

Abstract—Recently, graph-based computations have become

more important in large-scale scientific computing as they can
provide a methodology to model many types of relations between
independent objects. They are being actively used in fields as varied
as biology, social networks, cybersecurity, and computer networks.
At the same time, graph problems have some properties such as
irregularity and poor locality that make their performance different
than regular applications performance. Therefore, parallelizing graph
algorithms is a hard and challenging task. Initial evidence is that
standard computer architectures do not perform very well on graph
algorithms. Little is known exactly what causes this. The Graph500
benchmark is a representative application for parallel graph-based
computations, which have highly irregular data access and are driven
more by traversing connected data than by computation. In this paper,
we present results from analyzing the performance of various
example implementations of Graph500, including a shared memory
(OpenMP) version, a distributed (MPI) version, and a hybrid version.
We measured and analyzed all the factors that affect its performance
in order to identify possible changes that would improve its
performance. Results are discussed in relation to what factors
contribute to performance degradation.

Keywords—Graph computation, Graph500 benchmark, parallel

architectures, parallel programming, workload characterization.

I. INTRODUCTION

T has long been known that different types of computations
can require very different approaches to their parallelization

and that some computations are much easier to parallelize than
others. In particular, irregular computations, such as those
performed over large graph data structures, typically exhibit
poor speedup relative to the resources available [1], [19]. The
Graph500 benchmark [2] was created to be a representative
application for evaluating system performance on such
applications.

Graph500 specifies a set of graph computations that must
be performed, allowing for custom implementations of the
computations, but it also includes several example
implementations, from a shared memory implementation to
distributed and combination versions. We performed an in-
depth analysis of three of these representative implementations
in order to get a better understanding of where the loss of
speedup is generally being produced and to see if there might
be algorithmic or architectural changes that might help

M. Elfituri is with SUNY Morrisville, Morrisville, NY 13408 USA (e-
mail: elfituma@morrisville.edu).

J. Cook is with New Mexico State University, NM 88003 USA (e-mail:
jcook@nmsu.edu).

produce more scalable parallel graph computations. While
much work has been done at the overall net level of parallel
performance measurement and improvement for graph
algorithms (see Section VI), much less work has been done in
delving deep into the individual causes of the observed
parallel performance. So even though much work shows how
particular algorithmic or platform changes improve (or harm)
the overall performance of some graph computation, less is
known about individual contributions to the overall
performance.

This paper contributes an investigation into what factors are
most significant when it comes to explaining the causes of
poor speedup in the Graph500 parallel computations. It
contributes an assessment of factors for shared-memory,
distributed, and hybrid versions of Graph500. The nature of
this paper is a short summary of much data that have been
gathered; for a full presentation in the breadth of the
investigation, please refer to [3].

Section II details the applications we used in this work;
Section III presents results from evaluating the shared-
memory version of Graph500, Section IV evaluates the
distributed version, and Section V evaluates the hybrid
version. Finally, Section VI presents related work, and Section
VII presents future work and conclusions.

II. PLATFORMS AND EXPERIMENTAL SETUP

Graph500 is a two-kernel parallel benchmark that has an
undirected graph generator as a first code kernel, and then a
parallel breadth-first search (BFS) over the graph as the
second. The BFS algorithm requires no locking as it does not
perform potential conflicting updates. In this BFS kernel, 64
separate BFS searches are performed, each from a randomly
selected starting node. Although the graph generation is
parallelized, it is the BFS kernel that is the heart of the
Graph500 benchmark and that consumes the vast majority of
execution time. Performance for Graph500 is measured in
TEPS or traversed edges per second. Graph500 has essentially
no computation associated with the visiting of each node,
other than the finding of its edges and the continued BFS
search. The problem size is denoted by an integer scale size;
the problem graph then has 2scale number of nodes in it.

Our experiments have been performed over a period of time
and have utilized three different hardware platforms, although
all of them are essentially similar. Most of the evaluation of
pure shared memory parallelism was performed on an Intel
Xeon platform with two 10-core CPUs, and with each core

Mustafa Elfituri, Jonathan Cook

Analyzing the Factors that Cause Parallel
Performance Degradation in Parallel Graph-Based

Computations Using Graph500

I

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:15, No:3, 2021

216International Scholarly and Scientific Research & Innovation 15(3) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
3,

 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
92

5.
pd

f

being 2-way hyperthreaded. Some of the distributed
parallelism evaluation was performed on an older 24-node
cluster with 2 quad-core Xeon 5335 processors and 12 GB of
RAM on each node and an Infiniband interconnect. Some of
the distributed and all of the hybrid evaluation was performed
on a newer small 10-node cluster with 24 cores per node (12
cores per CPU), configured with hyperthreading for 48
hardware hyperthreads per node, and 256GB of RAM; it also
has an Infiniband interconnect.

