
 

 

 
Abstract—Recently, graph-based computations have become 

more important in large-scale scientific computing as they can 
provide a methodology to model many types of relations between 
independent objects. They are being actively used in fields as varied 
as biology, social networks, cybersecurity, and computer networks. 
At the same time, graph problems have some properties such as 
irregularity and poor locality that make their performance different 
than regular applications performance. Therefore, parallelizing graph 
algorithms is a hard and challenging task. Initial evidence is that 
standard computer architectures do not perform very well on graph 
algorithms. Little is known exactly what causes this. The Graph500 
benchmark is a representative application for parallel graph-based 
computations, which have highly irregular data access and are driven 
more by traversing connected data than by computation. In this paper, 
we present results from analyzing the performance of various 
example implementations of Graph500, including a shared memory 
(OpenMP) version, a distributed (MPI) version, and a hybrid version. 
We measured and analyzed all the factors that affect its performance 
in order to identify possible changes that would improve its 
performance. Results are discussed in relation to what factors 
contribute to performance degradation. 

 
Keywords—Graph computation, Graph500 benchmark, parallel 

architectures, parallel programming, workload characterization. 

I. INTRODUCTION 

T has long been known that different types of computations 
can require very different approaches to their parallelization 

and that some computations are much easier to parallelize than 
others. In particular, irregular computations, such as those 
performed over large graph data structures, typically exhibit 
poor speedup relative to the resources available [1], [19]. The 
Graph500 benchmark [2] was created to be a representative 
application for evaluating system performance on such 
applications.  

Graph500 specifies a set of graph computations that must 
be performed, allowing for custom implementations of the 
computations, but it also includes several example 
implementations, from a shared memory implementation to 
distributed and combination versions. We performed an in-
depth analysis of three of these representative implementations 
in order to get a better understanding of where the loss of 
speedup is generally being produced and to see if there might 
be algorithmic or architectural changes that might help 
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produce more scalable parallel graph computations. While 
much work has been done at the overall net level of parallel 
performance measurement and improvement for graph 
algorithms (see Section VI), much less work has been done in 
delving deep into the individual causes of the observed 
parallel performance. So even though much work shows how 
particular algorithmic or platform changes improve (or harm) 
the overall performance of some graph computation, less is 
known about individual contributions to the overall 
performance.  

This paper contributes an investigation into what factors are 
most significant when it comes to explaining the causes of 
poor speedup in the Graph500 parallel computations. It 
contributes an assessment of factors for shared-memory, 
distributed, and hybrid versions of Graph500. The nature of 
this paper is a short summary of much data that have been 
gathered; for a full presentation in the breadth of the 
investigation, please refer to [3].  

Section II details the applications we used in this work; 
Section III presents results from evaluating the shared-
memory version of Graph500, Section IV evaluates the 
distributed version, and Section V evaluates the hybrid 
version. Finally, Section VI presents related work, and Section 
VII presents future work and conclusions. 

II.  PLATFORMS AND EXPERIMENTAL SETUP 

Graph500 is a two-kernel parallel benchmark that has an 
undirected graph generator as a first code kernel, and then a 
parallel breadth-first search (BFS) over the graph as the 
second. The BFS algorithm requires no locking as it does not 
perform potential conflicting updates. In this BFS kernel, 64 
separate BFS searches are performed, each from a randomly 
selected starting node. Although the graph generation is 
parallelized, it is the BFS kernel that is the heart of the 
Graph500 benchmark and that consumes the vast majority of 
execution time. Performance for Graph500 is measured in 
TEPS or traversed edges per second. Graph500 has essentially 
no computation associated with the visiting of each node, 
other than the finding of its edges and the continued BFS 
search. The problem size is denoted by an integer scale size; 
the problem graph then has 2scale number of nodes in it. 

