičová, Aneta Tor-Swiatek

Abstract:

The effect of molybdate addition to chloride environment on resistance of AISI 316Ti stainless steel to pitting corrosion was studied. Potentiodynamic polarisation tests were performed in 1 M and 0.1 M chloride acidified solutions with various additions of sodium molybdate at room temperature. The presented results compare the effect of molybdate anions on quality of passive film (expressed by the pitting potential) in both chloride solutions. The pitting potential increases with the increase inhibitor concentration. The inhibitive effect of molybdate ions is stronger in chloride solution of lower aggressiveness (0.1M).

Keywords: AISI 316Ti steel, molybdate inhibitor, pitting corrosion, pitting potential, potentiodynamic polarization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2188
1227 Quad Tree Decomposition Based Analysis of Compressed Image Data Communication for Lossy and Lossless Using WSN

Authors: N. Muthukumaran, R. Ravi

Abstract:

The Quad Tree Decomposition based performance analysis of compressed image data communication for lossy and lossless through wireless sensor network is presented. Images have considerably higher storage requirement than text. While transmitting a multimedia content there is chance of the packets being dropped due to noise and interference. At the receiver end the packets that carry valuable information might be damaged or lost due to noise, interference and congestion. In order to avoid the valuable information from being dropped various retransmission schemes have been proposed. In this proposed scheme QTD is used. QTD is an image segmentation method that divides the image into homogeneous areas. In this proposed scheme involves analysis of parameters such as compression ratio, peak signal to noise ratio, mean square error, bits per pixel in compressed image and analysis of difficulties during data packet communication in Wireless Sensor Networks. By considering the above, this paper is to use the QTD to improve the compression ratio as well as visual quality and the algorithm in MATLAB 7.1 and NS2 Simulator software tool.

Keywords: Image compression, Compression Ratio, Quad tree decomposition, Wireless sensor networks, NS2 simulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2391
1226 Analysis of Message Authentication in Turbo Coded Halftoned Images using Exit Charts

Authors: Andhe Dharani, P. S. Satyanarayana, Andhe Pallavi

Abstract:

Considering payload, reliability, security and operational lifetime as major constraints in transmission of images we put forward in this paper a steganographic technique implemented at the physical layer. We suggest transmission of Halftoned images (payload constraint) in wireless sensor networks to reduce the amount of transmitted data. For low power and interference limited applications Turbo codes provide suitable reliability. Ensuring security is one of the highest priorities in many sensor networks. The Turbo Code structure apart from providing forward error correction can be utilized to provide for encryption. We first consider the Halftoned image and then the method of embedding a block of data (called secret) in this Halftoned image during the turbo encoding process is presented. The small modifications required at the turbo decoder end to extract the embedded data are presented next. The implementation complexity and the degradation of the BER (bit error rate) in the Turbo based stego system are analyzed. Using some of the entropy based crypt analytic techniques we show that the strength of our Turbo based stego system approaches that found in the OTPs (one time pad).

Keywords: Halftoning, Turbo codes, security, operationallifetime, Turbo based stego system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508
1225 Normal and Peaberry Coffee Beans Classification from Green Coffee Bean Images Using Convolutional Neural Networks and Support Vector Machine

Authors: Hira Lal Gope, Hidekazu Fukai

Abstract:

The aim of this study is to develop a system which can identify and sort peaberries automatically at low cost for coffee producers in developing countries. In this paper, the focus is on the classification of peaberries and normal coffee beans using image processing and machine learning techniques. The peaberry is not bad and not a normal bean. The peaberry is born in an only single seed, relatively round seed from a coffee cherry instead of the usual flat-sided pair of beans. It has another value and flavor. To make the taste of the coffee better, it is necessary to separate the peaberry and normal bean before green coffee beans roasting. Otherwise, the taste of total beans will be mixed, and it will be bad. In roaster procedure time, all the beans shape, size, and weight must be unique; otherwise, the larger bean will take more time for roasting inside. The peaberry has a different size and different shape even though they have the same weight as normal beans. The peaberry roasts slower than other normal beans. Therefore, neither technique provides a good option to select the peaberries. Defect beans, e.g., sour, broken, black, and fade bean, are easy to check and pick up manually by hand. On the other hand, the peaberry pick up is very difficult even for trained specialists because the shape and color of the peaberry are similar to normal beans. In this study, we use image processing and machine learning techniques to discriminate the normal and peaberry bean as a part of the sorting system. As the first step, we applied Deep Convolutional Neural Networks (CNN) and Support Vector Machine (SVM) as machine learning techniques to discriminate the peaberry and normal bean. As a result, better performance was obtained with CNN than with SVM for the discrimination of the peaberry. The trained artificial neural network with high performance CPU and GPU in this work will be simply installed into the inexpensive and low in calculation Raspberry Pi system. We assume that this system will be used in under developed countries. The study evaluates and compares the feasibility of the methods in terms of accuracy of classification and processing speed.