Problem sizes were from scale 20 to scale 28, depending on
the platform used, the resources available, and the time
constraints for which the platform could be used under. The
shared memory evaluations, running only on one node,
obviously used the smaller scales. We generally tried to use
the largest scale that would fit on the resource configuration,
though for some evaluation we scaled back based on time
concerns. We did not see significant changes in overall
numbers as we changed scales, and thus do not view the
problem scale as an important parameter, except at extremes.
All implementations were built with Gnu compilers, and we
used OpenMPI for the MPI implementation. All systems use
some variant of Linux, with the new cluster running CentOS.
Most data reported in this paper are averages of five runs.

III. SHARED MEMORY EVALUATION

In this section, we present results from evaluating the pure
OpenMP version of the Graph500 benchmark. We will refer to
this implementation as Graph500-OMP. We used a tool we
created, PGOMP [4], that uses library interposition to provide
a detailed inspection of OpenMP overheads for the Gnu
OpenMP implementation, and is similar to tools provided with
commercial OpenMP compilers

A. Sequential Time Variation

Amdahl’s Law suggests calculating ideal speedup from the
fraction of time spent in the sequential code versus the time
spent in parallel code. The difference in observed speedup
from this ideal speedup is then due to the various overheads
incurred (e.g., communication, synchronization). For shared
memory applications, however, simply measuring the
sequential portion on a one or even two-thread configuration
may not give an accurate assessment of the true sequential
portion cost. This is because each thread configuration affects
the shared resources and their state after a parallel section is
completed, and this can affect the performance of the
sequential portion.

Our first measurement, then, is the time spent in the
sequential portion. While the overall portion of sequential time
for Graph500-OMP is small, we observed variations from
about 0.5% of total single-threaded time to about 1.5% of total
single-threaded time; this may seem inconsequential, but it
results in large effects. Fig. 1 shows the effect that these
varying sequential execution times have on what Amdahl’s
Law would offer as an upper bound on speedup. Each line
shows the curve from Amdahl’s Law based on the measured
sequential execution time for the number of processors
indicated. Graph500-OMP has significant variation in

sequential execution times, and the figures show that just this
variation can explain a significant amount of the speedup loss
that the actual executions suffer.

In these experiments, the sequential time observed for
Graph500-OMP with one thread was 0.74%, while over the
various thread configurations the maximum observed was
1.78%. This difference will significantly explain part of the
observed performance loss from what Amdahl’s Law would
predict, and ignoring it would lead to erroneous results. This
observation could be very important in the future where
processors may have many, many cores available. In such a
case, even using Amdahl’s Law for rough upper-bound
estimates could be very wrong in the many-core case.
Amdahl’s Law is simply invalid for the context-sensitive
execution performance of modern processors and memory
hierarchies; nothing is constant across configuration changes.

Fig. 1 Graph500-OMP ideal speedup variation for observed
sequential time variation, along with actual speedup observed

B. Parallel Overhead

a) Library Overhead: Library routines, other than lock
orbarrier waiting (which are counted elsewhere), run too
fast for good timing measurements, so we also used PAPI
along with PGOMP to obtain an instruction count for the
OpenMP library code. These instruction counts were
consistently many orders of magnitude smaller than
application instruction counts, and were also consistent
across thread configurations, and so we conclude that
library overhead is negligible.

b) Lock and Critical Section Overhead: We measured the
time spent in OpenMP locks and critical section
constructs, but because Graph500-OMP is essentially
read-only computation, these are negligible (and actually
measured as 0). We measured these factors in other
applications to test that our framework correctly captures
them: for example, the SSCA2 graph benchmark [24] was
measured to have 0.64% overhead spent in critical section
waiting.

c) Barrier Overhead: OpenMP uses a barrier construct at the
end of a parallel loop and this synchronization time is
significant for Graph500-OMP. Table I shows barriers

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:15, No:3, 2021

217International Scholarly and Scientific Research & Innovation 15(3) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
3,

 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
92

5.
pd

f

accounting for up to almost 30% of the overhead.