Our experiments have been performed over a period of time 
and have utilized three different hardware platforms, although 
all of them are essentially similar. Most of the evaluation of 
pure shared memory parallelism was performed on an Intel 
Xeon platform with two 10-core CPUs, and with each core 
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being 2-way hyperthreaded. Some of the distributed 
parallelism evaluation was performed on an older 24-node 
cluster with 2 quad-core Xeon 5335 processors and 12 GB of 
RAM on each node and an Infiniband interconnect. Some of 
the distributed and all of the hybrid evaluation was performed 
on a newer small 10-node cluster with 24 cores per node (12 
cores per CPU), configured with hyperthreading for 48 
hardware hyperthreads per node, and 256GB of RAM; it also 
has an Infiniband interconnect. 

Problem sizes were from scale 20 to scale 28, depending on 
the platform used, the resources available, and the time 
constraints for which the platform could be used under. The 
shared memory evaluations, running only on one node, 
obviously used the smaller scales. We generally tried to use 
the largest scale that would fit on the resource configuration, 
though for some evaluation we scaled back based on time 
concerns. We did not see significant changes in overall 
numbers as we changed scales, and thus do not view the 
problem scale as an important parameter, except at extremes. 
All implementations were built with Gnu compilers, and we 
used OpenMPI for the MPI implementation. All systems use 
some variant of Linux, with the new cluster running CentOS. 
Most data reported in this paper are averages of five runs. 

III. SHARED MEMORY EVALUATION 

In this section, we present results from evaluating the pure 
OpenMP version of the Graph500 benchmark. We will refer to 
this implementation as Graph500-OMP. We used a tool we 
created, PGOMP [4], that uses library interposition to provide 
a detailed inspection of OpenMP overheads for the Gnu 
OpenMP implementation, and is similar to tools provided with 
commercial OpenMP compilers 

A. Sequential Time Variation 

Amdahl’s Law suggests calculating ideal speedup from the 
fraction of time spent in the sequential code versus the time 
spent in parallel code. The difference in observed speedup 
from this ideal speedup is then due to the various overheads 
incurred (e.g., communication, synchronization). For shared 
memory applications, however, simply measuring the 
sequential portion on a one or even two-thread configuration 
may not give an accurate assessment of the true sequential 
portion cost. This is because each thread configuration affects 
the shared resources and their state after a parallel section is 
completed, and this can affect the performance of the 
sequential portion. 

Our first measurement, then, is the time spent in the 
sequential portion. While the overall portion of sequential time 
for Graph500-OMP is small, we observed variations from 
about 0.5% of total single-threaded time to about 1.5% of total 
single-threaded time; this may seem inconsequential, but it 
results in large effects. Fig. 1 shows the effect that these 
varying sequential execution times have on what Amdahl’s 
Law would offer as an upper bound on speedup. Each line 
shows the curve from Amdahl’s Law based on the measured 
sequential execution time for the number of processors 
indicated. Graph500-OMP has significant variation in 

sequential execution times, and the figures show that just this 
variation can explain a significant amount of the speedup loss 
that the actual executions suffer. 

In these experiments, the sequential time observed for 
Graph500-OMP with one thread was 0.74%, while over the 
various thread configurations the maximum observed was 
1.78%. This difference will significantly explain part of the 
observed performance loss from what Amdahl’s Law would 
predict, and ignoring it would lead to erroneous results. This 
observation could be very important in the future where 
processors may have many, many cores available. In such a 
case, even using Amdahl’s Law for rough upper-bound 
estimates could be very wrong in the many-core case. 
Amdahl’s Law is simply invalid for the context-sensitive 
execution performance of modern processors and memory 
hierarchies; nothing is constant across configuration changes. 

 

 

Fig. 1 Graph500-OMP ideal speedup variation for observed 
sequential time variation, along with actual speedup observed 

B. Parallel Overhead 

a) Library Overhead: Library routines, other than lock 
orbarrier waiting (which are counted elsewhere), run too 
fast for good timing measurements, so we also used PAPI 
along with PGOMP to obtain an instruction count for the 
OpenMP library code. These instruction counts were 
consistently many orders of magnitude smaller than 
application instruction counts, and were also consistent 
across thread configurations, and so we conclude that 
library overhead is negligible. 

b) Lock and Critical Section Overhead: We measured the 
time spent in OpenMP locks and critical section 
constructs, but because Graph500-OMP is essentially 
read-only computation, these are negligible (and actually 
measured as 0). We measured these factors in other 
applications to test that our framework correctly captures 
them: for example, the SSCA2 graph benchmark [24] was 
measured to have 0.64% overhead spent in critical section 
waiting. 

c) Barrier Overhead: OpenMP uses a barrier construct at the 
end of a parallel loop and this synchronization time is 
significant for Graph500-OMP. Table I shows barriers 
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accounting for up to almost 30% of the overhead.   
 