Keywords: Convolutional neural networks, coffee bean, peaberry, sorting, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
1224 Using Adaptive Pole Placement Control Strategy for Active Steering Safety System

Authors: Hadi Adibi-Asl, Alireza Doosthosseini, Amir Taghavipour

Abstract:

This paper studies the design of an adaptive control strategy to tune an active steering system for better drivability and maneuverability. In the first step, adaptive control strategy is applied to estimate the uncertain parameters on-line (e.g. cornering stiffness), then the estimated parameters are fed into the pole placement controller to generate corrective feedback gain to improve the steering system dynamic’s characteristics. The simulations are evaluated for three types of road conditions (dry, wet, and icy), and the performance of the adaptive pole placement control (APPC) are compared with pole placement control (PPC) and a passive system. The results show that the APPC strategy significantly improves the yaw rate and side slip angle of a bicycle plant model.

Keywords: Adaptive control, active steering, pole placement, vehicle dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1345
1223 Two Different Solutions for Gigabit Ethernet Transmission over POF

Authors: Stefano Straullu, Silvio Abrate, Antonino Nespola, Paolo Savio, Roberto Gaudino

Abstract:

Two completely different approaches for a Gigabit Ethernet compliant stream transmission over 50m of 1mm PMMA SI-POF have been experimentally demonstrated and are compared in this paper. The first solution is based on a commercial RC-LED transmission and a careful optimization of the physical layer architecture, realized during the POF-PLUS EU Project. The second solution exploits the performance of an edge-emitting laser at the transmitter side in order to avoid any sort of electrical equalization at the receiver side.

Keywords: Gigabit Ethernet, Home Networking, Step-Index Polymer Optical Fiber (SI-POF)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
1222 Bounded Rational Heterogeneous Agents in Artificial Stock Markets: Literature Review and Research Direction

Authors: Talal Alsulaiman, Khaldoun Khashanah

Abstract:

In this paper, we provided a literature survey on the artificial stock problem (ASM). The paper began by exploring the complexity of the stock market and the needs for ASM. ASM aims to investigate the link between individual behaviors (micro level) and financial market dynamics (macro level). The variety of patterns at the macro level is a function of the AFM complexity. The financial market system is a complex system where the relationship between the micro and macro level cannot be captured analytically. Computational approaches, such as simulation, are expected to comprehend this connection. Agent-based simulation is a simulation technique commonly used to build AFMs. The paper proceeds by discussing the components of the ASM. We consider the roles of behavioral finance (BF) alongside the traditionally risk-averse assumption in the construction of agent’s attributes. Also, the influence of social networks in the developing of agents interactions is addressed. Network topologies such as a small world, distance-based, and scale-free networks may be utilized to outline economic collaborations. In addition, the primary methods for developing agents learning and adaptive abilities have been summarized. These incorporated approach such as Genetic Algorithm, Genetic Programming, Artificial neural network and Reinforcement Learning. In addition, the most common statistical properties (the stylized facts) of stock that are used for calibration and validation of ASM are discussed. Besides, we have reviewed the major related previous studies and categorize the utilized approaches as a part of these studies. Finally, research directions and potential research questions are argued. The research directions of ASM may focus on the macro level by analyzing the market dynamic or on the micro level by investigating the wealth distributions of the agents.

Keywords: Artificial stock markets, agent based simulation, bounded rationality, behavioral finance, artificial neural network, interaction, scale-free networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2528
1221 Robust & Energy Efficient Universal Gates for High Performance Computer Networks at 22nm Process Technology

Authors: M. Geetha Priya, K. Baskaran, S. Srinivasan

Abstract:

Digital systems are said to be constructed using basic logic gates. These gates are the NOR, NAND, AND, OR, EXOR & EXNOR gates. This paper presents a robust three transistors (3T) based NAND and NOR gates with precise output logic levels, yet maintaining equivalent performance than the existing logic structures. This new set of 3T logic gates are based on CMOS inverter and Pass Transistor Logic (PTL). The new universal logic gates are characterized by better speed and lower power dissipation which can be straightforwardly fabricated as memory ICs for high performance computer networks. The simulation tests were performed using standard BPTM 22nm process technology using SYNOPSYS HSPICE. The 3T NAND gate is evaluated using C17 benchmark circuit and 3T NOR is gate evaluated using a D-Latch. According to HSPICE simulation in 22 nm CMOS BPTM process technology under given conditions and at room temperature, the proposed 3T gates shows an improvement of 88% less power consumption on an average over conventional CMOS logic gates. The devices designed with 3T gates will make longer battery life by ensuring extremely low power consumption.