TABLE I
OVERALL FACTOR CONTRIBUTION TO PERFORMANCE LOSS

Threads
Measured
Speedup

Ideal
Speedup
(Amdahl)

Sequential
Variation

Overhead %

Barrier
Accounted

Overhead %

Lock/CS
Accounted

Overhead %

Memory
Hierarchy

Overhead %
1 1.00 1.00 - - - -

2 1.84 1.98 1.58 9.38 0.00 88.04

4 2.99 3.89 3.33 21.28 0.00 75.93

8 5.56 7.54 5.86 21.53 0.00 72.61

16 10.98 14.20 12.27 17.31 0.00 70.42

32 14.19 23.51 15.82 18.95 0.00 65.32

Fig. 2 Graph500-OMP L2 data cache miss rate for various scales.
Also shown for comparison are SSCA2 and a simple heat transfer

d) Memory Overhead: The other potential factor inexecution

time variation is the local memory hierarchy performance.
Fig. 2 shows the level 2 data cache miss rates for three
different problem sizes for Graph500-OMP, along with
two other applications for comparison1. This indicates
that the local cache performance of the parallel
computations is not significantly varying; as far as the
cache is concerned, their computation profile is
consistent. Thus, we can assume that changing local cache
performance is not a factor in any poor speedup.

We also measured instruction counts in threads to be sure
that no algorithmic or architectural anomalies are occurring.
We conclude that based on the instruction counts and the
consistent memory performance, the parallelized sections
execute at essentially the same rate in each of the N-processor
configurations. There is no significant variation that might
help explain the poor speedup.

C. Results

For the portion of overhead due to the memory hierarchy,
other than on simulation it is virtually impossible to directly
measure this. Counters do not give time measurements, and
most CPUs do not have coherency counters (and none we
have to do). Thus the overhead accounted for by the memory

1 SSCA2 is another shared-memory graph benchmark, and HeatedPlate is a

simple heat transfer computation

hierarchy must be what is leftover from how much is
accounted for by the factors that we did measure.

Table I shows the concluding results from putting together
all of the measurements. Measurements are mostly taken from
scale 20 for Graph500-OMP. The last four columns are the
percentage of contribution to performance loss from the
varying sequential execution time, the barrier synchronization
time, the lock or critical section blocking time, and then
finally the memory hierarchy contribution, which is calculated
as the rest of whatever is left from the other three. Recall that
measurements led us to conclude that there was virtually no
contribution from varying parallel execution performance nor
from the parallelization management code in the OpenMP
framework library.

For Graph500-OMP, the sequential time variation is a
significant factor, even increasing in significance as the thread
count goes higher; if there is reasonably large sequential
variation, Amdahl’s Law implies that it will get more
significant as concurrency increases. Barrier overhead, for all
configurations other than the 32-thread one, remains high. We
surmise that Graph500-OMP has consistently high workload
variation between the threads; this could potentially be a point
for improvement.

The most important point of the Graph500-OMP results is
that if we had assumed that the sequential execution time part
was constant, as Amdahl’s Law does, we would have
attributed much more overhead to the memory hierarchy, and
would believe that we could achieve more improvements that
might truly be possible (without addressing the sequential
part). The differing sequential times here result in up to a 15%
difference in the ideal parallel performance, which is
insignificant.

The next step for this analysis would be to run Graph500-
OMP under a memory simulator and try to break down the
cost into per-core hierarchy costs and coherency costs. Since
shared-memory parallelism captures its communication cost in
the implicit memory hierarchy operations, detailing what
happens here is the important next step. Many ideas are being
pursued in regards to more efficiently connecting data and
computation in these types of irregularly parallel, data-
intensive applications, from active messages to radical
processor-in-memory architectures. What is clear is that on
present architectures, data access is a large portion, though not
all, of the cause of poor speedup in Graph500-OMP.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:15, No:3, 2021

218International Scholarly and Scientific Research & Innovation 15(3) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
3,

 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
92

5.
pd

f

Fig. 3 Graph500-MPI MPI overhead. Total application time and time
in MPI routines are shown

IV. DISTRIBUTED EVALUATION

In this section, we present results from evaluating the pure
MPI version of the Graph500 benchmark. We will refer to this
implementation as Graph500-MPI. For these results, we
mostly used the mpiP tool [5], which gives time breakdowns
of all of the MPI calls that an application performs. For this
version we did not measure sequential time variation; because
this version uses pure MPI without local threading, there is no
ending of local parallel sections and beginning of sequential
sections; processes may wait at a synchronization point, but
this will be measured elsewhere. Indeed when inspecting the
implementation code, there is very little synchronization. It
uses asynchronous sends and receives for most of the
communication, using an all-reduce only at the end of a
computation.