TABLE I 
OVERALL FACTOR CONTRIBUTION TO PERFORMANCE LOSS 

Threads 
Measured 
Speedup 

Ideal 
Speedup 
(Amdahl) 

Sequential 
Variation 

Overhead % 

Barrier 
Accounted 

Overhead % 

Lock/CS 
Accounted 

Overhead % 

Memory 
Hierarchy 

Overhead % 
1 1.00 1.00 - - - - 

2 1.84 1.98 1.58 9.38 0.00 88.04 

4 2.99 3.89 3.33 21.28 0.00 75.93 

8 5.56 7.54 5.86 21.53 0.00 72.61 

16 10.98 14.20 12.27 17.31 0.00 70.42 

32 14.19 23.51 15.82 18.95 0.00 65.32 

 

 

Fig. 2 Graph500-OMP L2 data cache miss rate for various scales. 
Also shown for comparison are SSCA2 and a simple heat transfer 

 
d) Memory Overhead: The other potential factor inexecution 

time variation is the local memory hierarchy performance. 
Fig. 2 shows the level 2 data cache miss rates for three 
different problem sizes for Graph500-OMP, along with 
two other applications for comparison1. This indicates 
that the local cache performance of the parallel 
computations is not significantly varying; as far as the 
cache is concerned, their computation profile is 
consistent. Thus, we can assume that changing local cache 
performance is not a factor in any poor speedup. 

We also measured instruction counts in threads to be sure 
that no algorithmic or architectural anomalies are occurring. 
We conclude that based on the instruction counts and the 
consistent memory performance, the parallelized sections 
execute at essentially the same rate in each of the N-processor 
configurations. There is no significant variation that might 
help explain the poor speedup.  

C. Results 

For the portion of overhead due to the memory hierarchy, 
other than on simulation it is virtually impossible to directly 
measure this. Counters do not give time measurements, and 
most CPUs do not have coherency counters (and none we 
have to do). Thus the overhead accounted for by the memory 

 
1 SSCA2 is another shared-memory graph benchmark, and HeatedPlate is a 

simple heat transfer computation 

hierarchy must be what is leftover from how much is 
accounted for by the factors that we did measure. 

Table I shows the concluding results from putting together 
all of the measurements. Measurements are mostly taken from 
scale 20 for Graph500-OMP. The last four columns are the 
percentage of contribution to performance loss from the 
varying sequential execution time, the barrier synchronization 
time, the lock or critical section blocking time, and then 
finally the memory hierarchy contribution, which is calculated 
as the rest of whatever is left from the other three. Recall that 
measurements led us to conclude that there was virtually no 
contribution from varying parallel execution performance nor 
from the parallelization management code in the OpenMP 
framework library. 

For Graph500-OMP, the sequential time variation is a 
significant factor, even increasing in significance as the thread 
count goes higher; if there is reasonably large sequential 
variation, Amdahl’s Law implies that it will get more 
significant as concurrency increases. Barrier overhead, for all 
configurations other than the 32-thread one, remains high. We 
surmise that Graph500-OMP has consistently high workload 
variation between the threads; this could potentially be a point 
for improvement. 

The most important point of the Graph500-OMP results is 
that if we had assumed that the sequential execution time part 
was constant, as Amdahl’s Law does, we would have 
attributed much more overhead to the memory hierarchy, and 
would believe that we could achieve more improvements that 
might truly be possible (without addressing the sequential 
part). The differing sequential times here result in up to a 15% 
difference in the ideal parallel performance, which is 
insignificant. 