Keywords: Low power, CMOS, pass-transistor, flash memory, logic gates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2436
1220 Polarization Modulation by free-Standing Asymmetric Hole Arrays

Authors: Hong-Wen Hsieh, Shun-Tung Yen

Abstract:

We theoretically demonstrate modulation of light polarization by a crossed rectangular hole array with asymmetric arm lengths. There are two waveguide modes that can modulate the x- and y- polarized incident waves independently. A specific structure is proposed to convert a left-hand incident wave to a right-hand outgoing wave by transmission.

Keywords: Crossed rectangular hole array, extraordinary optical transmission, polarization modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1284
1219 Delay Preserving Substructures in Wireless Networks Using Edge Difference between a Graph and its Square Graph

Authors: T. N. Janakiraman, J. Janet Lourds Rani

Abstract:

In practice, wireless networks has the property that the signal strength attenuates with respect to the distance from the base station, it could be better if the nodes at two hop away are considered for better quality of service. In this paper, we propose a procedure to identify delay preserving substructures for a given wireless ad-hoc network using a new graph operation G 2 – E (G) = G* (Edge difference of square graph of a given graph and the original graph). This operation helps to analyze some induced substructures, which preserve delay in communication among them. This operation G* on a given graph will induce a graph, in which 1- hop neighbors of any node are at 2-hop distance in the original network. In this paper, we also identify some delay preserving substructures in G*, which are (i) set of all nodes, which are mutually at 2-hop distance in G that will form a clique in G*, (ii) set of nodes which forms an odd cycle C2k+1 in G, will form an odd cycle in G* and the set of nodes which form a even cycle C2k in G that will form two disjoint companion cycles ( of same parity odd/even) of length k in G*, (iii) every path of length 2k+1 or 2k in G will induce two disjoint paths of length k in G*, and (iv) set of nodes in G*, which induces a maximal connected sub graph with radius 1 (which identifies a substructure with radius equal 2 and diameter at most 4 in G). The above delay preserving sub structures will behave as good clusters in the original network.

Keywords: Clique, cycles, delay preserving substructures, maximal connected sub graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1254
1218 Dynamic Admission Control Based on Effective Demand for Next Generation Wireless Networks

Authors: Somenath Mukherjee, Rajdeep Ray, Raj Kumar Samanta, Mofazzal H. Khondekar, Gautam Sanyal

Abstract:

In next generation wireless networks (i.e., 4G and beyond), one of the main objectives is to ensure highest level of customer satisfaction in terms of data transfer speed, decrease in cost and delay, non-rejection and no drop of calls, availability of ‘always-on’ connectivity and services, continuity of connected services, hastle-free roaming in addition to the convenience of use of network services from anywhere and anytime. To take care of these requirements effectively, internet service providers (ISPs) and network planners have to go for major capacity enhancement of network resources and at the same time these resources are to be used effectively and efficiently to reduce cost and to increase revenue. In this work, the effective bandwidth available in a Mobile Switching Center (MSC) of a wireless network providing multi-class multimedia services is analyzed. Bandwidth requirement of the users for a customized Quality of Service (QoS) is estimated. The findings of the QoS estimation are applied for the capacity planning and admission control of the multi-class traffic flows coming into the MSC.

Keywords: Next generation wireless network, mobile switching center, multi-class traffic, quality of service, admission control, effective bandwidth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 841
1217 STLF Based on Optimized Neural Network Using PSO

Authors: H. Shayeghi, H. A. Shayanfar, G. Azimi

Abstract:

The quality of short term load forecasting can improve the efficiency of planning and operation of electric utilities. Artificial Neural Networks (ANNs) are employed for nonlinear short term load forecasting owing to their powerful nonlinear mapping capabilities. At present, there is no systematic methodology for optimal design and training of an artificial neural network. One has often to resort to the trial and error approach. This paper describes the process of developing three layer feed-forward large neural networks for short-term load forecasting and then presents a heuristic search algorithm for performing an important task of this process, i.e. optimal networks structure design. Particle Swarm Optimization (PSO) is used to develop the optimum large neural network structure and connecting weights for one-day ahead electric load forecasting problem. PSO is a novel random optimization method based on swarm intelligence, which has more powerful ability of global optimization. Employing PSO algorithms on the design and training of ANNs allows the ANN architecture and parameters to be easily optimized. The proposed method is applied to STLF of the local utility. Data are clustered due to the differences in their characteristics. Special days are extracted from the normal training sets and handled separately. In this way, a solution is provided for all load types, including working days and weekends and special days. The experimental results show that the proposed method optimized by PSO can quicken the learning speed of the network and improve the forecasting precision compared with the conventional Back Propagation (BP) method. Moreover, it is not only simple to calculate, but also practical and effective. Also, it provides a greater degree of accuracy in many cases and gives lower percent errors all the time for STLF problem compared to BP method. Thus, it can be applied to automatically design an optimal load forecaster based on historical data.

Keywords: Large Neural Network, Short-Term Load Forecasting, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224