Fig. 3 shows the total overhead measured for Graph500-
MPI (and compared to two NASA Parallel Benchmarks, EP
and LU). Graph500-MPI obviously spends a large portion of
its time in MPI—in most configurations, about 70%.

Fig. 4 shows the main components of the time spent in MPI.
The dominant factor of MPI time is the routine MPI Test,
which simply is a local test to see if some asynchronous
communication has been completed. This is consistent with
Graph500-MPI’s use of asynchronous communication and
seems to indicate that Graph500-MPI is mostly bound by
waiting on data. Given that the sends and receives are
asynchronous, their direct overhead is going to be mostly
unavoidable, unless the data packaging and amount could
somehow be optimized. Thus in this section, we will focus on
the time spent waiting (e.g., in MPI Test). The mpiP tool
breaks down MPI routine overhead based on call sites, and so
we can learn more from the large portion of overhead due to
MPI Test.

The Graph500-MPI code is organized with a large macro
that has an initial loop that checks for received data messages
using MPI Test, and then in a second loop uses MPI Test
again to check for sending buffers that have emptied because
of a completed send. The macro itself is used in two

(prominent) places, one at the beginning of each work
iteration, and one where it needs to send data to another
process and is waiting for the send buffer to become available.
These four separate call sites of MPI Test and their proportion
of overhead are shown in Table II, labeled with the first part
denoting the macro use site (top of work iteration or waiting
for send buffer) and the second part the place in the macro
itself (checking for received messages or checking for empty
send buffers).

Fig. 4 Graph500-MPI overhead breakdown for the four largest
components

TABLE II

MPI TEST CALL SITE OVERHEAD BREAKDOWN.
Call Site App % Overhead MPI % Overhead

Top-Recv
Send-Recv
Send-Send
Top-Send

18.48
13.56
9.45
1.49

25.58
18.89
13.08
2.06

We hand instrumented the macro to collect detailed
performance data on how MPI Test was being used. Fig. 5
shows a detailed look at how MPI Test behaves in Graph500-
MPI. The layers in the graphs are histogram buckets for call
durations, from 0 to 3 seconds. The buckets stack for a total
number of calls. The X-axes are the MPI processes (ranks) and
the algorithm iteration (recall that Graph500-MPI performs 64
spanning-tree constructions, choosing a random starting vertex
each time). Two things should be taken away from these
graphs. One is that the top graph shows that processes have an
equitable distribution of the waiting (testing) time—there are
no large distinctions between the ranks. Two, the bottom
graph shows that most algorithm iterations are consistent with
each other, but a few (13 in this graph) clearly spike the total
amount of waiting time. We interpret this to be that for most
searches, the graph partition is suitable and produces
consistent results, but some starting vertices cause the search
to perform quite poorly. We do not offer an opinion as to
whether it would be good to try to improve the performance of
these few searches. Notably, there are not any large dips
below what seems to be a sort of baseline cost to doing a BFS,
so no starting node causes some large increase in BFS
performance.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:15, No:3, 2021

219International Scholarly and Scientific Research & Innovation 15(3) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
3,

 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
92

5.
pd

f

The Graph500-MPI code uses one sending buffer for every
other rank; if a rank needs to send a message while the
previous asynchronous send to the same rank is still active, it
needs to wait. A natural investigation into this cost would be
to allocate two buffers for every other rank. We made this
small change, with the results shown in Fig. 6. There is a

reasonably significant improvement in speedup, but not to the
amount that approaches removing the large waiting costs. For
example, in one set of runs, MPI Test goes from 69% of total
application time to 63% of the total time when two buffers are
used.