The next step for this analysis would be to run Graph500- 
OMP under a memory simulator and try to break down the 
cost into per-core hierarchy costs and coherency costs. Since 
shared-memory parallelism captures its communication cost in 
the implicit memory hierarchy operations, detailing what 
happens here is the important next step. Many ideas are being 
pursued in regards to more efficiently connecting data and 
computation in these types of irregularly parallel, data-
intensive applications, from active messages to radical 
processor-in-memory architectures. What is clear is that on 
present architectures, data access is a large portion, though not 
all, of the cause of poor speedup in Graph500-OMP. 
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Fig. 3 Graph500-MPI MPI overhead. Total application time and time 
in MPI routines are shown 

IV. DISTRIBUTED EVALUATION 

In this section, we present results from evaluating the pure 
MPI version of the Graph500 benchmark. We will refer to this 
implementation as Graph500-MPI. For these results, we 
mostly used the mpiP tool [5], which gives time breakdowns 
of all of the MPI calls that an application performs. For this 
version we did not measure sequential time variation; because 
this version uses pure MPI without local threading, there is no 
ending of local parallel sections and beginning of sequential 
sections; processes may wait at a synchronization point, but 
this will be measured elsewhere. Indeed when inspecting the 
implementation code, there is very little synchronization. It 
uses asynchronous sends and receives for most of the 
communication, using an all-reduce only at the end of a 
computation. 

Fig. 3 shows the total overhead measured for Graph500- 
MPI (and compared to two NASA Parallel Benchmarks, EP 
and LU). Graph500-MPI obviously spends a large portion of 
its time in MPI—in most configurations, about 70%. 

Fig. 4 shows the main components of the time spent in MPI. 
The dominant factor of MPI time is the routine MPI Test, 
which simply is a local test to see if some asynchronous 
communication has been completed. This is consistent with 
Graph500-MPI’s use of asynchronous communication and 
seems to indicate that Graph500-MPI is mostly bound by 
waiting on data. Given that the sends and receives are 
asynchronous, their direct overhead is going to be mostly 
unavoidable, unless the data packaging and amount could 
somehow be optimized. Thus in this section, we will focus on 
the time spent waiting (e.g., in MPI Test). The mpiP tool 
breaks down MPI routine overhead based on call sites, and so 
we can learn more from the large portion of overhead due to 
MPI Test. 

The Graph500-MPI code is organized with a large macro 
that has an initial loop that checks for received data messages 
using MPI Test, and then in a second loop uses MPI Test 
again to check for sending buffers that have emptied because 
of a completed send. The macro itself is used in two 

(prominent) places, one at the beginning of each work 
iteration, and one where it needs to send data to another 
process and is waiting for the send buffer to become available. 
These four separate call sites of MPI Test and their proportion 
of overhead are shown in Table II, labeled with the first part 
denoting the macro use site (top of work iteration or waiting 
for send buffer) and the second part the place in the macro 
itself (checking for received messages or checking for empty 
send buffers).  

 

 

Fig. 4 Graph500-MPI overhead breakdown for the four largest 
components 

 
TABLE II 

MPI TEST CALL SITE OVERHEAD BREAKDOWN. 
Call Site App % Overhead MPI % Overhead 

Top-Recv 
Send-Recv 
Send-Send 
Top-Send 

18.48 
13.56 
9.45 
1.49 

25.58 
18.89 
13.08 
2.06 

 

