Search results for: Clique
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10

Search results for: Clique

10 A Deterministic Polynomial-time Algorithm for the Clique Problem and the Equality of P and NP Complexity Classes

Authors: Zohreh O. Akbari

Abstract:

In this paper a deterministic polynomial-time algorithm is presented for the Clique problem. The case is considered as the problem of omitting the minimum number of vertices from the input graph so that none of the zeroes on the graph-s adjacency matrix (except the main diagonal entries) would remain on the adjacency matrix of the resulting subgraph. The existence of a deterministic polynomial-time algorithm for the Clique problem, as an NP-complete problem will prove the equality of P and NP complexity classes.

Keywords: Clique problem, Deterministic Polynomial-time Algorithm, Equality of P and NP Complexity Classes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786
9 A New Effective Local Search Heuristic for the Maximum Clique Problem

Authors: S. Balaji

Abstract:

An edge based local search algorithm, called ELS, is proposed for the maximum clique problem (MCP), a well-known combinatorial optimization problem. ELS is a two phased local search method effectively £nds the near optimal solutions for the MCP. A parameter ’support’ of vertices de£ned in the ELS greatly reduces the more number of random selections among vertices and also the number of iterations and running times. Computational results on BHOSLIB and DIMACS benchmark graphs indicate that ELS is capable of achieving state-of-the-art-performance for the maximum clique with reasonable average running times.

Keywords: Maximum clique, local search, heuristic, NP-complete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222
8 Some Improvements on Kumlander-s Maximum Weight Clique Extraction Algorithm

Authors: Satoshi Shimizu, Kazuaki Yamaguchi, Toshiki Saitoh, Sumio Masuda

Abstract:

Some fast exact algorithms for the maximum weight clique problem have been proposed. Östergard’s algorithm is one of them. Kumlander says his algorithm is faster than it. But we confirmed that the straightforwardly implemented Kumlander’s algorithm is slower than O¨ sterga˚rd’s algorithm. We propose some improvements on Kumlander’s algorithm.

Keywords: Maximum weight clique, exact algorithm, branch-andbound, NP-hard.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
7 Clique and Clan Analysis of Patient-Sharing Physician Collaborations

Authors: Shahadat Uddin, Md Ekramul Hossain, Arif Khan

Abstract:

The collaboration among physicians during episodes of care for a hospitalised patient has a significant contribution towards effective health outcome. This research aims at improving this health outcome by analysing the attributes of patient-sharing physician collaboration network (PCN) on hospital data. To accomplish this goal, we present a research framework that explores the impact of several types of attributes (such as clique and clan) of PCN on hospitalisation cost and hospital length of stay. We use electronic health insurance claim dataset to construct and explore PCNs. Each PCN is categorised as ‘low’ and ‘high’ in terms of hospitalisation cost and length of stay. The results from the proposed model show that the clique and clan of PCNs affect the hospitalisation cost and length of stay. The clique and clan of PCNs show the difference between ‘low’ and ‘high’ PCNs in terms of hospitalisation cost and length of stay. The findings and insights from this research can potentially help the healthcare stakeholders to better formulate the policy in order to improve quality of care while reducing cost.

Keywords: Clique, clan, electronic health records, physician collaboration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 834
6 Maximum Common Substructure Extraction in RNA Secondary Structures Using Clique Detection Approach

Authors: Shih-Yi Chao

Abstract:

The similarity comparison of RNA secondary structures is important in studying the functions of RNAs. In recent years, most existing tools represent the secondary structures by tree-based presentation and calculate the similarity by tree alignment distance. Different to previous approaches, we propose a new method based on maximum clique detection algorithm to extract the maximum common structural elements in compared RNA secondary structures. A new graph-based similarity measurement and maximum common subgraph detection procedures for comparing purely RNA secondary structures is introduced. Given two RNA secondary structures, the proposed algorithm consists of a process to determine the score of the structural similarity, followed by comparing vertices labelling, the labelled edges and the exact degree of each vertex. The proposed algorithm also consists of a process to extract the common structural elements between compared secondary structures based on a proposed maximum clique detection of the problem. This graph-based model also can work with NC-IUB code to perform the pattern-based searching. Therefore, it can be used to identify functional RNA motifs from database or to extract common substructures between complex RNA secondary structures. We have proved the performance of this proposed algorithm by experimental results. It provides a new idea of comparing RNA secondary structures. This tool is helpful to those who are interested in structural bioinformatics.

Keywords: Clique detection, labeled vertices, RNA secondary structures, subgraph, similarity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433
5 Image Modeling Using Gibbs-Markov Random Field and Support Vector Machines Algorithm

Authors: Refaat M Mohamed, Ayman El-Baz, Aly A. Farag

Abstract:

This paper introduces a novel approach to estimate the clique potentials of Gibbs Markov random field (GMRF) models using the Support Vector Machines (SVM) algorithm and the Mean Field (MF) theory. The proposed approach is based on modeling the potential function associated with each clique shape of the GMRF model as a Gaussian-shaped kernel. In turn, the energy function of the GMRF will be in the form of a weighted sum of Gaussian kernels. This formulation of the GMRF model urges the use of the SVM with the Mean Field theory applied for its learning for estimating the energy function. The approach has been tested on synthetic texture images and is shown to provide satisfactory results in retrieving the synthesizing parameters.