Fig. 5 MPI Test execution time histogram (layers) by rank (a) and by algorithm iteration (b)

TABLE III
PERFORMANCE USING ONE AND TWO MACROS

 MPI % Performance

Number of Macros
MPI_Test
operations

Total TEPS Speedup

One Macro
Two Macros

67.96
67.65

72.22
72.90

2.44E+08
2.36E+08

37.84
36.56

Another useful investigation to check is whether the
coupling of the two separate tests in the macro causes some of
the inefficiencies. To this end, we split the macro into the
receiving and sending parts, and then only use each at the
appropriate points in the main computation loop. Table III
shows a sample result of this experiment, which resulted in
essentially no change in the amount of waiting overhead. We
conclude that the waiting is not dependent on this aspect of the
structure of the Graph500-MPI implementation but rather is
more inherent to the nature of the computational problem.

In summary, Graph500-MPI has most of its overhead in
waiting for data to receive or to be sent, and seems to run out
of work and is communication bound. Some improvement
could be made, as shown with the dual send-buffer
experiment, but large improvements need a different
computational and communication model (as will be seen in

the next section).

Fig. 6 Speedup of Graph500-MPI with One and Two Sending Buffers

V. HYBRID EVALUATION

In this section, we present results from evaluating the
hybrid OpenMP+MPI version of the Graph500 benchmark.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:15, No:3, 2021

220International Scholarly and Scientific Research & Innovation 15(3) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
3,

 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
92

5.
pd

f

We will refer to this implementation as Graph500-HYB. For
these results, we used both the PGOMP tool that we used for
collecting data from the OpenMP version and the mpiP tool
for MPI profiling. We did this separately so that the tools’
overheads did not interfere with each other.

The Graph500-HYB code is quite a bit different than the
Graph500-MPI version. Graph500-MPI is heavily centered on
asynchronous MPI communication, but the Graph500-HYB
code uses synchronizing all-to-all communication as it shares
information between processes after a round of OpenMP
parallel loop-based computation.

Fig. 7 shows that, not surprisingly, in simple raw
performance (the internal Graph500 TEPS metric), Graph500-
HYB is much better than the pure MPI version. Thus it has
much less overhead and since most of Graph500-MPI’s
overhead was waiting for data, Graph500-HYB clearly
removes much of the waiting time.

Fig. 7 Graph500-HYB and Graph500-MPI Performance on 8 Nodes

Fig. 8 Performance of Graph500-HYB on 2 and 8 Nodes, Varying Thread Count

Fig. 9 Graph500-HYB MPI Overhead on 8 Nodes

Fig. 8 shows the performance of Graph500-HYB with
varying thread counts per node, distributed over 2 nodes and 8
nodes. Both distributed configurations show the same general
performance curve, with very few threads performing poorly,
as expected, then a plateau up to 32 threads, with a tailing off

of a performance at 48 threads. Recall that the platform these
evaluations are performed on has 24 physical cores on each
node, with 48 hardware hyperthreads. The surprising result
here is that beyond 4-8 local threads, there is virtually no
improvement in the performance of Graph500-HYB. Thus, its

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:15, No:3, 2021

221International Scholarly and Scientific Research & Innovation 15(3) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
3,

 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
92

5.
pd

f

local parallelism is severely limited.
Fig. 9 shows the total MPI overhead and its breakdown into

major components. Recall that Graph500-MPI consistently
had about 70% of its time in MPI operations; Graph500-HYB
shows a consistent 40%, thus reflecting its improved
performance. Very low local thread counts have a skewed
contribution between two all-to-all operations, and the balance
between them slowly changes as thread counts continue to
increase, but overall it is the two all-to-all operations that
make up the majority of MPI overhead in Graph500-HYB.

Although Fig. 8 showed TEPS dropping off at 48 threads,
this figure shows that MPI overhead remains consistent over
thread counts, and thus the performance dropoff must be due
to local issues. More importantly, since the MPI overhead
remains consistent from about 8 threads to 48 threads, the lack
of performance improvement across these thread counts
signifies that all of the issues are local.

Recall that in the pure OpenMP version (Graph500-OMP),
there was virtually no locking, and so the local overhead was
mostly in barrier synchronization (end of a parallel loop) and
the memory hierarchy (where implicit communication
happens). With PGOMP we measured the barrier times, and
although they do slightly rise as thread counts increase, we
found them to be surprisingly small, accounting for less than
0.1% of the overall overhead. We did also use PGOMP to
verify that other possible OpenMP overheads (library time,
locking time) were negligible. We are therefore left to
conclude that the local performance degradation is entirely
due to the memory hierarchy.