We hand instrumented the macro to collect detailed 
performance data on how MPI Test was being used. Fig. 5 
shows a detailed look at how MPI Test behaves in Graph500- 
MPI. The layers in the graphs are histogram buckets for call 
durations, from 0 to 3 seconds. The buckets stack for a total 
number of calls. The X-axes are the MPI processes (ranks) and 
the algorithm iteration (recall that Graph500-MPI performs 64 
spanning-tree constructions, choosing a random starting vertex 
each time). Two things should be taken away from these 
graphs. One is that the top graph shows that processes have an 
equitable distribution of the waiting (testing) time—there are 
no large distinctions between the ranks. Two, the bottom 
graph shows that most algorithm iterations are consistent with 
each other, but a few (13 in this graph) clearly spike the total 
amount of waiting time. We interpret this to be that for most 
searches, the graph partition is suitable and produces 
consistent results, but some starting vertices cause the search 
to perform quite poorly. We do not offer an opinion as to 
whether it would be good to try to improve the performance of 
these few searches. Notably, there are not any large dips 
below what seems to be a sort of baseline cost to doing a BFS, 
so no starting node causes some large increase in BFS 
performance. 
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The Graph500-MPI code uses one sending buffer for every 
other rank; if a rank needs to send a message while the 
previous asynchronous send to the same rank is still active, it 
needs to wait. A natural investigation into this cost would be 
to allocate two buffers for every other rank. We made this 
small change, with the results shown in Fig. 6. There is a 

reasonably significant improvement in speedup, but not to the 
amount that approaches removing the large waiting costs. For 
example, in one set of runs, MPI Test goes from 69% of total 
application time to 63% of the total time when two buffers are 
used. 

 

 

Fig. 5 MPI Test execution time histogram (layers) by rank (a) and by algorithm iteration (b) 
 

TABLE III 
PERFORMANCE USING ONE AND TWO MACROS 

 MPI % Performance 

Number of Macros 
MPI_Test 
operations 

Total TEPS Speedup 

One Macro 
Two Macros 

67.96 
67.65 

72.22 
72.90 

2.44E+08 
2.36E+08 

37.84 
36.56 

 

Another useful investigation to check is whether the 
coupling of the two separate tests in the macro causes some of 
the inefficiencies. To this end, we split the macro into the 
receiving and sending parts, and then only use each at the 
appropriate points in the main computation loop. Table III 
shows a sample result of this experiment, which resulted in 
essentially no change in the amount of waiting overhead. We 
conclude that the waiting is not dependent on this aspect of the 
structure of the Graph500-MPI implementation but rather is 
more inherent to the nature of the computational problem. 

In summary, Graph500-MPI has most of its overhead in 
waiting for data to receive or to be sent, and seems to run out 
of work and is communication bound. Some improvement 
could be made, as shown with the dual send-buffer 
experiment, but large improvements need a different 
computational and communication model (as will be seen in 

the next section). 
 

 

Fig. 6 Speedup of Graph500-MPI with One and Two Sending Buffers 

V. HYBRID EVALUATION  

In this section, we present results from evaluating the 
hybrid OpenMP+MPI version of the Graph500 benchmark. 
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We will refer to this implementation as Graph500-HYB. For 
these results, we used both the PGOMP tool that we used for 
collecting data from the OpenMP version and the mpiP tool 
for MPI profiling. We did this separately so that the tools’ 
overheads did not interfere with each other. 

The Graph500-HYB code is quite a bit different than the 
Graph500-MPI version. Graph500-MPI is heavily centered on 
asynchronous MPI communication, but the Graph500-HYB 
code uses synchronizing all-to-all communication as it shares 
information between processes after a round of OpenMP 
parallel loop-based computation. 

Fig. 7 shows that, not surprisingly, in simple raw 
performance (the internal Graph500 TEPS metric), Graph500-
HYB is much better than the pure MPI version. Thus it has 
much less overhead and since most of Graph500-MPI’s 
overhead was waiting for data, Graph500-HYB clearly 
removes much of the waiting time. 

 

 

Fig. 7 Graph500-HYB and Graph500-MPI Performance on 8 Nodes 
 

 

Fig. 8 Performance of Graph500-HYB on 2 and 8 Nodes, Varying Thread Count 
 

 