Keywords: Image Modeling, MRF, Parameters Estimation, SVM Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608
4 Delay Preserving Substructures in Wireless Networks Using Edge Difference between a Graph and its Square Graph

Authors: T. N. Janakiraman, J. Janet Lourds Rani

Abstract:

In practice, wireless networks has the property that the signal strength attenuates with respect to the distance from the base station, it could be better if the nodes at two hop away are considered for better quality of service. In this paper, we propose a procedure to identify delay preserving substructures for a given wireless ad-hoc network using a new graph operation G 2 – E (G) = G* (Edge difference of square graph of a given graph and the original graph). This operation helps to analyze some induced substructures, which preserve delay in communication among them. This operation G* on a given graph will induce a graph, in which 1- hop neighbors of any node are at 2-hop distance in the original network. In this paper, we also identify some delay preserving substructures in G*, which are (i) set of all nodes, which are mutually at 2-hop distance in G that will form a clique in G*, (ii) set of nodes which forms an odd cycle C2k+1 in G, will form an odd cycle in G* and the set of nodes which form a even cycle C2k in G that will form two disjoint companion cycles ( of same parity odd/even) of length k in G*, (iii) every path of length 2k+1 or 2k in G will induce two disjoint paths of length k in G*, and (iv) set of nodes in G*, which induces a maximal connected sub graph with radius 1 (which identifies a substructure with radius equal 2 and diameter at most 4 in G). The above delay preserving sub structures will behave as good clusters in the original network.

Keywords: Clique, cycles, delay preserving substructures, maximal connected sub graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1232
3 Computational Identification of Bacterial Communities

Authors: Eleftheria Tzamali, Panayiota Poirazi, Ioannis G. Tollis, Martin Reczko

Abstract:

Stable bacterial polymorphism on a single limiting resource may appear if between the evolved strains metabolic interactions take place that allow the exchange of essential nutrients [8]. Towards an attempt to predict the possible outcome of longrunning evolution experiments, a network based on the metabolic capabilities of homogeneous populations of every single gene knockout strain (nodes) of the bacterium E. coli is reconstructed. Potential metabolic interactions (edges) are allowed only between strains of different metabolic capabilities. Bacterial communities are determined by finding cliques in this network. Growth of the emerged hypothetical bacterial communities is simulated by extending the metabolic flux balance analysis model of Varma et al [2] to embody heterogeneous cell population growth in a mutual environment. Results from aerobic growth on 10 different carbon sources are presented. The upper bounds of the diversity that can emerge from single-cloned populations of E. coli such as the number of strains that appears to metabolically differ from most strains (highly connected nodes), the maximum clique size as well as the number of all the possible communities are determined. Certain single gene deletions are identified to consistently participate in our hypothetical bacterial communities under most environmental conditions implying a pattern of growth-condition- invariant strains with similar metabolic effects. Moreover, evaluation of all the hypothetical bacterial communities under growth on pyruvate reveals heterogeneous populations that can exhibit superior growth performance when compared to the performance of the homogeneous wild-type population.

Keywords: Bacterial polymorphism, clique identification, dynamic FBA, evolution, metabolic interactions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1354
2 Analysis of Social Network Using Clever Ant Colony Metaphor

Authors: Mohammad Al-Fayoumi, Soumya Banerjee, Jr., P. K. Mahanti

Abstract:

A social network is a set of people or organization or other social entities connected by some form of relationships. Analysis of social network broadly elaborates visual and mathematical representation of that relationship. Web can also be considered as a social network. This paper presents an innovative approach to analyze a social network using a variant of existing ant colony optimization algorithm called as Clever Ant Colony Metaphor. Experiments are performed and interesting findings and observations have been inferred based on the proposed model.

Keywords: Social Network, Ant Colony, Maximum Clique, Sub graph, Clever Ant colony.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
1 Natural Emergence of a Core Structure in Networks via Clique Percolation

Authors: A. Melka, N. Slater, A. Mualem, Y. Louzoun

Abstract:

Networks are often presented as containing a “core” and a “periphery.” The existence of a core suggests that some vertices are central and form the skeleton of the network, to which all other vertices are connected. An alternative view of graphs is through communities. Multiple measures have been proposed for dense communities in graphs, the most classical being k-cliques, k-cores, and k-plexes, all presenting groups of tightly connected vertices. We here show that the edge number thresholds for such communities to emerge and for their percolation into a single dense connectivity component are very close, in all networks studied. These percolating cliques produce a natural core and periphery structure. This result is generic and is tested in configuration models and in real-world networks. This is also true for k-cores and k-plexes. Thus, the emergence of this connectedness among communities leading to a core is not dependent on some specific mechanism but a direct result of the natural percolation of dense communities.

Keywords: Networks, cliques, percolation, core structure, phase transition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 722