Table IV summarizes the result of Graph500-HYB, putting
together the observed MPI overhead measurements and the
OpenMP barrier measurements, and then computing the not
directly-measured memory hierarchy overhead and resultant
productive computation percentage of application time, based
on the observed TEPS performance for the different
configurations. Recall that TEPS do not increase past about 8
threads per node, so productive computation drops drastically
as thread count increases beyond this.

TABLE IV

OVERALL FACTOR CONTRIBUTION TO PERFORMANCE LOSS IN HYBRID

GRAPH500
Number

of
Threads

MPI
Accounted

Overhead %

Barrier/CS
Accounted
Overhead%

Memory
System

Overhead %

Computation
%

2
4
8

16
24
32
48

47.0
46.7
39.8
39.4
37.9
38.0
40.9

0.0
0.0

0.014
0.018
0.022
0.021
0.035

11.9
18.7
31.9
43.6
50.7
53.2
54.6

41.0
34.5
28.4
17.0
11.4
8.7
4.5

If our analysis holds, the end result is that as thread count
increases, even with physical cores available (up to 24 on our
platform), the memory hierarchy is basically thrashing (within
cache and primary memory, not to disk), with threads causing
coherency and caching conflicts at increasing rates. This
seems reasonable since the MPI communication is performed
by one single thread, which causes new data to be localized

into its core’s hierarchy, and then as all the threads access
these data in a new parallel loop, the data not only must reach
their core but also end up being irregularly shared as the
threads traverse the local part of the graph. An analysis of this
under memory simulation is needed to fully confirm this
observation and deduction.

VI. RELATED WORK

Roth et al. [6] performed somewhat similar analyses over
particular Pthread-based parallel algorithms from PARSEC,
categorizing the overhead factors into work, delay, and
distribution. Most of their improvements were at the algorithm
level, other than noting the potential effectiveness of an active
barrier (spin barrier) for some applications over a passive
(blocking) barrier.

Pavlovic et al. [7] investigated the memory system
requirements that scientific applications have, concluding that
future scientific computation needs radically new memory
architectures if they expect to achieve good speedups. They
used Gadget, MILC, WRF, and SOCORRO as their
representative scientific applications, and focused on
measuring memory bandwidth and cache effectiveness and the
effect these have on the underlying CPI achieved by the
workload.

Suzumura et al. [8] specifically focused on the performance
characteristics of the Graph500 benchmark program in a
distributed parallel environment; they optimized the
implementation to achieve better speedup.

Harmony [9] is an LLVM-based tool that instruments
Pthreads-based parallel programs. Their work noticed a related
issue with the conventional Amdahl-based view of a parallel
program, in that they found that code was shared between the
sequential and parallel portions of the programs. The same
group also investigates bottlenecks in a variety of application
domains and aims to separate computation and memory
system bottlenecks [10].

Murphy [11] performed an early study into the different
behaviors that integer-based irregularly parallel algorithms
have from the traditional matrix-based floating-point
computations. Burtscher et al. [12] investigated the
quantitative variation for irregular GPU-based programs.
Other recent work has also quantitatively investigated
performance issues in parallel algorithms, graph-based, and
otherwise. Gill [22] investigated how the graph partitioning
strategies, including Edge-Cuts, 2D block partitioning
strategies, and general Vertex-Cuts, can reduce the required
communication during the computation to synchronize node
updates. They used the D-Galois system, a distributed-
memory version of the Galois system based on the Gluon
runtime, which implements partitioning-specific
communication optimizations. Most of their improvements
were at the application runtime. They concluded that the
optimal partitioning strategy depends on the application, the
input, and the number of hosts or scale. More prior work was
done one parallel graph performance issues [13]-[15].

Various graph-processing frameworks and libraries have
been and are being actively constructed, e.g. [16]-[18], [20],

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:15, No:3, 2021

222International Scholarly and Scientific Research & Innovation 15(3) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
3,

 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
92

5.
pd

f

[21], [23].

VII. CONCLUSION

We presented an overview of studies into the factors that
contribute to the overhead that causes parallel performance
degradation in Graph500, taking it to be a representative
application for graph-based problems. Detailed results can be
found in the first author’s thesis [3].