Fig. 9 Graph500-HYB MPI Overhead on 8 Nodes 
 

Fig. 8 shows the performance of Graph500-HYB with 
varying thread counts per node, distributed over 2 nodes and 8 
nodes. Both distributed configurations show the same general 
performance curve, with very few threads performing poorly, 
as expected, then a plateau up to 32 threads, with a tailing off 

of a performance at 48 threads. Recall that the platform these 
evaluations are performed on has 24 physical cores on each 
node, with 48 hardware hyperthreads. The surprising result 
here is that beyond 4-8 local threads, there is virtually no 
improvement in the performance of Graph500-HYB. Thus, its 
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local parallelism is severely limited. 
Fig. 9 shows the total MPI overhead and its breakdown into 

major components. Recall that Graph500-MPI consistently 
had about 70% of its time in MPI operations; Graph500-HYB 
shows a consistent 40%, thus reflecting its improved 
performance. Very low local thread counts have a skewed 
contribution between two all-to-all operations, and the balance 
between them slowly changes as thread counts continue to 
increase, but overall it is the two all-to-all operations that 
make up the majority of MPI overhead in Graph500-HYB. 

Although Fig. 8 showed TEPS dropping off at 48 threads, 
this figure shows that MPI overhead remains consistent over 
thread counts, and thus the performance dropoff must be due 
to local issues. More importantly, since the MPI overhead 
remains consistent from about 8 threads to 48 threads, the lack 
of performance improvement across these thread counts 
signifies that all of the issues are local. 

Recall that in the pure OpenMP version (Graph500-OMP), 
there was virtually no locking, and so the local overhead was 
mostly in barrier synchronization (end of a parallel loop) and 
the memory hierarchy (where implicit communication 
happens). With PGOMP we measured the barrier times, and 
although they do slightly rise as thread counts increase, we 
found them to be surprisingly small, accounting for less than 
0.1% of the overall overhead. We did also use PGOMP to 
verify that other possible OpenMP overheads (library time, 
locking time) were negligible. We are therefore left to 
conclude that the local performance degradation is entirely 
due to the memory hierarchy. 

Table IV summarizes the result of Graph500-HYB, putting 
together the observed MPI overhead measurements and the 
OpenMP barrier measurements, and then computing the not 
directly-measured memory hierarchy overhead and resultant 
productive computation percentage of application time, based 
on the observed TEPS performance for the different 
configurations. Recall that TEPS do not increase past about 8 
threads per node, so productive computation drops drastically 
as thread count increases beyond this. 

 
TABLE IV 

OVERALL FACTOR CONTRIBUTION TO PERFORMANCE LOSS IN HYBRID 

GRAPH500 
Number 

of 
Threads 

MPI 
Accounted 

Overhead % 

Barrier/CS 
Accounted 
Overhead% 

Memory 
System 

Overhead % 

Computation 
% 

2 
4 
8 

16 
24 
32 
48 

47.0 
46.7 
39.8 
39.4 
37.9 
38.0 
40.9 

0.0 
0.0 

0.014 
0.018 
0.022 
0.021 
0.035 

11.9 
18.7 
31.9 
43.6 
50.7 
53.2 
54.6 

41.0 
34.5 
28.4 
17.0 
11.4 
8.7 
4.5 

 

If our analysis holds, the end result is that as thread count 
increases, even with physical cores available (up to 24 on our 
platform), the memory hierarchy is basically thrashing (within 
cache and primary memory, not to disk), with threads causing 
coherency and caching conflicts at increasing rates. This 
seems reasonable since the MPI communication is performed 
by one single thread, which causes new data to be localized 

into its core’s hierarchy, and then as all the threads access 
these data in a new parallel loop, the data not only must reach 
their core but also end up being irregularly shared as the 
threads traverse the local part of the graph. An analysis of this 
under memory simulation is needed to fully confirm this 
observation and deduction.  

VI. RELATED WORK 

Roth et al. [6] performed somewhat similar analyses over 
particular Pthread-based parallel algorithms from PARSEC, 
categorizing the overhead factors into work, delay, and 
distribution. Most of their improvements were at the algorithm 
level, other than noting the potential effectiveness of an active 
barrier (spin barrier) for some applications over a passive 
(blocking) barrier. 

Pavlovic et al. [7] investigated the memory system 
requirements that scientific applications have, concluding that 
future scientific computation needs radically new memory 
architectures if they expect to achieve good speedups. They 
used Gadget, MILC, WRF, and SOCORRO as their 
representative scientific applications, and focused on 
measuring memory bandwidth and cache effectiveness and the 
effect these have on the underlying CPI achieved by the 
workload. 

Suzumura et al. [8] specifically focused on the performance 
characteristics of the Graph500 benchmark program in a 
distributed parallel environment; they optimized the 
implementation to achieve better speedup. 

Harmony [9] is an LLVM-based tool that instruments 
Pthreads-based parallel programs. Their work noticed a related 
issue with the conventional Amdahl-based view of a parallel 
program, in that they found that code was shared between the 
sequential and parallel portions of the programs. The same 
group also investigates bottlenecks in a variety of application 
domains and aims to separate computation and memory 
system bottlenecks [10]. 

Murphy [11] performed an early study into the different 
behaviors that integer-based irregularly parallel algorithms 
have from the traditional matrix-based floating-point 
computations. Burtscher et al. [12] investigated the 
quantitative variation for irregular GPU-based programs. 
Other recent work has also quantitatively investigated 
performance issues in parallel algorithms, graph-based, and 
otherwise. Gill [22] investigated how the graph partitioning 
strategies, including Edge-Cuts, 2D block partitioning 
strategies, and general Vertex-Cuts, can reduce the required 
communication during the computation to synchronize node 
updates. They used the D-Galois system, a distributed-
memory version of the Galois system based on the Gluon 
runtime, which implements partitioning-specific 
communication optimizations. Most of their improvements 
were at the application runtime. They concluded that the 
optimal partitioning strategy depends on the application, the 
input, and the number of hosts or scale. More prior work was 
done one parallel graph performance issues [13]-[15].  

Various graph-processing frameworks and libraries have 
been and are being actively constructed, e.g. [16]-[18], [20], 
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[21], [23]. 

VII. CONCLUSION 

We presented an overview of studies into the factors that 
contribute to the overhead that causes parallel performance 
degradation in Graph500, taking it to be a representative 
application for graph-based problems. Detailed results can be 
found in the first author’s thesis [3]. 

We measured the overhead contributed by traditional 
factors such as barrier synchronization costs, lock and critical 
section contention, and communication costs. In some 
settings, such as local parallelism, memory coherency costs 
could not be measured directly but were inferred from how 
much overhead was accounted for by other factors. 

In the shared-memory parallelism of Graph500-OMP, 
variation in the sequential execution time was significant; 
ignoring it could lead to oversubscribing the overhead caused 
by the memory hierarchy. The Graph500-OMP version is 
limited in its scaling to one node (unless one considered 
cluster-wide virtualization techniques), so some element of 
distributed parallelism is needed. 

For the pure MPI Graph500-MPI, which obviously does not 
take advantage of local node architecture, the graph search is 
bound by waiting for communication, and much of this seems 
inherent in the problem. Finally, the hybrid Graph500-HYB, 
which uses both MPI and OpenMP, performed far better than 
Graph500-MPI, but still consistently incurred about 40% of its 
time in distributed overhead costs (synchronized all-to-all 
communication). The most surprising aspect of Graph 500-
HYB was how quickly its local parallel performance stopped 
improving. With nodes having 24 physical cores (48 
hyperthreads) and 256GB of memory, it would seem that local 
parallelism would be extremely effective, but Graph500-HYB 
saw very little improvement above about 8 threads and saw 
some degradation with extreme thread counts (32-48). 

In Graph500-HYB, barrier overhead was almost negligible 
and there is no locking overhead, so the overhead that reduces 
local parallelism effectiveness must be within the memory 
hierarchy. We did not measure, but did not see other 
explanatory causes such as threads sleeping. Its MPI overhead 
was consistent, but another problem organization that avoids 
all-to-all operations might be effective in reducing this. 
Nevertheless, local overhead begins to dominate at high thread 
counts. 

For future work, we want to more deeply characterize 
performance issues in parallel graph algorithms, including 
using some real applications. Evaluating Graph500 under a 
memory simulator may be very costly but could provide real 
insight into exactly what is causing the largest performance 
impacts. 
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