We measured the overhead contributed by traditional
factors such as barrier synchronization costs, lock and critical
section contention, and communication costs. In some
settings, such as local parallelism, memory coherency costs
could not be measured directly but were inferred from how
much overhead was accounted for by other factors.

In the shared-memory parallelism of Graph500-OMP,
variation in the sequential execution time was significant;
ignoring it could lead to oversubscribing the overhead caused
by the memory hierarchy. The Graph500-OMP version is
limited in its scaling to one node (unless one considered
cluster-wide virtualization techniques), so some element of
distributed parallelism is needed.

For the pure MPI Graph500-MPI, which obviously does not
take advantage of local node architecture, the graph search is
bound by waiting for communication, and much of this seems
inherent in the problem. Finally, the hybrid Graph500-HYB,
which uses both MPI and OpenMP, performed far better than
Graph500-MPI, but still consistently incurred about 40% of its
time in distributed overhead costs (synchronized all-to-all
communication). The most surprising aspect of Graph 500-
HYB was how quickly its local parallel performance stopped
improving. With nodes having 24 physical cores (48
hyperthreads) and 256GB of memory, it would seem that local
parallelism would be extremely effective, but Graph500-HYB
saw very little improvement above about 8 threads and saw
some degradation with extreme thread counts (32-48).

In Graph500-HYB, barrier overhead was almost negligible
and there is no locking overhead, so the overhead that reduces
local parallelism effectiveness must be within the memory
hierarchy. We did not measure, but did not see other
explanatory causes such as threads sleeping. Its MPI overhead
was consistent, but another problem organization that avoids
all-to-all operations might be effective in reducing this.
Nevertheless, local overhead begins to dominate at high thread
counts.

For future work, we want to more deeply characterize
performance issues in parallel graph algorithms, including
using some real applications. Evaluating Graph500 under a
memory simulator may be very costly but could provide real
insight into exactly what is causing the largest performance
impacts.

ACKNOWLEDGMENT

We thank New Mexico State University for allowing us to
use their machines. Also, we thank the reviewers for their time
and helpful feedback.

REFERENCES
[1] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. W. Berry, “Challenges

in Parallel Graph Processing,” Parallel Processing Letters, vol. 17, no.
1, pp. 5–20, 2007.

[2] D. Bader, J. Berry, S. Kahan, R. Murphy, E. Riedy, and J. Willcock,
“Graph 500 Benchmark 1 (Search),” 2010, www.graph500.org.

[3] M. El-Fituri, “Analyzing and Improving the Performance of Parallel
Graph Algorithms, Ph.D. Thesis,” New Mexico State University.

[4] M. Elfituri, J. Cook, and J. Cook, “Binary instrumentation support for
measuring performance in openmp programs,” in Proceedings of the 5th
International Workshop on Software Engineering for Computational
Science and Engineering, ser. SE-CSE ’13. Piscataway, NJ, USA: IEEE
Press, 2013, pp. 19–23. (Online). Available:
http://dl.acm.org/citation.cfm?id=2663370.2663374

[5] J. Vetter and M. McCracken, “Statistical Scalability Analysis of
Communication Operations in Distributed Applications,” in Proc. ACM
SIGPLAN Symp. on Principles and Practice of Parallel Programming
(PPOPP), 2001.

[6] M. Roth, M. J. Best, C. Mustard, and A. Fedorova, “Deconstructing the
overhead in parallel applications,” 2012 IEEE International Symposium
on Workload Characterization (IISWC), vol. 0, pp. 59–68, 2012.

[7] M. Pavlovic, Y. Etsion, and A. Ramirez, “On the memory system
requirements of future scientific applications: Four case-studies,” in
Proceedings of the 2011 IEEE International Symposium on Workload
Characterization, ser. IISWC ’11. Washington, DC, USA: IEEE
Computer Society, 2011, pp. 159–170.

[8] T. Suzumura, K. Ueno, H. Sato, K. Fujisawa, and S. Matsuoka,
“Performance characteristics of graph500 on large-scale distributed
environment,” in Proceedings of the 2011 IEEE International
Symposium on Workload Characterization, ser. IISWC ’11. Washington,
DC, USA: IEEE Computer Society, 2011, pp. 149–158.

[9] M. Kambadur, K. Tang, and M. A. Kim, “Harmony: Collection and
analysis of parallel block vectors,” in Proceedings of the 39th Annual
International Symposium on Computer Architecture, ser. ISCA ’12.
Washington, DC, USA: IEEE Computer Society, 2012, pp. 452–463.

[10] M. A. Kim and S. A. Edwards, “Computation vs. memory systems:
Pinning down accelerator bottlenecks,” in Proceedings of the 2010
International Conference on Computer Architecture, ser. ISCA’10.
Berlin, Heidelberg: Springer-Verlag, 2012, pp. 86–98.

[11] R. Murphy, “On the effects of memory latency and bandwidth on
supercomputer application performance,” in Proc. 2007 IEEE 10th Int’l
Symp. on Workload Characterization, ser. IISWC ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 35–43.

[12] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of
irregular programs on gpus,” 2012 IEEE International Symposium on
Workload Characterization (IISWC), vol. 0, pp. 141–151, 2012.

[13] R. Jongerius, P. Stanley-Marbell, and H. Corporaal, “Quantifying the
common computational problems in contemporary applications,” in
Proc. 2011 IEEE Int’l Symp. on Workload Characterization, ser. IISWC
’11. Washington, DC, USA: IEEE Computer Society, 2011, pp. 74–.

[14] H. Inoue and T. Nakatani, “Performance of multi-process and
multithread processing on multi-core smt processors,” in Proceedings of
the IEEE International Symposium on Workload Characterization
(IISWC’10), ser. IISWC ’10. Washington, DC, USA: IEEE Computer
Society, 2010, pp. 1–10.

[15] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader, “Scalable graph
exploration on multicore processors,” in Proc. 2010 ACM/IEEE Int’l
Conf. for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’10. Washington, DC, USA: IEEE Computer Society,
2010, pp. 1–11.

[16] E. Krepska, T. Kielmann, W. Fokkink, and H. Bal, “Hipg: Parallel
processing of large-scale graphs,” SIGOPS Oper. Syst. Rev., vol. 45, no.
2, pp. 3–13, Jul. 2011.

[17] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: A system for large-scale graph processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’10. New York, NY, USA: ACM,
2010, pp. 135–146.

[18] V. Prabhakaran, M. Wu, X. Weng, F. McSherry, L. Zhou, and M.
Haridasan, “Managing large graphs on multi-cores with graph
awareness,” in Proceedings of the 2012 USENIX Conference on Annual
Technical Conference, ser. USENIX ATC’12. Berkeley, CA, USA:
USENIX Association, 2012, pp. 4–4.

[19] S. Beamer, K. Asanovic, and D. Patterson, "Locality exists in graph

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:15, No:3, 2021

223International Scholarly and Scientific Research & Innovation 15(3) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
3,

 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
92

5.
pd

f

processing: Workload characterization on an ivy bridge server," in Proc.
of IEEE International Symposium on Workload Characterization
(IISWC), pp. 56--65, October 2015.

[20] Gurbinder Gill, Roshan Dathathri, Loc Hoang, Ramesh Peri, and Keshav
Pingali, “Single Machine Graph Analytics on Massive Datasets Using
Intel Optane DC Persistent Memory”, PVLDB 13, 8 , 2020, 1304–13

[21] Laxman Dhulipala, Changwan Hong, and Julian Shun, ConnectIt, “A
Framework for Static and Incremental Parallel Graph Connectivity
Algorithms”, Proceedings of the VLDB Endowment, 2021. To appear.

[22] G. Gill, R. Dathathri, L. Hoang, and K. Pingali. A Study of Partitioning
Policies for Graph Analytics on Large-scale Distributed Platforms.
volume 12 of PVLDB, 2018.

[23] Kartik Lakhotia, Rajgopal Kannan, Sourav Pati, and Viktor Prasanna,
“A cache and memory-efficient framework for graph processing over
partitions”, In Proceedings of the 24th Symposium on Principles and
Practice of Parallel Programming, 2019, GPOP, (PPoPP’19). ACM,
New York, NY, 393—394

[24] D. A. B. et al. Hpcs “scalable synthetic compact applications #2 graph
analysis”, version 2.2.
http://www.graphanalysis.org/benchmark/HPCSSSCA2

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:15, No:3, 2021

224International Scholarly and Scientific Research & Innovation 15(3) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
3,

 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
92

5.
pd

f

